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Abstract: With the development of communication technology and the increasingly complex wireless
communication channel environment, the requirements for radio modulation recognition are also
increased to avoid interference and improve the efficiency of radio spectrum resources. To achieve
high recognition accuracy with less computational overload, we propose a radio signal modulation
recognition method based on deep learning, which uses a pruning strategy to reduce computational
overload, based on the original model, CNN-LSTM-DNN (CLDNN), and the double-layer long
short-term memory (LSTM). Effect factors are analyzed in terms of recognition accuracy by adjusting
the parameters of each network layer. The results of the experiments show that the model not only
has a greater precision improvement than some existing models, but also reduces the computational
resources necessary.

Keywords: modulation recognition; deep learning; pruning

1. Introduction

Today, radio technology is widely used in military, aerospace, and daily life, and
plays a vital role in the transmission of information in human society. There are some
unfavorable radio signals in the air that can cause serious interference with normal radio
signals or may even have a significant impact on national security. Therefore, it is necessary
to recognize these kinds of signals. Moreover, with the advent of the Internet of Things and
the emergence of new communication technologies, wireless spectrum resources become
increasingly scarce. How to identify the modulation mode, so as to judge abnormal signals
in the case of channel congestion, has become a more difficult problem.

Traditional radio recognition technology usually uses a feature-based recognition
method [1–3] and the likelihood recognition method [4,5]. The former identifies the mod-
ulation type according to the corresponding characteristics. Although the method is fast,
its accuracy is low. The latter compares the received signal with the threshold to make a
judgment. It is optimal in the context of Bayes, which minimizes the probability of classifi-
cation error with higher accuracy, but the algorithm complexity is also higher, and cannot
be used on those occasions with demanding real-time requirements. At the same time, both
of the above two methods need to analyze the characteristics and parameters of the signals
and then use the corresponding feature extraction function to compare and identify the
modulation type. Traditional recognition methods have been unable to adapt to the current
environment, so it is urgent to develop more effective and efficient identification methods.

Machine learning has become increasingly popular in recent years. Building math-
ematical models by modeling the neural network characteristics of human beings, after
fitting large amounts of data, can predict or classify certain things in nature. Most of
the available machine learning algorithms are mainly used in image recognition, natural
language recognition, and speech recognition. The neural network is a type of machine
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learning technology that some researchers have tried to use for radio signal characteristics
extraction and recognition. However, there are still problems, such as fitting and optimizing
algorithms for the recognition of modulation methods in the field of radio. There are two
limitations of using the convolutional neural network (CNN) model for radio modulation
recognition. Firstly, if the number of network layers increases, but an improvement in
recognition accuracy is not obvious, the training time load will increase [6]. Secondly, the
input radio signal is a time-dependent sequence, while the image is a two-dimensional
matrix, so the traditional CNN method for image recognition cannot achieve a good feature
extraction effect in wireless modulation recognition. Moreover, the traditional CNN may
contain many neurons or parameters that do not contribute greatly to the results. These
redundant neurons may slow down the training and recognition of neural networks and
may take up unnecessary hardware resources [7]. Therefore, to make our model smaller
and more efficient, a pruning strategy needs to be adopted to reduce the training costs.
This is particularly important for applications with a high level of real-time performance,
such as radio modulation recognition, and in devices with weak computing power, such as
mobile devices and edge devices.

In this paper, a pruning strategy for CLDNN [8] is proposed that greatly reduces the
complexity of the model by removing unnecessary neuron nodes from the original model.
The proposed method effectively improves the efficiency of radio signal modulation and
reduces the risk of overfitting. Moreover, a double-layer LSTM layer is used by considering
the time characteristics of the radio signal to further improve the accuracy of the radio signal
modulation mode recognition. The experimental results show that the model achieves a
greater precision improvement than the original model.

The rest of this paper is organized as follows. In Section 2, some related works in the
literature are discussed. In Sections 3 and 4, the analysis model and our proposed method
are given. The simulation research and performance evaluation of the proposed method is
presented in Section 5. Finally, the concluding remarks and future work are presented.

2. Related Work

In recent years, several studies have focused on a modulation recognition method
based on CNN. The first neural network for automatic modulation recognition (AMR) was
designed by O’Shea in 2016 [9]. The CNN [10] at once became the realization paradigm
for AMR. After that, scholars conducted extensive research on the neural network method
for AMR and designed many models to achieve the accurate recognition of modulated
signals, such as long short-term memory (LSTM) [11], RseNet [12], and the convolutional
long short-term memory deep neural network (CLDNN) [13]. There is no doubt that the
neural network model has become an effective method for AMR.

Inspired by the AlexNet model, X. Yu et al. found that removing the full connec-
tion layer had little effect on the results [14]. They used a combination of three layers of
CNN and pooled the layers, with SoftMax as an activation function, and achieved good
performance. One study [15] proposed an end-to-end CNN-based automatic modulation
classification (CNN-AMC) that improves accuracy through step-by-step training and im-
proves the training speed by introducing migration learning. In [16], the authors proposed
a heterogeneous depth network model based on CNN-BiLSTM, which combines CNN’s
local feature with LSTM’s time characteristic. The model adopted five layers of CNN and
two layers of BiLSTM (serially and in parallel). In [17], the modes are optimized, based on
AlexNet, retaining the original reel layer, optimizing the parameters of the full connection
layer and the pooling layer, and reducing the number of neurons. The training speed
was improved and the risk of overfitting was avoided. The authors of [18] proposed deep
neural networks (DNN) and a receptive field block net (RFBN), based on classification
characteristics, and compared the classification performance of multiple input multiple
output (MIMO) wireless modulation with K-NN, AdaBoost, and CNN networks. The
authors of [19] converted complex signals into data formats (such as images) with a grid
topology, as in its original application for graphics recognition, and tried to use AlexNet
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and GoogleNet for modulation recognition. In [20], a 34-layer CNN was designed that
deepened the number of layers, showed better recognition accuracy for low signal-to-noise
ratio modulation signals, and avoided under-sampling and oversampling. The authors
of [21] designed a model that combined semi-supervised learning (SSL) and CNN, taking
the advantages of CNN, with its high applicability, and the anti-jamming capability of SSL,
with convenience and faster training speed. The authors of [22] designed a deep learning
network based on a layered sparse self-encoder and SoftMax regression, which provided
some performance improvement over traditional recognition methods. With the increase
in complexity of the model, the computational load became very large. In [7], the authors
designed a LightAMC model that made the scaling factor sparse by introducing the scale
factor into the neurons and compressive sensing to help prune redundant neurons. The
model size of this method was reduced by 93.5% and the calculation speed was accelerated,
with a small performance loss. The authors of [23] proposed an average percentage of
zeroes pruning method to reduce the network size by 37.16%, at the cost of slightly reducing
the classification accuracy.

The above-mentioned works are mainly focused on research into the CNN network,
and are less focused on the RNN network; some networks have too many layers, which
necessitates a long training time. Thus, a model is proposed that consists of only two layers
of a CNN network and two layers of an LSTM network, which represents fewer layers and
less training time; we have tested it to maintain high accuracy with less training time.

In the previous works, most of them pruned the connection weights or neurons, that
is, fine-grained pruning. When the weight reconnection is pruned, the network structure
will become unstable, which is difficult to address in practice. The method used in this
paper is layer-level pruning, which directly prunes part of the structure to improve the
operation speed.

3. Problem Definition

In this paper, machine learning is used to identify the modulation of radio and to
classify the input radio signals by constructing a multi-class neural network model. In-
putting signal data x with a dimension size of 1 ×M × N, an output of 1 ×M is finally
obtained, where the size of M is equal to the number of modulation types that can be
classified through the network. The neural network is a reverse propagation algorithm that
fits function f in y = f(x) through rounds of learning and saves the final model weight. For
the newly input signal, x, the type of signal that can be obtained by this operation, and
each neuron, can be represented by Equation (1):

z(x) = f wTx + b (1)

where wT is a T-dimensional vector representing the weight, b is a biased value, and the
result z is obtained after multiple transformations by inputting the signal or the data x from
the upper layer. It is then added to the SoftMax function with Equation (2):

p(zi) =
ezi

∑j ezj
(2)

where p represents the probability of the category. The loss function is of cross-entropy,
which is shown in Equation (3):

L = −
M

∑
i=1

yi log(pi) (3)

where M represents the number of categories, yi represents the indicative variable (i.e.,
categories), and pi represents the probability that the first category belongs to the i category.
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After calculating the loss, L, the weight w and bias values b can be updated through
the reverse propagation algorithm. The bias indicators of w and b can be calculated as:

w′ =
∂L
∂w

=
1
n

x

∑ x(σ(z)− y) (4)

b′ =
∂L
∂b

=
1
n

x

∑ x(σ(z)− y) (5)

where σ represents the sigmoid function and n represents the amount of training data.
Therefore, a new weight and bias can be obtained, with α as the learning rate:

w = w− α ∗ w′ (6)

b = b− α ∗ b′ (7)

Finally, we repeat the above steps until the loss L converges and reaches a minimum
value. Then, training can be stopped; the final weight is saved and can be used in the
method to classify the radio modulation.

4. The Proposed Approach

A network structure is proposed using the CNN+LSTM mode in Figure 1. When
long-time series are directly processed by LSTM, the calculation requirements are very
high. Therefore, a CNN is generally used to process part of the data before the use
of LSTM, and the long series is replaced by the short series. The data are input to a
CNN layer, are put through pooled processing, and are finally compressed to prevent
overfitting. Then, batch standardization is carried out, using spatial dropout for data
discarding to prevent overfitting. Then, another convolutional layer is passed, and the size
of the convolutional kernel is equal to the size of the convolutional kernel of the previous
convolutional layer; the boundaries are filled with zero to maintain the original size. After
that, the batch standardization and pooling are carried out again; after changing the shape,
the data are entered into the double-layer LSTM and are eventually classified using the
full-connection layer.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 
Figure 1. The model structure. 

LSTM is used in our model, which is mainly composed of an Input Gate, Forget 
Gate, Cell Update, and Output Gate. The structure of LSTM is shown in Figure 2. 

 
Figure 2. LSTM structure. 

These gates’ functions are explained below. 
Input Gate: This controls how much of the current input xt and the previous output 

ht-1 will be entered into the new cell: 

1( )t i t i t ii W x U h bσ −= + +  (8)

where it is the output of the input gate, Wi and Ui are the weights of the input gate, bi is 
the bias of the input gate, xi is the input of this cell, and ht−1 is the output of the last cell. 

Forget Gate: This decides whether to erase (set to zero) or to keep individual 
components of the memory: 

1( )t f t f t ff W x U h bσ −= + +  (9)

where ft is the output of the forget gate, Wf and Uf are the weights of the forget gate, and bf 
is the bias of the forget gate. 

Cell Update: This transforms the input and previous state to be considered into the 
current state: 

1tanh( )t c t c t cc W x U h b−= + +  (10)

where tc  is the candidate cell state, Wc and Uc are the weights of the forget gate, and bc is 
the bias of the forget gate. 

Figure 1. The model structure.

LSTM is used in our model, which is mainly composed of an Input Gate, Forget Gate,
Cell Update, and Output Gate. The structure of LSTM is shown in Figure 2.
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Figure 2. LSTM structure.

These gates’ functions are explained below.
Input Gate: This controls how much of the current input xt and the previous output

ht-1 will be entered into the new cell:

it = σ(Wixt + Uiht−1 + bi) (8)

where it is the output of the input gate, Wi and Ui are the weights of the input gate, bi is the
bias of the input gate, xi is the input of this cell, and ht−1 is the output of the last cell.

Forget Gate: This decides whether to erase (set to zero) or to keep individual compo-
nents of the memory:

ft = σ(W f xt + U f ht−1 + b f ) (9)

where ft is the output of the forget gate, Wf and Uf are the weights of the forget gate, and bf
is the bias of the forget gate.

Cell Update: This transforms the input and previous state to be considered into the
current state:

c̃t = tanh(Wcxt + Ucht−1 + bc) (10)

where c̃t is the candidate cell state, Wc and Uc are the weights of the forget gate, and bc is
the bias of the forget gate.

Output Gate: This scales the output from the cell:

ot = σ(Woxt + Uoht−1 + bo) (11)

where ot is the output coefficient of this cell, Wo and Uo are the weights of the output gate,
and bo is a bias of the output gate.

Internal State update: This computes the current time step’s state using the gated
previous state and the gated input:

ct = c̃t · it + ct−1 · ft (12)

where ct is the cell status.
Hidden layer: the output of the LSTM, scaled by a tanh (squashed) transformation of

the current state:
ht = ot · tanh(ct) (13)

where ht is the output of this cell.
The accuracy of the results is improved by removing the third CNN layer, combining

the first and second layers of CNN, and adding a layer of the LSTM layer. The pruning
process is shown in Figure 3.
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In the CNN module, after convolution and pooling, the data features are reconstructed
and input into the LSTM unit. At this point, the data comprise 32 feature maps, each
of which includes 128 feature values. After being processed by the first LSTM unit, the
data become a second-order vector composed of 32 timestamps, each of which contains
256 features. The first layer uses the LSTM unit to further extract the features extracted from
the convolution layer. The role of LSTM in the second layer is to reduce the dimension of
the time steps of the data and compress all features into a timestamp; the output at this time
is 256 feature values, which can be directly sent to the classification layer for classification.

We pruned the convolution layer that needs a convolution operation and realized
the data reconstruction by adding an LSTM layer. This has the advantage of reducing the
amount of calculation required for convolution operation and of saving more data features
for the LSTM layer operation.

5. Experimental Analysis

The simulation tool for our experiment is Keras 2.0, based on Linux. The batch size
is set to 256. The optimizer is Adam, and the learning rate remains Keras’ default value.
The maximum number of epochs is set to 100. The hardware uses an NVidia Tesla P4
(8 GB memory) GPU, with 12 GB of memory. All the data are calculated by testing three
times to average it, and the loss value is calculated. The effects of five parameters on the
proposed model are shown and discussed below. Our model is also compared with some
of the existing models as well.

5.1. The Effect of CNN Kernel Size

The effect of CNN kernel size was first studied. The experimental results are shown
in Figure 4. It can be seen that the kernel size of the CNN layer is positively related to the
accuracy; that is, the larger the CNN kernel size, the better the result.

However, with the large kernel size, the training time will be increased, and the
verification set will become unstable and unable to converge, so the best CNN kernel size
is set to 4 × 4, as shown in Table 1.
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Table 1. The impact of the size of the CNN kernel on classification accuracy.

Kernel Size Loss

1 × 2 1.2986183166503906
1 × 3 1.2517382701237996
1 × 4 1.2592326800028484
1 × 5 1.1835391124089558
2 × 2 1.1842063665390015
2 × 3 1.1451027790705364
2 × 4 1.1322169701258342
2 × 5 1.1263486941655476
3 × 3 1.1229949394861858
4 × 4 1.1136138439178467

5.2. The Effect of LSTM Unit Size

In Figure 5, it can be seen the larger the LSTM unit size, the higher the classification
accuracy. When the size of LTSM has been doubled, the recognition accuracy is improved.
However, with the increase in LTSM size, the training time has also increased. Therefore,
the best trade-off of 256 is selected.
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5.3. The Effect of LSTM Layer Number

The accuracy will improve by adding LSTM layers. In Figure 6, it can be seen that the
two-tier LSTM network has about a 3% accuracy improvement, compared to the one-layer
network. After continuing to increase the number of LSTM layers, the results do not change
a great deal, so the two-layer LSTM is set.
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5.4. The Effect of Dropout Layer Type

After using the second layer of the LSTM layers, the loss at first falls very quickly,
and the accuracy is then much better than that of the single-layer LSTM. However, after
the 10th epoch, the accuracy improves slowly, and gradually trends toward overfitting,
resulting in an increase in the loss.

When using an ordinary dropout, the loss will fall slowly along with the increase
in the forgetting rate; while the accuracy will decrease, the accuracy will also decline.
However, there will be overfitting along with the decrease in the forgetting rate, which
causes loss jitter.

To solve this problem, the Spatial Dropout is used instead of the ordinary Dropout. As
can be seen from Figure 7, the accuracy is thereby improved by about 3%.
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5.5. The Effect of Batch Size

It can be seen from Figure 8 and Table 2 that with the increase in batch size, the training
time decreases gradually, but the recognition accuracy reaches the maximum when the
batch size = 256.
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Table 2. The impact of the size of the batch size on classification accuracy.

Batch Size Loss Time Per Epoch (s)

64 1.153881827990214 26
128 1.1463038523991902 17
256 1.119464596112569 13
512 1.1418431202570598 11

1024 1.1403136253356934 9
2048 1.1303218603134155 8

As can be seen from the results, with the 256 batch size, each epoch of training time
and loss can achieve a better result, so the model chose to use 256 as the value of Batch size.

5.6. Comparison with Existing Models

The proposed scheme is compared with some existing models by using the experiment
parameters above in Figure 9 to evaluate its performance. Among them, the prediction
effect of LSTM is the worst because the single LSTM model cannot effectively extract local
features, and the increase in the number of neurons leads to an increase in calculation
quantity and the risk of overfitting.

Our proposed model has higher recognition accuracy than the other existing models
under different SNR conditions. Compared with CNN and LSTM, the CNN-LSTM model
with pruning improves the recognition accuracy by more than 10% under 0 dB and higher
SNR. These improvements are mainly because the radio signal is a time-related sequence,
so the LSTM layer number and unit size to the appropriate state can be adjusted to achieve
better accuracy. Moreover, pruning technology is used to reduce the amount of computation,
so that the model can be trained faster without reducing its accuracy.
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6. Conclusions

To overcome the problems of low efficiency, high cost, and the low recognition rate of
existing radio recognition through deep learning, a CNN-LSTM-DNN model is proposed.
The pruning strategy of the CLDNN model is first used, which greatly reduces the com-
plexity of the model and reduces the risk of overfitting, by removing unnecessary neuron
nodes from the original model. Then the double-layer LSTM is employed by considering
the time characteristics of the radio signals, to further improve the accuracy of modulation
mode recognition

Throughout the experiments to adjust the parameters of each layer to a better value,
the model in the training time slightly increases the accuracy of the results. In comparison
with previous research [6], our model training results can be about 10% more accurate than
the original model. As the neurons, connections between layers, and weights are reduced,
there is a reduction in storage requirement and heat dissipation in deployed hardware,
which can be used in embedded devices with limited hardware resources.

In our future works, we will select the compression methods and the pruning strategy
according to the architecture of specifically targeted hardware to reduce the inference time
and memory constraints.
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