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Featured Application: Here, we report a practical and precise method for the identification of
foodborne pathogenic bacteria using a Raman handheld device equipped with an orbital raster scan
(ORS) technology that enables the system to generate a distinct fingerprint of bacteria suspended
in media broth by applying principal component analysis (PCA) and support vector machine
(SVM) as classifiers. This system relies on isolation from the source to ensure the generation
of fingerprints of axenic cultures. It requires very little sample preparation and is significantly
less costly than other Raman technologies. Thus, this system could be easily implemented in
limited-resource settings.

Abstract: Rapid and precise methods to detect pathogens are paramount in ensuring food safety
and selecting appropriate disinfection treatments. Raman spectrometry is a promising technology
being investigated for detecting pathogens and achieving rapid, culture-free, and label-free methods.
Nonetheless, previous Raman techniques require additional steps, including the preparation of
slides that could introduce significant variability. In this study, we investigated the capability of a
Raman handheld device for rapid identification of monocultures of Listeria monocytogenes, Salmonella
Typhimurium, Escherichia coli O157:H7, and Staphylococcus aureus, and the combination of co-cultures
in BHI broth suspension by utilising principal component analysis (PCA) and support vector machine
(SVM) classification of Raman spectra. The detection method accurately identified monocultures
(0.93 ± 0.20), achieving good discrimination after 24 h of bacterial growth. However, the PCA–SVM
system was less accurate for classifying co-cultures (0.67 ± 0.35). These results show that this
method requires an isolation step followed by biomass enrichment (>8 log10 CFU/mL) for accurate
identification. The advantage of this technology is its simplicity and low-cost preparation, achieving
high accuracy in monocultures in a shorter time than conventional culture-dependent methods.

Keywords: portable Raman; rapid identification; foodborne pathogens; limited-resource settings

1. Introduction

Foodborne pathogens are a severe problem for the agri-food industry and a serious
concern for public health on a global scale. The cost is divided between social aspects such
as medical care, reduction in quality of life, mortality, and the agri-food industry, i.e., costs
for regulation compliance, product recalls, and tracing back-contamination [1]. Specific
bacterial pathogens may cause severe illness or even become life-threatening within a few
days. Currently, among the most critical bacterial agents are Listeria (L.) monocytogenes,
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Salmonella spp., and the Shiga toxin-producing Escherichia (E.) coli O157 [2]. L. monocytogenes
is a Gram-positive, biofilm-forming, and ubiquitous microorganism that can grow at low
temperatures, making it a serious health risk for the food industry. Moreover, listeriosis
may induce abortion in pregnant women, showing a high mortality rate of about 13 to
34% [3]. It is estimated that listeriosis-related costs reach up to £245 million per year in
the UK [3]. Salmonella spp. cause acute gastroenteritis and are considered the leading
cause of morbidity and mortality in developed and developing countries [4]. There are
continuous increases in cases of salmonellosis in the EU related to the consumption of
contaminated poultry [5]. E. coli O157:H7 is a Shiga-toxin-producing pathogen (STEC) that
may cause acute diarrhoea and severe kidney damage. Serotype O157 was associated with
the most reported infection incidences in the EU in 2017 [6]. Moreover, methicillin-resistant
Staphylococcus (S.) aureus (MRSA) strains are of particular interest. They can cause severe
infections in humans and animals and have shown resistance to other antimicrobial groups,
raising serious concerns. Its transmission has been associated with community interaction,
healthcare (i.e., in hospitals), and livestock (zoonosis) [6]. Therefore, rapid identification of
pathogenic bacteria in food is paramount to making decisions in time. Selective culture
followed by biochemical identification is used in conventional laboratories for identification.
However, this path can take up to 6 days to complete [7]. Other methods provide more
rapid and accurate identification, including PCR, serological, and surface protein identifica-
tion using matrix-assisted laser desorption ionisation–time of flight (MALDI–TOF) mass
spectrometry [8]. However, these methods generally require the acquisition of high-cost
equipment and reagents.

Raman spectroscopy (RS) is a non-invasive and non-destructive spectroscopic tech-
nique based on the molecular vibrations derived from the interaction of photons from a
laser source when they hit the molecules of a substance characterised by specific chemical
groups [9]. It has the advantage that it can probe numerous biochemical compounds on the
cell surface without needing a particular marker [10]. However, only 1 in 106–108 scattered
photons correspond to Raman scattering phenomena, producing a weak signal. Therefore,
in addition to mathematical signal-to-noise data amplification by computational models,
other techniques have been developed to increase Raman efficiency. For instance, surface-
enhanced Raman scattering (SERS) significantly upturns Raman scattering efficiency, up to
106 times, compared to conventional Raman [11]. This consists of using metallic particles
such as silver or gold as substrates that interact with the target molecules, increasing their
signal intensity [10]. SERS has been reported to detect E. coli on grounded beef within three
hours [12] (p. 171) and Pseudomonas from drinking water within 15 min of analysis time [13].
This promising technique allows for the rapid identification of culture-free and label-free
microorganisms. Nevertheless, SERS requires expensive equipment and infrastructure,
making it impractical for laboratories in limited-resource settings. Moreover, its applica-
bility depends on the affinity of the target compound for metal surfaces to provide an
adequate signal, and the standardisation of substrates is necessary to achieve reproducible
results [10,14].

RS coupled to confocal microscopy can interrogate a single cell for components,
increasing the accuracy of cell classification [15]. This technique and convolutional neural
networks (CNN) have been reported to classify bacterial cells of clinical importance, such
as L. monocytogenes, Salmonella, and S. aureus, achieving rapid and culture-free identification
with high accuracy [15]. Its limitation is that the slide and sample preparation process may
introduce high variability between laboratories as no standardised condition consensus
exists. These factors include media type, centrifugation conditions, slide drying, and the
age of the slide preparation [16].

Handheld Raman devices can scan samples in situ, achieving high accuracy. Far-
ber and Kurouski (2018) reported a Raman handheld device technique to identify plant
pathogens on maize kernels, discriminating with high accuracy (100%) between healthy
and infected kernels [17]. The advantage of using portable devices is their practicality and
ability to test in situ. In the present study, we tested a portable handheld Raman device
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with the capability of screening a large area to obtain a single fingerprint in liquid-phase
suspension. No reports have been made using a portable Raman device with this technol-
ogy to identify bacteria. Thus, this study aimed to develop a detection method using a
Raman handheld spectrometer to identify high-threat foodborne pathogenic bacteria in
liquid cultures, suitable for limited-resource settings.

2. Materials and Methods
2.1. Material and Strains

The bacterial strains used in this study were provided by the Department of Applied
Sciences at the University of the West of England. L. monocytogenes ATCC® 35152 (NCTC
7973), Salmonella enterica serotype Typhimurium ATCC® 14028, Staphylococcus aureus ATCC®

25923 (NCTC 12981), and E. coli ATCC® 25922 were activated from a frozen culture in brain
heart infusion broth (BHI, Oxoid®, Oxoid, UK) and incubated at 37 ◦C. An aliquot of BHI
overnight culture was then streaked onto trypticase soy agar (TSA, Oxoid®), incubated
overnight (37 ◦C), and then maintained as fresh colonies for up to a week under refrigeration
(2–4 ◦C). For the experiment, single colonies were inoculated in BHI broth in triplicate for
24 h to reach the stationary growth phase. Serial dilutions were made using BHI broth and
reinoculated in the same media (10 mL) to obtain an initial cell concentration of 10 CFU
mL−1. Inoculated media tubes were incubated at 37 ◦C under agitation at 100 rpm. Cell
counting for growth kinetics and Raman readings were determined at 0, 2, 4, 6, 8, 18, and
24 h. BHI media without inoculum treated under the same temperature conditions was
used as a negative control for cell counting and Raman readings. The growth rate (µ) was
calculated as the slope of the following Equation (1):

lnx = µ × t + lnxo (1)

where µ is the growth rate (h−1), x is the biomass (cell mL−1), t is time (h) during the log
phase, and xo is the biomass at the initial time.

2.2. Cocultures

Two different combinations of cultures were studied, namely, L. monocytogenes–S.
aureus and L. monocytogenes–S. enterica, to determine the level of discrimination that a Raman
signal can provide for combined bacterial strains compared to the level of discrimination in
monocultures inoculated in BHI. To distinguish between cells, differential media was used
as follows: Oxoid Chromogenic Listeria agar (OCLA, Oxoid®) supplemented with Oxford
formulation Listeria selective supplement (Oxoid®) and Brilliance Listeria differential
media (Oxoid®) for L. monocytogenes; Oxoid Baird-Parker agar base (Oxoid®) with RPF
Supplement SR0122 (Oxoid®) for S. aureus; and xylose–lysine–desoxycholate Agar (XLD,
Oxoid®) for S. enterica. Cell counting was determined by plating out serial dilutions using
maximum recovery diluent (Oxoid®) on differential media.

2.3. Raman Measurements

Raman signals were determined using a Mira M-1 handheld device (Metrohm NIRSys-
tems ®, Herisau, Switzerland). The system is equipped with a 768 nm laser with a wavenum-
ber range of 400–2300 cm−1 and a spectral resolution of 12–14 cm−1 (FWHM) across the
whole range, with an output power of ≤100 mW. The equipment uses an orbital raster scan
(ORS) as a detection technique that allows for interrogation of a large area over the sample.
A 1 mL sample was taken into a clear glass vial (Thermofisher Scientific, Swindon, UK)
and placed into the device’s vial holder. Five readings were carried out for each replicate
(n = 3). The acquisition time was 4.5 s. The first reading was taken out as it showed a
significantly different spectrum than the rest (data not shown). We ensured that the vial
was properly clean before proceeding (i.e., no protein residues or fingerprints). The data
were collected and transformed for data analysis using Mira Cal® software version 1.2 for
Microsoft Windows®.
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2.4. Data Analysis and Statistics
2.4.1. Data Format

Each replicate’s spectrum was stored in its file in ASCII format, in which each line
consisted of the wavenumber and the response separated by a tab character. This was
the data used for our classification experiments, i.e., no normalisation or background
subtraction was performed to keep the processing as direct as possible.

2.4.2. Data Analysis

The classification was performed using a Support Vector Machine-based classifier.
This approach seeks one or more hyperplanes that define a boundary (maximum margin)
that separates classes. Our implementation was based on the Python library scikit-learn
(1.0.2), with a regularisation parameter of 20 and the default radial basis function kernel. A
5-fold cross-validation paradigm was used to validate the SVM by randomly selecting a
validation fold five times, training the SVM on the remaining data, and then validating the
data on the validation fold (that the SVM had not been trained on). The classification was
then performed by assigning a class based on the location and distance to the hyperplane.

As shown in Figure 1, the raw Raman data were smoothed by fitting a cubic B-spline to
identify peaks. A continuous wavelet transform (CWT), well suited to finding sharp peaks
in noisy data, was then used to identify peaks using a window width of 12.5 (empirically
determined). Whilst this method gave satisfactory results for visually inspecting the spectra,
it was sensitive to the selected parameters. These peaks are shown in Figure 1 as blue dots.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 13 
 

The data were collected and transformed for data analysis using Mira Cal® software ver-
sion 1.2 for Microsoft Windows®.  

2.4. Data Analysis and Statistics  
2.4.1. Data Format  

Each replicate’s spectrum was stored in its file in ASCII format, in which each line 
consisted of the wavenumber and the response separated by a tab character. This was the 
data used for our classification experiments, i.e., no normalisation or background subtrac-
tion was performed to keep the processing as direct as possible.  

2.4.2. Data Analysis 
The classification was performed using a Support Vector Machine-based classifier. 

This approach seeks one or more hyperplanes that define a boundary (maximum margin) 
that separates classes. Our implementation was based on the Python library scikit-learn 
(1.0.2), with a regularisation parameter of 20 and the default radial basis function kernel. 
A 5-fold cross-validation paradigm was used to validate the SVM by randomly selecting 
a validation fold five times, training the SVM on the remaining data, and then validating 
the data on the validation fold (that the SVM had not been trained on). The classification 
was then performed by assigning a class based on the location and distance to the hyper-
plane. 

As shown in Figure 1, the raw Raman data were smoothed by fitting a cubic B-spline 
to identify peaks. A continuous wavelet transform (CWT), well suited to finding sharp 
peaks in noisy data, was then used to identify peaks using a window width of 12.5 (em-
pirically determined). Whilst this method gave satisfactory results for visually inspecting 
the spectra, it was sensitive to the selected parameters. These peaks are shown in Figure 1 
as blue dots. 

 
Figure 1. Raman spectra for each monoculture: L. monocytogenes (L), S. aureus (AU), E. coli (E), and 
S. enterica (S); lines are displayed for better observation and represent the spectra acquired at 
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0 h (pink).

3. Results
3.1. Pathogen Identification in Monocultures

Our first approach was to investigate the capability of Raman spectroscopy to detect a
discriminatory signal between species to identify them as early as possible within 24 h of
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bacterial growth in BHI broth. We used this media as it is rich in nutrients and allows the
growth of various fastidious microorganisms; therefore, it can be used as standard media.
Figure 1 shows that signals increased in intensity after 18 h and 24 h of growth compared to
spectra found at 8 h or earlier. This indicates that more distinctive and intense signals were
achieved after 18 h of growth at 37 ◦C, offering a better signal-to-noise ratio. The same was
observed for all the strains tested, significantly E. coli and S. aureus.

Noticeably, signals for L. monocytogenes were weaker than the other strains. This
correlates to Listeria’s lower growth rate than the other monocultures (Table 1). Indeed,
Listeria’s Log CFU mL−1 was significantly lower when cocultured with S. aureus and S.
enterica (Figure 2).

Table 1. Growth kinetics of Listeria monocytogenes, Salmonella v. Typhi, E. coli O157:H7, and S. aureus in
monoculture, and Listeria + Salmonella in coculture (x) and Listeria + S. aureus in coculture (y). Results
are expressed as the mean (n = 3) ± SD of Log CFUmL−1.

Monocultures Coculture (x) Coculture (y)

Strain Listeria Salmonella E. coli S. aureus Listeria x Salmonella x Listeria y S. aureus y

µmax (h−1) 0.96 1.83 1.71 2.05 0.85 1.83 1.02 1.73

Time Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0 1.57 0.24 1.63 0.72 2.06 0.49 1.12 0.10 <0.10 0.00 1.75 0.06 0.86 0.09 0.59 0.26
2 2.28 0.08 2.19 0.23 2.38 0.20 1.70 0.07 0.45 0.54 2.64 0.12 1.83 0.06 1.89 0.08
4 3.03 0.22 4.07 0.14 3.96 0.25 3.75 0.09 0.87 0.81 4.51 0.03 2.78 0.08 3.84 0.14
6 3.89 0.14 5.91 0.02 5.81 0.06 5.63 0.02 2.13 0.30 6.23 0.12 3.65 0.16 5.17 0.05
8 4.92 0.02 7.73 0.04 7.76 0.04 7.02 0.05 2.86 0.22 7.89 0.05 4.37 0.09 6.48 0.10

18 9.50 0.12 9.07 0.04 9.46 0.10 9.42 0.15 5.10 0.17 8.88 0.01 7.39 0.09 9.30 0.08
24 9.55 0.09 8.98 0.07 9.45 0.05 9.42 0.14 5.73 0.38 9.09 0.18 7.65 0.16 9.39 0.14
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).

Results from the 5-fold validation show that SVM can identify the difference between
the monoculture samples. Confusion matrices presented in Figure 3 show the actual and
predicted classes for the 5-fold cross-validation. Correct predictions follow the diagonal,
and incorrect predictions can then be seen in the other cells of the matrix. The output at
24 h gave the best response to discriminate between the bacterial spectra with the highest
accuracy. In Figure 3, SMV results for the 5-fold cross-validation after 24 h showed an
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accuracy of 0.93 (±0.20) predicting the right strain, whereas 18 h and 8 h showed accuracies
of 0.88 (±0.27) and 0.46 (±0.10), respectively. This positive correlation among accuracy,
time, and cell growth is related to the increase in the intensity of Raman signals and the
rise of metabolites concentration achieved at the stationary growth phase. Moreover, at
24 h, SVM predicted E. coli and L. monocytogenes with high accuracy (≈1) but predicted,
with a marginal error, S. enterica with 0.81 and S. aureus with 0.89 accuracies. In addition,
the error increased 0.33 times for L. monocytogenes prediction, misleading prediction to S.
enterica at 18 h of growth.
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3.2. Gram Classification

Raman spectroscopy was evaluated as a means of Gram bacteria classification. The
5-fold cross-validation distinguished Gram-positive (L. monocytogenes and S. aureus) and
Gram-negative (S. enterica and E. coli) strains at 24 h with high accuracy (0.89), as shown
in Figure 3D. The main structural difference between Gram-positive and Gram-negative
bacteria is the presence of peptidoglycans on the cell wall. This was observed by Lemma
et al. (2016), reporting high-intensity peaks at 497 cm−1 attributed to polysaccharides of
the Gram-positive bacteria cells using SERS [18]. Another study did not report significant
differences between Gram-positive or Gram-negative bacteria using SERS [19]. However,
tip-enhanced Raman spectroscopy (TERS) can differentiate between Gram category bac-
teria in the 2800–3000 cm−1 region attributed to methylene stretching vibrations [20]. It
is noteworthy to consider that the chemometrics signals may differ for each Raman tech-
nique [9]. As observed in Table 2, ORS Raman mainly provided signals distinctive to
Gram-positive strains, at 1295–1297 cm−1 (CH2 fatty acid deformation). Moreover, signals
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of Gram-negative strains, at 1086–1087 cm−1 (DNA phosphate backbones), enabled the
model to predict them accurately. Thus, this system could also classify bacteria at this level.

3.3. Pathogen Identification in Cocultures

To investigate the capability of RS to discriminate between bacteria in complex samples,
we cocultured L. monocytogenes (Gram-positive) with S. enterica (Gram-negative) or S.
aureus (Gram-positive). According to Figure 4, Listeria coculture with other strains did not
contribute as much to the PCA signal intensity as S. aureus or S. enterica. This could be
associated with the slower growth rate of L. monocytogenes compared to the other bacterial
strains in coculture due to nutrient competition. This would explain why the coculture
principal component was mixed with the neat clustering of monocultures in the plot of the
three principal components in Figure 5B. The monocultures showed good clustering with
no overlap between groups (Figure 5A). However, with the introduction of cocultures, the
groupings were not so distinct and did not align with constituent monocultures. The source
of this confounding effect was unknown, but it is hypothesised that the lower growth
rate of L. monocytogenes means that the other pathogen in the co-culture dominates the
signal. This is potentially supported by the clustering of the S. enterica + L. monocytogenes
(brown) co-culture around the S. enterica (red) cluster and the S. aureus + L. monocytogenes
(purple) around the S. aureus (green) cluster. We might expect that if the L. monocytogenes
concentrations are equal to their partner culture, the resultant point would project into the
space between the constituent mono-culture clusters.
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4. Discussion

Previous reports have used a chemometric approach to identify bacteria, especially
those employing SERS technology coupled with microscopy interrogating single cells and
specific cell wall areas [21,22]. Although assigning a signal to a particular compound is
not always possible, this study compared the spectra acquired to previous reports using
similar Raman technologies shown in Table 2. Each strain spectrum differed from the
non-inoculated control, although some peaks are matched in all the samples at the Raman
shift (cm−1) axis. This is the case for signals at 424–427, 764–766, 804–806, 940–943, and
1333–1335 cm−1 Raman shift, indicating molecules existing in the media, such as carbohy-
drates (C-C and C-O-H) and proteins. Furthermore, some peaks were distinctive for each
species, such as 618 (Phe) and 670 (Val) cm−1 shifts for S. enterica, 657 (Tyr), and 901 (te-
icuronic acid present in Gram-positive cell wall) cm−1 shifts for S. aureus. Interestingly,
this last peak was not observed in L. monocytogenes, another Gram-positive strain, but in S.
enterica, where the adenine signal can overlap. Instead, peaks in L. monocytogenes spectra
appeared at 1000 (Phe), 1173 (C–H, wagging of Tyr, guanine, cytosine, fatty acids, CH3
deformation), 1285 (amide III, CH2 twisting), 1582 (guanine, adenine, ring stretching, Phe,
Trp), and 1635 (thymine, guanine) cm−1 shifts. Interestingly, a prominent peak found at
1333 corresponds to amide III vibrations, Trp, and Cα-H vibrations, and CH-deformation is
significantly enhanced after 18 h and 24 h for all the strains but not in control, indicating an
increase of transmembrane proteins that characterise mature cells in the stationary growth
phase [23].

Other signals could not be associated with other compounds in the literature but are
distinctive of each sample, creating a particular fingerprint and allowing the discrimination
between them. This is the case for two remarkable shifts noticed at 779 and 895 for E. coli.
No compound was associated in previous reports with these specific shifts. However, these
are distinctive peaks in the fingerprint of E. coli at 18 and 24 h of growth. The Raman
handheld device used in this study is loaded with a 785 nm laser with Orbital Raster Scan
(ORS) technology that enables the system to scan a larger area than conventional Raman,
allowing the analysis of more complex structures [24]. Moreover, it has been suggested
that the 785 nm wavelength falls within an optimum balance between a reasonable signal-
to-noise ratio and low damage to the cell structure [25]. It was observed that shorter
wavelength lasers provide spectra with less noise but increase cell degradation, whereas
longer wavelengths lower Raman scattering efficiency [25]. However, the spectra acquired
in this study are likely a composite of the molecules suspended in the media and those
present on the bacterial cell surface. Hence, PCA and SVM classifier systems were used to
identify the studied strains based on a unique fingerprint. The data analysis in this study
was made directly without normalising data, subtracting the background as described in
the methodology section. Future work will investigate the effects of adding a normalising
pre-processing step, such as normalising the 1000 nm response to unit magnitude.

Previous studies have reported Raman techniques for rapidly detecting foodborne
pathogenic bacteria. Ravindranath et al. (2011) described a method to distinguish be-
tween S. enterica, E. coli, and S. aureus simultaneously using a combination of nano-
membranes with metallic nanoparticles loaded with pathogen-specific antibodies for
SERS [26]. This technique accomplished rapid detection under 45 min with a detection
limit of 102–103 CFU mL−1. Another study reported the detection of Vibrio parahaemolyticus
as low as 10 CFU mL−1, building highly selective aptamers with golden nanoparticles and
cyanine dye 3 (Cy3) using the SERS approach on seafood samples [27]. A low detection
limit is one of the main advantages of SERS and Raman micro-spectroscopy due to its
ability to interrogate one single cell and a relatively short preparation time. Thus, these
techniques only isolate cells from clinical or food processing samples [10]. Alternatively,
the ORS system used in this study for pathogen detection depends on high concentrations
of cells at the stationary phase of growth after 24 h, when the strongest signal is found.
Concentration techniques such as centrifugation and resuspension can be used; however,
due to its high sensitivity, the Raman signal may change significantly when the cells are in
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starvation [28]. Previous studies have effectively used a Raman handheld device equipped
with an ORS system to test the authenticity of parmesan Reggiano cheese, showing good
performance in predicting authentic parmesan cheese from non-authentic parmesan cheese
by acquiring the spectra directly from packaged grated samples [29]. The same technology
is reported in the present study; using the cell suspension in BHI broth does not require
further preparation, such as the fixation on costly slides or other separation steps. Then
the preparation time is reduced to media preparation and cell growth, as it requires colony
isolation followed by a subculture in broth media. Furthermore, the portability of the
Raman handheld allows measurements to be taken in situ, using less space and very few
steps of preparation, such as making dilutions. Given that the Raman scanning system
relies on the ORS to average the signal spectrum of several cells on suspension, it is essential
to assure an axenic subculture in the media broth to guarantee the spectra’s homogeneity.

Table 2. Peak positions and tentative attributions for Raman spectra of control media broth BHI,
Listeria, S. aureus, E. coli, and Salmonella based on similar studies [25,29–35]. Distinctive peaks for
each strain or control are coloured in green, peaks matching Gram-positive are coloured in blue,
Gram-negative are coloured in red, and bolded signals match with all the samples, including controls.
Data are expressed in cm−1; spectral resolution: 12–14 cm−1.

Control BHI Listeria S. aureus E. coli Salmonella Attribution

424 426 426 427 426
434

437 437
446

449
454

497
501

510
552 552 552 C–C–C deformation

584
595

618 Phe
627 C–C twisting, Phe

657 Tyr
660 C–S stretch

670 Val
678

683
695 694

702
719 Adenine;

724 Peptidoglycan
733 732 731 730 Adenine; Peptidoglycan

757 Trp
765 765 764 766 764 C–C galactose

772 773 772
779 779

782
785 786 785 Cytosine, Uracil (ring stretching)

804 805 806 808 804 C–C deformation/O–C–O wagging/C–H vibrations
with C–OH

819 820 820 Tyr
837 838 Tyr
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Table 2. Cont.

Control BHI Listeria S. aureus E. coli Salmonella Attribution

844
852 852 Tyr

863 C–C stretching, C–O–C 1,4 glycosidic ring
877 C–O–C stretching/Trp

885 885 884 884 C–O–C stretching/Trp
895

901 904 Teicuronic acid Gram-positive, Adenine
913
926 926 Saccharides

943 944 940 939 940 Saccharides, Prot/skel C–C, C–C–N stretching, N–C
stretching

C–C amide/protein, N–C stretching
968 C–CH deformation

975
1000 Phe

1030 1030 C–O exocycling stretching, Phe

1067 1066 1067 C–O exocycling stretching, side chain Lys, Asp, Glu,
C–C–C stretching

1083 1084 1084 C–OH deformation/C–C–O stretching

1087 1086 Nucleic acids (PO2 simetrical stretching), DNA
phosphate backbone

1119 Trp
1131 1131 Phe

1154 C–C, C–N protein stretching, CH3 def

1173 C–H wagging of Tyr, Guanine, Cytosine, fatty acids,
CH3 deformation

1175 1175 Tyr–Phe
1177

1205 1206 Tyr–Phe
1209 1209 Tyr–Phe

1229 1230 C–H stretching, Haemoglobin, Amide III
1244 1244 Amide III

1250 Amide
1285 Amide III, CH2 twisting
1295 1297 CH2 fatty acid deformation, cytosine

1308
1311 1310

1320 CH2 deformation
1324

1326 1326

1332 1333 1333 1335 1333 Amide III vibrations, Trp, Cα-H vibrations, CH
deformation

1341
1344 1344

1351 1352 1350 CH2 wagging
1357
1369

1492 Lipids, CH deformation of fatty acids, CH2 deformation
1573 DNA/RNA, Adenine, Guanine, ring stretching

1582 Guanine, Adenine, ring stretching, Phe, Trp
1593 1592
1600 Phe

1609 1609 Phe, Tyr
1627 Trp, Tyr

1629
1635 Thymine, Guanine
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Hence, we propose a detection method employing two culture steps using relatively
low-cost media: first culture step—colony isolation in BHI agar (24–36 h), and second
axenic culture step—bacterial cell growth in BHI broth. The culture obtained in the second
step is used for Raman measurements after 18–24 h growth. The proposed method would
take up to 60 h of detection time, with minimal sample preparation, using low reagent
levels and reduced bench-work time with an accuracy >0.90. Some of the limitations of this
technique are that it depends on the isolation step in the agar medium and its subculture in
the broth medium for monoculture identification. Further experiments are being carried
out to build a comprehensive library of bacterial spectra to explore further the potential of
Raman to identify other bacterial species and among strains of the same species.

5. Conclusions

In this study, we demonstrated the capability to differentiate monocultures accurately
and to correctly detect E. coli, L. monocytogenes, S. enterica, and S. aureus after 24 h of growth
with an accuracy of 0.93 (±0.20) using a low-cost portable Raman handheld device equipped
with Orbital Raster Scan technology combined with PCA and SVM as a classifier. To our
knowledge, this is the first report using a Raman handheld device with ORS technology
for the detection of suspended cells on media broth using minimal sample preparation,
i.e., 1 mL of 24 h growth cell suspension, making it a very convenient technique for a large
volume of samples achieving high accuracy in a shorter time compared to conventional
culture methods, and with lower cost compared to other Raman techniques such as SERS
that require a substantial initial capital investment. Therefore, this detection method could
be viable in low-resource settings, such as temporary laboratories set up in remote areas or
temporary emergency units by minimally trained personnel.

Author Contributions: Conceptualization, A.C.S. and M.H.; methodology, A.C.S., M.H., and C.R.G.-
G.; software, M.H.; validation, C.R.G.-G., A.C.S., and M.H.; formal analysis, M.H.; investigation,
C.R.G.-G.; resources, M.H., and A.C.S.; data curation, C.R.G.-G. and M.H.; writing—original draft
preparation, C.R.G.-G.; writing—review and editing, A.C.S. and M.H.; visualisation, A.C.S. and
C.R.G.-G.; supervision, A.C.S.; project administration, M.H. and A.C.S.; funding acquisition, M.H.
and A.C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by an internal competitive grant awarded to Mark Hansen and
Alexandros Ch. Stratakos by the University of the West of England, Bristol.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the UWE Microbiology technical team for kindly providing the strains
used in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Focker, M.; van der Fels-Klerx, H.J. Economics Applied to Food Safety. Curr. Opin. Food Sci. 2020, 36, 18–23. [CrossRef]
2. Barba, F.J.; Koubaa, M.; do Prado-Silva, L.; Orlien, V.; Sant’Ana, A.d.S. Mild Processing Applied to the Inactivation of the Main

Foodborne Bacterial Pathogens: A Review. Trends Food Sci. Technol. 2017, 66, 20–35. [CrossRef]
3. Adams, M.R.; Moss, M.O.; McClure, P.J. Food Microbiology, 4th ed.; Royal Society of Chemistry, Ed.; Royal Society of Chemistry:

London, UK, 2016; ISBN 978-1-84973-960-3.
4. Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. The Global Burden

of Nontyphoidal Salmonella Gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [CrossRef]
5. Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; de Cesare, A.; Herman, L.; Hilbert,

F.; Lindqvist, R.; et al. Salmonella Control in Poultry Flocks and Its Public Health Impact. EFSA J. 2019, 17, e05596. [PubMed]
6. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). EFSA and The

European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in 2017.
EFSA J. 2018, 16, e05500. [CrossRef]

http://doi.org/10.1016/j.cofs.2020.10.018
http://doi.org/10.1016/j.tifs.2017.05.011
http://doi.org/10.1086/650733
http://www.ncbi.nlm.nih.gov/pubmed/32626222
http://doi.org/10.2903/j.efsa.2018.5500


Appl. Sci. 2022, 12, 9909 12 of 13
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Albrycht, P.; Podrażka, M.; Hołyst, R.; et al. Surface-Enhanced Raman Spectroscopy Introduced into the International Standard
Organization (ISO) Regulations as an Alternative Method for Detection and Identification of Pathogens in the Food Industry.
Anal. Bioanal. Chem. 2017, 409, 1555–1567. [CrossRef] [PubMed]

8. Knabl, L.; Huber, S.; Lass-Fl€, C.; Fuchs, S.; Fuchs, S. Comparison of Novel Approaches for Expedited Pathogen Identification and
Antimicrobial Susceptibility Testing against Routine Blood Culture Diagnostics. Lett. Appl. Microbiol. 2021, 73, 2–8. [CrossRef]

9. Deidda, R.; Sacre, P.Y.; Clavaud, M.; Coïc, L.; Avohou, H.; Hubert, P.; Ziemons, E. Vibrational Spectroscopy in Analysis of
Pharmaceuticals: Critical Review of Innovative Portable and Handheld NIR and Raman Spectrophotometers. TrAC-Trends Anal.
Chem. 2019, 114, 251–259. [CrossRef]

10. Lorenz, B.; Wichmann, C.; Stöckel, S.; Rösch, P.; Popp, J. Special Issue: From One to Many Cultivation-Free Raman Spectroscopic
Investigations of Bacteria. Trends Microbiol. 2017, 25, 413–424. [CrossRef]

11. Chao, Y.; Zhang, T. Surface-Enhanced Raman Scattering (SERS) Revealing Chemical Variation during Biofilm Formation: From
Initial Attachment to Mature Biofilm. Anal. Bioanal. Chem. 2012, 404, 1465–1475. [CrossRef]

12. Cho, I.H.; Bhandari, P.; Patel, P.; Irudayaraj, J. Membrane Filter-Assisted Surface Enhanced Raman Spectroscopy for the Rapid
Detection of E. Coli O157:H7 in Ground Beef. Biosens. Bioelectron. 2015, 64, 171–176. [CrossRef]

13. Yilmaz, A.G.; Temiz, H.T.; Acar Soykut, E.; Halkman, K.; Boyaci, I.H. Rapid Identification of Pseudomonas Aeruginosa and
Pseudomonas Fluorescens Using Raman Spectroscopy. J. Food Saf. 2015, 35, 501–508. [CrossRef]

14. Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Surface-Enhanced Raman Spectroscopy for Bioanalysis:
Reliability and Challenges. Chem. Rev. 2018, 118, 4946–4980. [CrossRef]

15. Ho, C.S.; Jean, N.; Hogan, C.A.; Blackmon, L.; Jeffrey, S.S.; Holodniy, M.; Banaei, N.; Saleh, A.A.E.; Ermon, S.; Dionne, J. Rapid
Identification of Pathogenic Bacteria Using Raman Spectroscopy and Deep Learning. Nat. Commun. 2019, 10, 4927. [CrossRef]

16. García-Timermans, C.; Rubbens, P.; Kerckhof, F.M.; Buysschaert, B.; Khalenkow, D.; Waegeman, W.; Skirtach, A.G.; Boon,
N. Label-Free Raman Characterization of Bacteria Calls for Standardized Procedures. J. Microbiol. Methods 2018, 151, 69–75.
[CrossRef]

17. Farber, C.; Kurouski, D. Detection and Identification of Plant Pathogens on Maize Kernels with a Hand-Held Raman Spectrometer.
Anal. Chem. 2018, 90, 3009–3012. [CrossRef]

18. Lemma, T.; Saliniemi, A.; Hynninen, V.; Hytönen, V.P.; Toppari, J.J. SERS Detection of Cell Surface and Intracellular Components
of Microorganisms Using Nano-Aggregated Ag Substrate. Vib. Spectrosc. 2016, 83, 36–45. [CrossRef]

19. Premasiri, W.R.; Gebregziabher, Y.; Ziegler, L.D. On the Difference between Surface-Enhanced Raman Scattering (SERS) Spectra
of Cell Growth Media and Whole Bacterial Cells. Appl. Spectrosc. 2011, 65, 493–499. [CrossRef]

20. Berezin, S.; Aviv, Y.; Aviv, H.; Goldberg, E.; Tischler, Y.R. Replacing a Century Old Technique—Modern Spectroscopy Can
Supplant Gram Staining. Sci. Rep. 2017, 7, 3810. [CrossRef]

21. Zeiri, L.; Bronk, B.V.; Shabtai, Y.; Eichler, J.; Efrim, S. Surface-Enhanced Raman Spectroscopy as a Tool for Probing Specific
Biochemical Components in Bacteria. Appl. Spectrosc. 2004, 58, 33–40. [CrossRef]

22. Pahlow, S.; Meisel, S.; Cialla-May, D.; Weber, K.; Rösch, P.; Popp, J. Isolation and Identification of Bacteria by Means of Raman
Spectroscopy. Adv. Drug Deliv. Rev. 2015, 89, 105–120. [CrossRef]

23. Senes, A.; Ubarretxena-Belandia, I.; Engelman, D.M. The Cα-H···O Hydrogen Bond: A Determinant of Stability and Specificity in
Transmembrane Helix Interactions. Proc. Natl. Acad. Sci. USA 2001, 98, 9056–9061. [CrossRef]

24. Geravand, A.; Hashemi Nezhad, S.M. Simulation Study of the Orbital Raster Scan (ORS) on the Raman Spectroscopy. Optik 2019,
178, 83–89. [CrossRef]

25. Notingher, I.; Verrier, S.; Romanska, H.; Bishop, A.E.; Polak, J.M.; Hench, L.L. In Situ Characterisation of Living Cells by Raman
Spectroscopy; IOS Press: Amsterdam, The Netherlands, 2002; Volume 16.

26. Ravindranath, S.P.; Wang, Y.; Irudayaraj, J. SERS Driven Cross-Platform Based Multiplex Pathogen Detection. Sens. Actuators B
Chem. 2011, 152, 183–190. [CrossRef]

27. Duan, N.; Yan, Y.; Wu, S.; Wang, Z. Vibrio Parahaemolyticus Detection Aptasensor Using Surface-Enhanced Raman Scattering.
Food Control 2016, 63, 122–127. [CrossRef]

28. Jarvis, R.M.; Brooker, A.; Goodacre, R. Surface-Enhanced Raman Scattering for the Rapid Discrimination of Bacteria. Faraday
Discuss. 2005, 132, 281–292. [CrossRef]

29. Li Vigni, M.; Durante, C.; Michelini, S.; Nocetti, M.; Cocchi, M. Preliminary Assessment of Parmigiano Reggiano Authenticity by
Handheld Raman Spectroscopy. Foods 2020, 9, 1563. [CrossRef]

30. Li, R.; Dhankhar, D.; Chen, J.; Krishnamoorthi, A.; Cesario, T.C.; Rentzepis, P.M. Identification of Live and Dead Bacteria: A
Raman Spectroscopic Study. IEEE Access 2019, 7, 23549–23559. [CrossRef]

31. Luo, B.S.; Lin, M. A Portable Raman System for the Identification of Foodborne Pathogen Bacteria. J. Rapid Methods Autom.
Microbiol. 2008, 16, 238–255. [CrossRef]

32. Maquelin, K.; Kirschner, C.; Choo-Smith, L.P.; van den Braak, N.; Endtz, H.P.; Naumann, D.; Puppels, G.J. Identification of
Medically Relevant Microorganisms by Vibrational Spectroscopy. J. Microbiol. Methods 2002, 51, 255–271. [CrossRef]

33. Münchberg, U.; Rösch, P.; Bauer, M.; Popp, J. Raman Spectroscopic Identification of Single Bacterial Cells under Antibiotic
Influence. Anal. Bioanal. Chem. 2014, 406, 3041–3050. [CrossRef] [PubMed]

http://doi.org/10.1007/s00216-016-0090-z
http://www.ncbi.nlm.nih.gov/pubmed/28004171
http://doi.org/10.1111/lam.13481
http://doi.org/10.1016/j.trac.2019.02.035
http://doi.org/10.1016/j.tim.2017.01.002
http://doi.org/10.1007/s00216-012-6225-y
http://doi.org/10.1016/j.bios.2014.08.063
http://doi.org/10.1111/jfs.12200
http://doi.org/10.1021/acs.chemrev.7b00668
http://doi.org/10.1038/s41467-019-12898-9
http://doi.org/10.1016/j.mimet.2018.05.027
http://doi.org/10.1021/acs.analchem.8b00222
http://doi.org/10.1016/j.vibspec.2016.01.006
http://doi.org/10.1366/10-06173
http://doi.org/10.1038/s41598-017-02212-2
http://doi.org/10.1366/000370204322729441
http://doi.org/10.1016/j.addr.2015.04.006
http://doi.org/10.1073/pnas.161280798
http://doi.org/10.1016/j.ijleo.2018.09.090
http://doi.org/10.1016/j.snb.2010.12.005
http://doi.org/10.1016/j.foodcont.2015.11.031
http://doi.org/10.1039/B506413A
http://doi.org/10.3390/foods9111563
http://doi.org/10.1109/ACCESS.2019.2899006
http://doi.org/10.1111/j.1745-4581.2008.00131.x
http://doi.org/10.1016/S0167-7012(02)00127-6
http://doi.org/10.1007/s00216-014-7747-2
http://www.ncbi.nlm.nih.gov/pubmed/24652157


Appl. Sci. 2022, 12, 9909 13 of 13

34. Santana De Siqueira, F.; Hector, O.; Giana, E.; Silveira, L. Discrimination of Selected Species of Pathogenic Bacteria Using
Near-Infrared Raman Spectroscopy and Principal Components Analysis. J. Biomed. Opt. 2012, 17, 107004. [CrossRef] [PubMed]

35. Vohník, S.; Hanson, C.; Tuma, R.; Fuchs, J.A.; Woodward, C.; Thomas, G. Conformation, Stability, and Active-Site Cysteine
Titrations of Escherichia Coli D26A Thioredoxin Probed by Raman Spectroscopy. Protein Sci. 1998, 7, 193–200. [CrossRef]
[PubMed]

http://doi.org/10.1117/1.JBO.17.10.107004
http://www.ncbi.nlm.nih.gov/pubmed/23052563
http://doi.org/10.1002/pro.5560070120
http://www.ncbi.nlm.nih.gov/pubmed/9514274

	Introduction 
	Materials and Methods 
	Material and Strains 
	Cocultures 
	Raman Measurements 
	Data Analysis and Statistics 
	Data Format 
	Data Analysis 


	Results 
	Pathogen Identification in Monocultures 
	Gram Classification 
	Pathogen Identification in Cocultures 

	Discussion 
	Conclusions 
	References

