
Citation: Liu, M.; Chen, L.; Zheng, Z.

Similarity Calculation via

Passage-Level Event Connection

Graph. Appl. Sci. 2022, 12, 9887.

https://doi.org/10.3390/

app12199887

Academic Editors: Dionisis Margaris

and Stefanos Ougiaroglou

Received: 18 May 2022

Accepted: 26 September 2022

Published: 1 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Similarity Calculation via Passage-Level Event
Connection Graph
Ming Liu 1,2,3,4 , Lei Chen 4,* and Zihao Zheng 2

1 State Key Laboratory of Communication Content Cognition, People’s Daily Online, Beijing 100733, China
2 Harbin Institute of Technology, School of Computer Science and Technology, Harbin 150001, China
3 Peng Cheng Laboratory, Shenzhen 518055, China
4 International Business and Management Research Center, Beijing Normal University, Zhuhai 519087, China
* Correspondence: chenlei@bnuz.edu.cn

Abstract: Recently, many information processing applications appear on the web on the demand
of user requirement. Since text is one of the most popular data formats across the web, how to
measure text similarity becomes the key challenge to many web applications. Web text is often used
to record events, especially for news. One text often mentions multiple events, while only the core
event decides its main topic. This core event should take the important position when measuring text
similarity. For this reason, this paper constructs a passage-level event connection graph to model the
relations among events mentioned in one text. This graph is composed of many subgraphs formed
by triggers and arguments extracted sentence by sentence. The subgraphs are connected via the
overlapping arguments. In term of centrality measurement, the core event can be revealed from
the graph and utilized to measure text similarity. Moreover, two improvements based on vector
tunning are provided to better model the relations among events. One is to find the triggers which are
semantically similar. By linking them in the event connection graph, the graph can cover the relations
among events more comprehensively. The other is to apply graph embedding to integrate the global
information carried by the entire event connection graph into the core event to let text similarity be
partially guided by the full-text content. As shown by experimental results, after measuring text
similarity from a passage-level event representation perspective, our calculation acquires superior
results than unsupervised methods and even comparable results with some supervised neuron-based
methods. In addition, our calculation is unsupervised and can be applied in many domains free from
the preparation of training data.

Keywords: text similarity calculation; passage-level event connection graph; vector tuning;
graph embedding

1. Introduction

The fast advance of web technology causes an explosive increase of web data. Text is
one of the most prevailing data formats across the web, which enables lots of text-based
analysis tools to be provided to help users ease the way to process texts. Text similarity
calculation is one of the fundamental text processing tasks, which is also the bottleneck of
many web applications, such as news recommendation, Q&A system, etc. Traditional text
similarity calculations can be roughly divided into two classes. One is supervised based,
which maps two texts into a high-dimensional space and finally makes two similar texts
close in the form of vector representation. The other one is unsupervised based, which
often treats text as a sequence of word pieces and scores the similarity between two texts
in terms of word concurrence plus the order of the sequence or ignoring it. Except word
concurrence, some other statistical features are also utilized such as TF/IDF or Mutual
Information. Between the two kinds of calculations, supervised ones always own high
performance, since they can accurately draw the boundary between similar texts and
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dissimilar texts with the help of training data. The emergence of neural-based algorithm
enhances the performances of supervised methods to a higher level, which gain a huge
advantage beyond unsupervised ones. Accordingly, their high-quality results are over
dependent on training data. When the domain changes, the performances of supervised
ones degrade sharply. Unsupervised ones do not suffer from this limitation, since they do
not refer to any transcendental knowledge and are free from training data. Thus, they do
not fear domain transferring. The types of texts across the web are countless. We cannot
collect all types of texts as training data to let supervised methods go through at advance.
Therefore, it is reasonable to design an unsupervised similarity calculation, which can be
applied in any domain.

Text is often used to record events. Reading text, we know what is happening and
what is the end. An event just indicates something happens in some place at some time.
Traditional event extraction tasks, like ACE [1] and FrameNet [2], treat events occurring
in sentence-level (which means event is fine-grained). The events stated by different sen-
tences are independent. Events extracted at sentence level cannot be directly utilized to
deal with passage-level task. Text similarity calculation is a typical passage-level task. The
similarity between two texts depends on their overall content similarity. We should take a
high-level view over all the events mentioned in one text. Such as one text has one main
topic, from passage-level, though there are many events stated by the sentences in one
text, one text only has a core event. The other events serve the core event, as explaining
the core event or completing the details of the core event. That indicates the core event
mostly decides the similarity between two texts, and the other events play an auxiliary
role. For example, the similarity between two following articles (Two articles are, respec-
tively, https://www.reuters.com/article/us-asia-storm/super-typhoon-slams-into-china-
after-pummeling-philippines-idUSKCN1LW00F, and https://www.wunderground.com/
cat6/Typhoon-Mangkhut-Causes-Heavy-Damage-Hong-Kong-China-and-Macau, accessed
on 17 May 2022. These two articles can be accessed till the pages are deleted) is high, since
both take the event of the damage of “Mangosteen” typhoon as the core event, though one
details the degree of the damage and the other does not.

As text similarity calculation is a passage-level task and concerns whether two texts
stress the same core event or not, we should take the entire text into consideration to locate
the core event. Anyway, most of events cannot be fully stated by only one sentence. They
may cross several sentences, even the nonadjacent sentences. Like financial events, e.g.,
investment and debt, the arguments of those events spread all over the entire text. For
this reason, traditional sentence-level event extraction methods are not appropriate to
extract the core event from a passage level. This paper just constructs a graph, namely
event connection graph, to cover the multiple relations among the events mentioned in
one text. This graph is composed of a set of polygons. Each polygon is formed by one
trigger as its center and some arguments surrounding this center. The trigger and the
arguments are extracted by a sentence-level event extraction method. To value the nodes
in the graph, PageRank is adopted. The nodes of the largest values are treated as the core
event, and text similarity is calculated according to the correlation between two core events,
respectively, extracted from two texts. Moreover, two improvements based on vector tuning
are proposed to better model the event connection graph. One is to detect the semantically
similar triggers and link them to fully cover the relations among events. The other is to
embed the global content carried by the entire event connection graph into the core event
to let text similarity be partially guided by the full-text content.

To sum up, the contributions of this paper can be summarized as follows:
1. This paper proposes a novel event connection graph to model the events and their

mutual relations mentioned in one text. This graph is composed of some polygons, and each
polygon represents a sentence-level event. Via PageRank, the core event can be extracted to
represent the main content of the text, and further utilized to calculate text similarity.

2. Two improvements are provided to enhance the completeness and effectiveness
of the constructed event connection graph. One is to tune the vector representation of
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the trigger to find and link more related events, which enables the generation of a more
comprehensive event connection graph. The other is to embed the information carried by
the entire event connection graph into the core event to make similarity result more rational.

3. As shown by experimental results, our similarity calculation obtains superior
results than unsupervised methods by a large margin, and even comparable results with
supervised neuron-based methods. Typically, our calculation is unsupervised. It can be
applied in any domain without the dilemma of domain transferring.

Though our similarity calculation can combine the merits from supervised and un-
supervised similarity calculations. Our calculation has time issues needed to be further
solved. In particular, our calculation needs to form a passage-level event representation.
This kind of operation needs extra time. Thus, though our calculation has higher accuracy,
it is not fit to online applications, especially some time-insensitive applications.

Our paper has six sections. Section 1 is introduction, which briefly introduces the
motivation of our work and summarizes its contributions. Section 2 shows some related
research. Section 3 gives a brief overview of our work at first, and then details the process
used to construct the event connection graph and the approach used to value the nodes in
the graph. Section 4 tells two improvements on our event connection graph based on vector
tuning. Section 5 designs some experiments to illustrate the high quality of our similarity
calculation. Section 6 presents the conclusions and gives some future works.

2. Related Work

The rapid advance of internet technology brings the explosive increase of web data.
Facing the massive amount of data, internet users require automatic data analysis and
processing tools. Text is one of the most prevailing data formats on the web. Thus, many
web applications are designed aiming at processing textual data. Almost all the text
related applications treat text similarity calculation as their fundamental module. Such
as text clustering [3], machine dialogue [4], product recommendation [5], Q&A [6], those
applications take text similarity calculation as the key component. In general, the methods
for text similarity calculation can be partitioned into two categories. One is supervised
based which is guided by annotated training samples. The other one is unsupervised based
free from annotations.

Supervised type often treats texts as points mapping to the high-dimensional space. A
classification function is trained to separate points into similar and dissimilar two groups.
Some other methods turn classification to a rank problem, which learn score functions
to discriminate similar points from dissimilar ones. The advantage of supervised type is
brought from the guidance of training data. Due to training process, supervised type often
acquires high performance. Text is encoded as a vector for calculating convenience. Before
the appearance of deep neuron network, one-hot vector is widely used. Only one entry has
non-zero value. This kind of encoder generates high-dimensional and sparse vectors, which
degrades the quality of many text-oriented applications [7]. The proposal of word embed-
ding changes this dilemma. Word embedding compresses one-hot vector into a densely
distributional vector with low dimension. Skip-gram [8], CBOW [9], GloVe [10], ELMo [11]
are typical exemplars. The neuron-based models, such as CNN [12], GRU [13], LSTM [14],
or the pre-trained language models such as Transformer [15], GPT [16], BERT [17], XL-
NET [18], Roberta [19] can produce more reasonable text representation on the basis of word
embedding. The overlapping degree decides the similarity between texts, whereas, only
depending on word concurrence or word alignment cannot fully express the semantic simi-
larity between texts. To better model the interaction between texts, attention mechanism
is taken, which considers the relevance of non-aligned parts across the input sequences.
The widely applied attentions are multiple layer attention in [20] and co-attention in [21].
Basically, supervised text similarity calculations own high performance, especially after
the application of neuron-based models. However, they are easily distorted by training
data. They have to make a hypothesis about the distribution of input data in terms of the
transcendental knowledge implicitly provided by training data. There is no way to collect
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enough training data to let supervised calculations go through in advance, especially for
the neural-based methods, since their explosive parameters require massive data for fully
training. For this reason, supervised calculations are appropriate to deal with domain data
and can hardly be transferred. In our paper, we hope to design a text similarity calculation,
which can fit to the texts in any type and from any domain. Therefore, we try to design an
unsupervised text similarity calculation.

Unsupervised similarity calculations free from training data. They model input data
all by their natural distribution. Some untrained score functions are taken to measure text
similarity based on distribution similarity. Euclidean distance [22], KL divergence [23], and
Entropy [24] are some widely used score functions. Joint functions are also proposed to
integrate previous scores [25,26]. Due to missing training data, the features used by score
functions are some statistical values provided by raw texts after word segmentation and
stemming, such as TF/IDF [27], TextRank [28], and LDA [29]. Some recent works try to
turn unsupervised similarity calculation into a supervised task. An iterative process is
adopted to take the output cases as training data in turn [30]. This kind of calculations
suffers from cold-starting issue, which needs to set initial similarity values beforehand, and
the final results drop a lot on the inappropriate initialization.

Table 1 just summarizes the difference between supervised text similarity calculation
and unsupervised text similarity calculation.

Table 1. Comparison of supervised and unsupervised similarity calculation.

Feature/Method Supervised Unsupervised

Training data Results derived from training data Free from training data
Performance Higher performance Lower performance

W/O semantics Semantic embedding via representation Lack of understanding semantics
Domain transfer Hard Easy

As indicated by the pervious table, it can be observed that these two kinds of similarity
calculations both have corresponding merits and drawbacks. Supervised methods have
higher performances due to its importing of training data. However, using training data is
hard to alter domain. This situation causes that the performances of supervised methods
drop sharply when domain changes. On the contrary, unsupervised methods have lower
performances, while their performances do not drop along with domain alteration. In this
situation, we try to propose an unsupervised similarity calculation to combine both merits
of supervised and unsupervised methods.

Features taken by previous calculations are words or word spans which contribute
mostly to score functions (applied in supervised ones) or own some prominent distribution
compared with other features (applied in unsupervised ones). Though among supervised
calculations, some algorithms may learn a semantic embedding on word level or text level
in terms of training data to help model the semantics in input text [31–33]. They all ignore
a fact that most of web texts are used to record events. One text should tell one core event.
The other mentioned events either help explain the core event or provide some details of
the core event (such as time, place, or related events). In fact, the core event mostly decides
the similarity between two texts. In other words, if one event is stressed by two texts
meanwhile, these two texts are similar at a high possibility. Thus, the task of calculating
text similarity can be fulfilled by comparing the discrepancy of the core events, respectively,
extracted from two texts. The core event represents the main content of one text. It should
be extracted from a passage-level viewpoint.

Event extraction and representation have been studied during a long time. As the
most famous event extraction tasks, MUC (Message Understanding Conference) [34] and
ACE (Automatic Content Extraction) [35] have been held for about 30 years. The definition
of event in MUC and ACE is sentence-level with trigger as key element and arguments
as supplementary details. Traditional event extraction tasks assume that an event can be
fully expressed by a single sentence. It can be extracted without taking other sentences
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into consideration. Since an event can be formatted as trigger and arguments, traditional
sentence-level event extraction methods can be separated into two successive steps. The
former step is called event detection (or trigger extraction), which aims to detect events
and classify event type. The latter step is called argument extraction, which aims to
acquire the arguments related to the trigger, such as time, location, subject, and object,
etc. The algorithms designed for sentence-level event extraction are not appropriate to
extract passage-level events, since they aim to learn a better representation for single
sentences [36,37] and not to model the relations among events across sentences.

As told before, traditional event extraction methods treat sentences independently
and extract events from a single sentence. Though it has been proposed something called
cross-sentence event extraction methods. While their object is still to extract events from
a single sentence, their highlight is to take the adjacent sentences in a sliding window
into consideration during extracting process [38,39]. Obviously, the cross-sentence event
extraction methods are not suitable to extract core events, since they also miss the operation
of modeling the relations among events from a passage angle. Therefore, this paper designs
an event connection graph to cover the relations among all the events mentioned in one text.
Via graph centrality measurements, the core event can be extracted and used to calculate
text similarity.

3. Model Details
3.1. Task Overview

The objective of text similarity calculation is easy to be defined. As given two texts s1
and s2, we hope to obtain the similarity value between s1 and s2. Different from traditional
calculations, this paper aims to calculate text similarity in terms of measuring whether
s1 and s2 mention the same core event or not. A graph, noted as G(V, E), is constructed
to model the relations among events, where V is node set and E is arc set. It is called
event connection graph. The nodes in V are just triggers and arguments. Those triggers
and arguments are extracted sentence by sentence to represent a serial of sentence-level
events [40]. While the arcs in G represent the relations among events. Since the core event
represents the main content of one text, it should be surrounded by the other events. As
turning events to nodes and relations among events to arcs to form a graph, the nodes,
which represent the core event, should locate at the graph’s center. Via some graph centrality
measurement, such as PageRank, we can easily locate the core event. It is worth noting that
comparing the nodes (extracted by sentence-level event extraction methods), the arcs play
an important role to decide the quality of similarity results. As shown in the experiments,
we adopt several popular sentence-level event extraction methods, but it can hardly see the
difference in accuracy. Therefore, we provide two improvements based on vector tuning to
complete the constructed event connection graph to involve more arcs.

3.2. Graph Construction

This section details the approach used to construct the event connection graph. Here
we borrow the method shown in [40] to extract fine-grained sentence-level events. Each
sentence-level event is formed as a polygon with trigger as its center and arguments as
its surrounding nodes. The arguments are listed in the order how they appear in the
sentence. The trigger and the arguments are connected by arcs. Figure 1 is an example of
one polygon formed from the sentence “The President of USA communicates with Chinese
Leader on the phone about North Korea issue”. It is straightforward that trigger is the key
element, since event type and argument template are both decided by trigger. Therefore,
we put trigger at the center of the polygon to represent its pivotal position and put the
arguments surrounding the trigger. As shown in Figure 1, the trigger “communicate” (after
stemming) is put at the center of the polygon and the arguments related to this trigger are
put surrounding the center in the order how they appear in the sentence.
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Figure 1. The polygon formed from the example sentence.

To model the relations among events, we just simply connect the polygons via the
overlapping arguments to form an event connection graph. Figure 2 shows an example
event connection graph formed from the following four sentences. In Section 4, we further
propose a way to find semantically similar triggers to reveal deeper relations among events.
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Figure 2. The event connection graph formed from given sentences.

“South Korea and North Korea have a military dispute on the border.”
“The President of USA visits South Korea with his wife.”
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“The President of USA communicates with Chinese Leader on the phone about North
Korea issue.”

“Chinese television and US BBC reported the meeting between the US president and
Chinese leader respectively.”

3.3. Node Evaluation

Typically, “If one author emphases a topic (or a clue), everything in his article is
related to this topic (or clue)” [41,42]. It is straightforward to make an assumption that
the core event in one text should be supported by the other events. If we project all the
events mentioned in one text to a plane, the core event will be the point surrounded by
the other event. In our paper, we just project events to a plane, while treating the event
as a polygon which includes several nodes (i.e., trigger and arguments). Trigger is the
key element in the event and decides event type. Thus, we put trigger at the center of the
polygon. These two situations ensure that the center of the graph should be the core event.
The remaining job becomes how to locate the center of the graph. PageRank, a popular
centrality measurement, is chosen to fulfil this task. PageRank is proposed by Google and
used to rank web pages in searching engine. The principle behind PageRank is random
walk [43]. When one surfer randomly surfs on a graph, the node visited most frequently
should be the central node (owning the largest PageRank value).

We just follow the traditional PageRank measurement. The only difference is to use
the transition matrix (noted as A) formed from our event connection graph. The size of
A is v ∗ v. v denotes the number of nodes in the graph. Each entry in A is the transition
probability from one node in the row to another node in the column. For example, given a
surfer who travels on the event connection graph, if (i,j) is an arc, Aij denotes the transition
probability that this surfer visits j by jumping from i, and can be set as the reciprocal of the
out degree of node i. On the opposite, if (i,j) is not an arc, this probability is 0.

Via PageRank, each node in the event connection graph has a value. This value
indicates the importance of the node in the graph, which can be utilized to locate the core
event. There are two kinds of nodes in the graph, i.e., trigger and argument. If the node
of the largest PageRank value is a trigger, we then extract the trigger and the arguments
belonging to this trigger as the core event. This way just treats the nodes in the polygon
which takes the trigger of the largest value as its center as the core event. Otherwise, if
the node of the largest value is an argument, we then output the nodes in all the polygons
which take this argument as their intersection node. Figure 3 gives the PageRank values of
the nodes in Figure 2. In this figure, the node “President of USA” owns the largest value
(marked in red color). Since “President of USA” is an argument, we output the nodes
in the polygons which take “President of USA” as their intersection node. The chosen
nodes are marked in a yellow color in Figure 3. These nodes just indicate the core event
expressed by the previous paragraph with four sentences. However, the chosen event is
not accurate, since the main meaning of this paragraph is about the meeting of two leaders
in USA and China.

Let Si and Sj, respectively, denote the two sets which include the chosen nodes in
the event connection graphs formed from the given texts, texti and textj. To calculate the
similarity between texti and textj, we can form a matrix, noted as TSij. Each element in this
matrix denotes the similarity between two chosen nodes in Si and Sj, respectively. Since the
node in the graph is either trigger word or argument word, it can be represented as vector
via GloVe [10]. Their similarity can be measured by vector similarity via Cosine. Some
triggers or arguments may be phrase (composing of several words). We then average the
vectors of the words in that phrase as its vector representation. We take the mean of all the
elements in TSij as the similarity between texti and textj. The formula is shown as follows:

sim
(
texti, textj

)
=

n

∑
k=1

TSij(k)/n (1)
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where n denotes the number of all the elements in TSij, and TSij(k) denotes one element
in TSij.
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The previously constructed event connection graph has two flaws. One is that it only
uses the overlapping arguments shared by polygons to model the relations among events.
This kind of relation is too vague and not sufficient, since the relations among events are
mainly caused by triggers. We should provide a way to detect deeper relations among
events. The other is that only the node of the largest value and its adjacent nodes are
chosen as text representation. These nodes can cover the information expressed by the
core event and some other events highly related to the core event. The rest of the events
mentioned in the text can also add some supplementary details. These details also need to
be considered in similarity calculation. For this reason, two improvements are made. One
is to fine-tune the trigger vector to detect and connect more related events. The other is to
tune the vectors of the nodes in the core event to let them integrate the information carried
by the entire graph.

4. Two Improvements Made on Our Event Connection Graph
4.1. Tuning Trigger Words

The relations among events are mainly caused by trigger words. We should provide
a way to find semantically similar triggers and link them in the event connection graph
to involve more relations among events. It has been counted that about ninety percent of
trigger words are nouns and verbs (or noun and verb phrases) [44,45]. The pre-trained
word embedding injects semantics in vector representation and obtains this representation
counting on whether two words own the similar contexts or not. However, in event related
tasks, we cannot merely depend on pre-trained word embedding to reveal semantic simi-
larity between triggers. Trigger and its arguments have some commonly used collocations,
e.g., “kick football” and “play basketball”. That causes two trigger words which have high
semantic similarity may have different contexts.
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To find semantically similar trigger words, we can borrow the help from some syn-
onym dictionaries, like VerbNet and WordNet, two manually formed synonym dictionaries.
These two dictionaries put semantically similar words in one synset. The synsets are
organized in hierarchy. Unfortunately, dictionary cannot cover all the possible semantically
similar trigger pairs. Anyway, it is time-consuming and laborious to manually construct
such kind of dictionary. Therefore, we should provide a way to find semantically similar
triggers independent of manual dictionary. In this paper, we try to fine-tune the vector
representations of the trigger words to let semantically similar triggers own close vector
representations. Two triggers whose cosine similarity is beyond the threshold (0.8) are
connected through an arc to involve more rational relations among events. Figure 4 shows
the event connection graph after connecting similar triggers, i.e., visit and communicate,
and report and communicate. Regarding the threshold (0.8), it is set based on sufficient
experimental results shown in the experimental section. GloVe [10] trained on wiki data is
used as the basic trigger embedding.
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As shown in Figure 4, with the inserted arc, dotted line with green color, the node of
the largest value changes to “communicate”. That indicates, after involving novel relation,
the core event can be revealed more correctly.

Let Bc denote the set including the synonymous trigger pairs sampled from Verb-
Net and WordNet. We tune the vector representations of the triggers according to the
following formulas:

min O(Bc) = min(Oc(Bc) + R(Bc)) (2)

Oc(Bc) = ∑(xl ,xr)∈Bc
[τ(att + xltl − xl xr) + τ(att + xrtr − xl xr)] (3)

R(Bc) = ∑xi∈Bc
λ ‖ xi(int)− xi ‖ 2 (4)

where (xl , xr) denotes a synonymous word pair in Bc. tl is one word, randomly sampled
from the synset which xl and xr are not in. So is to tr. att denotes the predefined deviation
between the semantically similar word pair and the dissimilar one. It is set to 0.6. τ denotes
max margin loss, noted as max τ(0, x). xi(int) denotes the pre-trained GloVe vector. λ is a
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predefined regression parameter and is set to 0.0006. The predefined parameters are set
according to [45].

As shown in Equation (2), the tuning formula has two parts. The former part (noted
as Oc(Bc)) refers to Equation (3), which makes similar triggers own similar vector repre-
sentations. The latter part (noted as R(Bc)) refers to Equation (4), which keeps the tuned
vectors not far away from their pre-trained results. Since the pre-trained vectors are ac-
quired from a large-scale corpus, we certainly do not want the tuned vectors to deviate
from the pre-trained ones. If one trigger in the event connection graph is tuned, we then
replace its original vector representation by the tuned one. In our tuning method, we only
tune the vectors of the words included by VerbNet and WordNet, and do not extend the
range outside the dictionaries. The reason is that the pre-trained vector representations are
acquired from a large-scale corpus. Thus, they are credible until we have enough evidence
to support that the pre-trained vector representations cannot calculate word similarity
accurately. If one trigger is a phrase, we simply take the mean of the vectors through all the
words in that phrase as its representation.

In English, the synonymous word pairs in VerbNet and WordNet can be used as
training data. For the other languages, it is hard to find such kind of dictionary. We then use
these two dictionaries as bridge to construct training data. We take VerbNet and WordNet
as pivot dictionaries and utilize Google translation to translate the words in them into any
language. However, one word in English can be translated to many words in the other
language. Taking the synonymous word pair “undo” and “untie” in VerbNet for example,
“undo” can be translated to five words in Chinese like “打开 (open)”, “解开 (untie)”, “拆开
(open)”, “消除 (remove)”, “取消 (cancel)”, while “untie” can be translated to “解开 (untie)”
and “松开 (loosen)”. We finally obtain the possible translated word pairs in the number
of 9 (except the duplicated one “解开 (untie)” and “解开 (untie)”). Among them, only the
word pair “解开 (untie)” and “松开 (loosen)” is a rational synonym. To avoid incorrect
translation, we introduce back translation, extensively used in unsupervised translation
task to avoid semantic drift [46]. Following the idea of back translation, we only remain
the translated word pairs which can be back translated to the exact same words in English.
Also taking the word pair (undo, untie) for example, when we translate them in Chinese,
we only remain the word pair (解开,松开), since these two words can be translated back to
undo and untie in English, respectively.

4.2. Node Representation via Graph Embedding

In Section 3, we only choose the nodes which can represent the core event as text rep-
resentation to calculate text similarity. On one side, except the core event, the information
carried by the other events (we call them supplementary events) also provide some useful
information. We should not simply abandon them. On the other side, the information
carried by the supplementary events is trivial compared with the core event. Thus, there is
no need to choose nodes from the event connection graph to represent them. For this reason,
we apply graph embedding to integrate the information carried by the supplementary
events into the chosen nodes.

Graph embedding is conducted to embed the graph structure into node representation [47],
which can make one node in the graph integrate the information carried by the entire graph.
Graph embedding often has a clear target to achieve and the vector representations of the nodes
are formed via a bunch of training data, while in our setting, we do not have a clear target to
set objective function (to integrate information into the chosen nodes is not a clear target to set
objective function) and certainly do not have any training data either. In this situation, we follow
self-training approach used in word2vec, as shown in [48]. We take random walk to generate a
set of paths and take these paths as contexts to adjust the vector representations of the nodes.
The graph embedding process used to acquire node representation is shown as follows:

1. Taking Gi(V, E) for example, the event connection graph formed from texti, we treat
one node in V as the starting point and choose the successive node via randomly
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jumping to one of the adjacent nodes. Repeat this jump for l times. A path of length l
can be obtained.

2. Repeat step 1 for m times on each node in V. We then get a path set (noted as PH)
whose size is nm, where n denotes the size of V.

3. Each path in PH is treated as one training sample.

Let v1, v2, . . . , vi−1, vi, vi+1, . . . , vl−1, vl denote one path. The values of m and l are set
according to [48]. Following self-training setting, we learn a vector representation for vi to
predicate the context of vi. The loss function for it is:

maxP(vi−2, vi−1, vi+1, vi+2|vi) = max ∏2
j=1 P

(
vi±j

∣∣vi
)

(5)

where vi−2, vi−1, vi+1, vi+2 denote the context of vi. Two fully-connected layers are used to
train the node representation. Softmax is adopted as the output layer. During the training
process, for the first iteration, the node vi integrates the representations of its adjacent
nodes, i.e., vi−2, vi−1, vi+1, vi+2. For the second iteration, vi integrates the representations
of the nodes which can be linked to vi through the path whose length is less than 4. As the
training process continues, the information carried by the entire graph can be integrated
into vi. After graph embedding, we replace the original vector representations of the nodes
in the core event by the tuned ones to let the core event integrate the information carried by
the entire text and recalculate the similarity between two texts using Equation (1).

5. Experiments and Analyses
5.1. Experimental Setting

Our similarity calculation aims to obtain the similarity value between two texts from
a viewpoint of passage-level event representation. One text may mention several related
events. An event connection graph is then constructed to model the relations among
those events. In addition, two improvements based on vector tuning are provided to
help better construct the event connection graph. Finally, the nodes, indicating the core
event mentioned in one text, are chosen to represent the graph. It is worth noting that our
calculation is unsupervised. It is not limited on any particular language and any particular
domain. To test its compatibility in different languages and different tasks, we build testing
corpora in three languages, i.e., English, Chinese, and Spanish. For English, there are many
open tasks about text similarity measurement, such as paraphrase and query match in
NLU (natural language understanding) [49,50]. We just choose these two tasks to test the
performance of our similarity calculation. Ten thousand text pairs are sampled from the
corpora for these two tasks. One half includes similar text pairs, and the other half includes
dissimilar text pairs. The corpora for these two tasks only contain short sentences. Most
of short sentences only mention one event. Our similarity calculation is designed on a
passage-level representation perspective and chooses the core event to help accurately
measure the similarity between two texts. It is more suitable to handle long text which
mentions several events. The former two tasks cannot fully demonstrate the advantage of
our calculation on dealing with long text. For this reason, we manually annotate a testing
corpus including two thousand long text pairs from Daily news published in the latest one
month. For Chinese, we build two testing corpora, one for short text and one for long text.
The one for short text is provided by Alibaba company for query match task. The one for
long text is manually annotated including two thousand long text pairs from Tencent news
also published in the latest one month. For Spanish, there is no suitable open corpus for
testing. We have to manually annotate one corpus including two thousand long text pairs
from kaggle contest. Among all the manually annotated corpora, we set one half including
similar text pairs and the other half including dissimilar text pairs.

The criterion used for evaluation is F1. The formulas are shown as follows:

P =
r(n)
t(n)

(6)
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R =
r(n)
a(n)

(7)

F1 = 2 ∗ P ∗ R
P + R

(8)

where P is precision, which is measured by the correctly calculated similar text pairs (noted
as r(n)) compared with the totally similar text pairs (noted as t(n)). R is recall, which is
measured by the correctly calculated similar text pairs compared with the totally noted
similar text pairs (noted as a(n)). F1 combines precision and recall together.

There are two kinds of corpora in the experiments. One kind is collected from open
tasks, such as paraphrase and query match, with a large number. Sufficient annotated texts
enable us to compare our calculation with some supervised similarity calculations. The
other kind includes the manually collected long texts, which can be used to demonstrate
the advantage of our calculation particularly on dealing with long texts. Regarding the
large-scale corpora, we separate them into 8:1:1 for training set, development set, and test
set. Three neuron-based algorithms are adopted as baselines in the following experiments.
They are textCNN (one convolutional layer, one max-pooling layer, and one softmax output
layer), Bi-LSTM (taking Bi-LSTM to encode text and softmax to output similarity value),
Bi-LSTM+Bidirectional attention (taking Bi-LSTM to encode text and adding a Bidirectional
attention layer to model the interaction between two input texts). In detail, we encode text
via textCNN, Bi-LSTM, and Bi-LSTM+Bidirectional attention, respectively. Softmax layer
is utilized to output a value to indicate the similarity between two texts. The pre-trained
model, i.e., BERT base, is also taken as baseline (like machine reading, one of the fine-tuning
tasks in BERT, we input two texts into BERT with a segmentation tag [SEP] and add a
softmax layer on [CLS] to output similarity value).

Our calculation is unsupervised. Therefore, we also bring in some unsupervised
baselines. We represent input text as vector via the following methods and apply Cosine as
similarity function to calculate vector similarity as text similarity.

The applied unsupervised vector representations are listed as follows:

(1) Average: the mean of all the word vectors in the input text.
(2) TextRank+Average: take TextRank to choose keywords from input text and then treat

the mean of the chosen keyword vectors as representation.
(3) TextRank+Concatenation: take TextRank to choose keywords and concatenate the

word vectors of the chosen keywords to form a long vector.

All the word vectors are set via GloVe.
We also bring in two novel and high-performance text similarity calculating methods,

Con-SIM [51] and RCMD [52]. They both based on powerful pertained language model.
In addition, multi-head attention and cross-attention are both adopted to model deep
interaction between two texts. These two algorithms have proved their high accuracy
across some text related tasks. Between them, the first one takes context into consideration
to model the training gap among different calculations, and the second one models the
distance between sentences as the weighted sum of contextualized token distances.

5.2. Experimental Results

The following experiments are conducted in six aspects. Section 5.2.1 shows the
experiments to test the rationality of the threshold setting in our calculation. Section 5.2.2
demonstrates the performances of our calculation on the condition that the event connection
graph is constructed by different event extraction methods. Section 5.2.3 shows some
sampled examples to explicitly demonstrate the ability of our calculation. Section 5.2.4
shows the results of our calculation comparing with the supervised and unsupervised
baseline algorithms on the testing corpora. Section 5.2.5 shows the ablation results to see the
enhancement brought from two improvements provided in Section 4. In Section 5.2.6, we
add an experiment to prove that our calculation is not limited on any particular language
and any particular domain.
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5.2.1. Testing on Threshold

In Section 4, we provide a vector tunning-based method to find semantically similar
triggers and link them to form a comprehensive event connection graph. Two triggers
whose semantic similarity value is beyond the threshold (set as 0.8) can be connected in the
graph. The following figure just demonstrates and explains the rationality of the threshold
setting. It shows F1 values when the threshold changes from 0.1 to 1.0. This experiment is
designed to see the rationality of the chosen of the threshold setting.

As shown in Figure 5, the calculating results change along with the variety of the value
of the threshold. All the curves have the similar trend across different corpora. They all
reach the perk at the value of 0.8 (or close to it). The reason can be explained based on the
principle behind word embedding. For most of word pairs, if two words are semantically
similar, their pre-trained vector representations are close. The vector representation of
trigger is initialized via GloVe, one kind of word embedding; thus, we can take the value
between two triggers measured by vector distance to decide whether two triggers are
semantically similar or not. Trigger decides event type. Two similar triggers just indicate
two related or similar events. However, as indicated in Section 4.1, due to the situation
that there are some commonly used collocations in linguistics, the previous conclusion
(similar triggers have close vectors) is not always true. Thus, in Section 4.1, we tune the pre-
trained vector representations of the triggers via the training data sampled from synonym
dictionaries to make semantically similar triggers own close vectors. Based on the tuning
operation, finding a threshold to decide whether two triggers are similar becomes feasible.
As shown in Figure 5, 0.8 is a reasonable choice, where the performance curves reach the
peak through all the testing corpora. When the threshold exceeds 0.8, the performance
curves even drop. This is because when the threshold enlarges, some similar triggers are
missed to be connected. The relations among events, especially the relations among the
semantically similar events, cannot be fully covered by the event connection graph. It
finally causes that the extracted event may not be the core event. Furthermore, missing the
connections between similar events, the extracted event cannot integrate the information
carried by the entire event connection graph. These two situations lead to the drop of the
performance curves.
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5.2.2. Comparison of Different Event Extraction Methods

Our similarity calculation needs to construct an event connection graph to reveal
the core event to calculate text similarity. In our paper, this graph is constructed by the
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sentence-level event extraction method shown in [40]. We note this method as OneIE as it
is called in [40]. There raises a doubt that whether different event extraction methods affect
the final calculating results or not. Therefore, we design an experiment to see the similarity
calculation results with event connection graphs constructed by different event extraction
methods across all the testing corpora. The following table just illustrates the performances
of our calculation on the condition that the event connection graph is constructed via several
popular sentence-level event extraction methods. The event connection graph includes
both trigger and argument; thus, the chosen event extraction methods should jointly
extract trigger and argument meanwhile. We choose BeemSearch [53], JointTransition [54],
and ODEE-FER [55] as baselines. BeemSearch is one of the classic joint event extraction
methods, which encodes text via one-hot feature and applies local and global features to
label trigger and argument meanwhile. JointTransition and ODEE-FER are both based
on neuron model. The significant difference between them is that JointTransition applies
transition model to characterize the relation between trigger and argument, while ODEE-
FER integrates latent variable into neuron model to extract open-domain event free from
event schema predefinition. Multi-task learning framework is utilized in ODEE-FER to
identify trigger and argument concurrently. The corpora for paraphrase, query match, and
manually annotated are abbreviated as Para, Q&Q, and MA, which are also used in the
following tables.

As shown in Table 2, it can be found that different event extraction methods do not
affect the performances of our calculation much. This situation is due to the following
two reasons. First of all, the construction of event connection graph is only the first step
in our calculation. The extracted triggers and arguments are subsequently measured to
indicate their importance via centrality measurement. During the measuring process, the
incorrectly extracted triggers and arguments can be eliminated. In Table 2, we also add an
extreme case, noted as Extreme listed in the last row, where we treat a verb in the sentence
as trigger and noun as argument. If there is more than one trigger in the sentence, we
construct polygon for each trigger following the approach shown in Section 3. It can be
observed that the result obtained from Extreme is a little different from the ones obtained
from the other methods. That indicates we do not need the precise event extraction results,
as long as the extracted results contain enough triggers and arguments. Furthermore, two
improvements proposed in Section 4 can also help remove the adverse effect brought from
the incorrectly extracted triggers and arguments. In detail, one improvement tunes the
vector representation of the trigger, and links the semantically similar triggers in the event
connection graph. Regarding the triggers incorrectly extracted, they are little related to
the core event mentioned in the text. Thus, these triggers do not locate at the center of the
event connection graph. After the measuring process, these triggers will be valued with
little weights. They will not be chosen as the core event to measure text similarity. The
other improvement is to integrate the information carried by the entire text into the chosen
nodes via graph embedding. In some cases, even if the incorrectly extracted triggers and
arguments are chosen as the core event, after graph embedding, the information carried by
the entire text can be integrated into the incorrectly extracted triggers and arguments. This
way can also alleviate the adverse effect brought from the incorrect extraction.

Table 2. The results of our calculation obtained on the condition that the event connection graph is
constructed via several popular event extraction methods (highest values in bold).

Methods
English Chinese Spanish

Para Q&Q MA Q&Q MA MA

BeemSearch 0.81 0.84 0.66 0.85 0.62 0.67
JointTransition 0.79 0.83 0.64 0.84 0.63 0.68

ODEE-FER 0.82 0.85 0.68 0.86 0.65 0.71
OneIE 0.82 0.86 0.68 0.89 0.67 0.71

Extreme 0.77 0.82 0.63 0.82 0.61 0.66
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To clearly see the effects brought from different event extraction methods, we also
draw a histogram figure to illustrate the calculating results obtained by different sentence-
level event extraction methods. In addition, to compare their results in two tasks of text
similarity calculation and event extraction, we show the results obtained by different event
extraction methods in both tasks in two colors. In this figure, each algorithm corresponds
to two columns. The column with blue color indicates the text similarity calculating results,
which is averaged across all the corpora including open tasks and manual annotation. The
column with orange color indicates the event extracting results, which is averaged across
the corpora from ACE and FrameNet, two popular event extraction tasks.

As shown in Figure 6, it is hard to see the performance gap among all the event
extraction methods in text similarity calculation task. However, the event extraction
methods adopted in the experiment perform differently in the event extraction task. As
shown in this figure, ODEE-FER performs much better than the other event extraction
methods. Anyway, in this experiment, we also design a simple method called Extreme.
This method just simply treats a verb in the sentence as trigger and a noun as argument.
It is easy to assume that Extreme should have a poor performance in the event extraction
task. The result also proves this assumption. Surprisingly, Extreme obtains almost the same
result with the other event extraction methods in the text similarity calculation task. That
indicates we do not need the precise event extraction results, as long as the extracted results
contain enough triggers and arguments.
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Figure 6. The histogram to see the results obtained by different event extraction methods (blue color
indicates text similarity calculation task and orange color indicates event extraction task).

5.2.3. Case Study

In our similarity calculation, we need to extract some nodes from the event connection
graph to represent the core event mentioned in the text. In the following table, we just show
the extracted nodes (i.e., triggers and arguments) from some sampled texts. We sample 6
texts from our English testing corpora, three for long texts (noted as A1, A2, A3) and three
for short texts (noted as S1, S2, S3). The short texts are news caption. The contents of the
chosen texts can be found in (A1: https://www.bbc.com/news/technology-52391759; A2:
http://news.bbc.co.uk/sport2/hi/football/europe/8591081.stm; A3: https://www.bbc.
com/news/business-52467965; S1: https://www.bbc.com/news/uk-51259479; S2: https:
//www.bbc.com/news/business-44789823; S3: https://www.bbc.com/news/business-
52466864 (accessed on 17 May 2022). These texts can be accessed till the pages are deleted).
Since keywords can also be treated as the content representation of the text, we also show
the keyword extraction results (the top five keywords) obtained by LDA and TextRank,
two popular unsupervised keyword extraction algorithms.

As shown in Table 3, among the chosen words, some are the same across different
extraction methods while some are distinct. Taking the contents of the sampled texts into

https://www.bbc.com/news/technology-52391759
http://news.bbc.co.uk/sport2/hi/football/europe/8591081.stm
https://www.bbc.com/news/business-52467965
https://www.bbc.com/news/business-52467965
https://www.bbc.com/news/uk-51259479
https://www.bbc.com/news/business-44789823
https://www.bbc.com/news/business-44789823
https://www.bbc.com/news/business-52466864
https://www.bbc.com/news/business-52466864


Appl. Sci. 2022, 12, 9887 16 of 22

consideration, the words extracted by our calculation can exactly cover the core event
mentioned in the sampled texts, though the number of extracted words is often less the
number from the other two keyword extraction methods. On the contrary, the words
extracted by TextRank and LDA are not always related to the core event. This situation is
obvious for long texts. For example, for A1, its core event is “Apple iPhone has a software
leak on email app”. The keywords extracted from this text via TextRank and LDA both
include “ZecOps”. This word repeats many times in A1. Thus, it is chosen as keyword,
whereas this word indicates the source where the news is published. It is not the part of the
core event. The reason to this situation is that traditional keyword extraction methods often
take the shallow statistics, such as frequency or distribution, to measure word importance.
Such an approach causes “ZecOps” to be incorrectly chosen. In our calculation, when
measuring the importance of one word, we consider the effect of the event which includes
this word. In detail, only if the event is emphasized by one text, the word included by
this event can be treated as the representation of this text. In the text of long length, there
may mention several events. The frequently occurring words may not be included by the
core event, such as the words “ZecOps” and “Rooney” included by A1 and A2. Thus, they
may be extracted incorrectly. Regarding the texts of short length, they only include one or
two sentences. A few events are mentioned. The frequently occurring words are mostly
included by the core event. Thus, among the short texts, the words extracted by the three
methods are almost same.

Table 3. The extracted words from the sampled texts (* marks that less than five words can be extracted).

Methods TextRank LDA Ours

Long Texts

A1 ZecOps, Apple, mail, leak, hacker Apple, mobile, ZecOps, bug, hacker Apple, mail, software, leak, *

A2 Rooney, soccer, Bayern Munich,
injury, champion

soccer, Bayern Munich, beat, Man
Utd, Rooney Bayern Munich, beats, Man Utd, *

A3 Barclay, bank, economic,
coronavirus, profit

Barclay, coronavirus, bank,
pandemic, work

coronavirus, pandemic, costs,
£2.1bn, *

Short Texts

S1 Carmaker, Tesla, build, factory,
Shanghai

Carmaker, Tesla, build, factory,
Shanghai Tesla, build, factory, Shanghai, *

S2 Kobe Bryant, death, BBC, TV
news, mistake BBC, apologize, footage, mistake, * BBC, apologize, footage, mistake, *

S3 Coronavirus, economy, sink,
pandemic, shutdown

Coronavirus, economy, sink,
shutdown, *

Economy, sink, pandemic,
shutdown, *

5.2.4. Comparison of Different Algorithms

The following table shows the results of comparing our similarity calculation with
the supervised and unsupervised baseline algorithms. The supervised baseline algorithms
include textCNN, LSTM, LSTM+Bidirectional attention (abbreviated as LSTM+BIA), and
BERT-base. They are conducted only on the large-scale testing corpora including short
sentences, since these corpora have enough data to form training set. The unsupervised
baseline algorithms include Average (abbreviated as AVE), TextRank+Average (abbreviated
as TR+AVE), and TextRank+Concatenation (abbreviated as TR+CON). The details of the
baseline algorithms are already told at the beginning of Section 5.

For unsupervised similarity calculations, to test their similarity calculating results,
we first represent input text as vector. This vector is averaged from all the word vectors
through input text, or some chosen word vectors by TextRank algorithm. Then, Cosine
similarity is used to decide whether two texts are similar or not. For supervised similarity
calculations, we also represent input text as vector, while this vector is formed by different
encoder models like LSTM, Bi-LSTM, or pretrained models (BERT or RoBERTa). Then, two
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vectors obtained by different encoders are sent to MLP layer to output a probability in
terms of softmax to indicate similarity results. All the testing algorithms output a value to
measure the similarity between two texts. We record the similarity values of all the text
pairs in the testing corpora via the given algorithms and take the mean of all the values as
the threshold to decide whether two texts are similar or not. To make the obtained results
more persuasive, we add significant test. We separate each testing corpus into ten parts,
and record calculating results in each part. Two-tail paired t-test is applied to determine
whether the results obtained by different algorithms over the ten times’ calculations are
significantly different or not. We set three significant levels as 0.01, 0.05, and 0.1 (labelled as
***, **, and *).

As shown in Table 4, we list the results obtained in different languages and in different
tasks. It can be found that supervised algorithms overwhelm unsupervised algorithms by
a large margin in all the testing corpora. The reason is straightforward, since supervised al-
gorithms can utilize training data to obtain a reasonable hyperplane to separate similar text
pairs from dissimilar ones. Correspondingly, unsupervised algorithms cannot acquire any
transcendental guidance to help model the discrimination between similar and dissimilar
text pairs. They only depend on data’s natural distribution, thus, obtain lower performance.
Anyway, unsupervised algorithms only choose some words with prominent distribution or
aggregate all the words in the text to generate text representation, whereas long text has
many words which are little related to the main content. This situation causes unsupervised
algorithms obtain extremely lower performances on the manually annotated corpora which
include only long texts. It can be found that our calculation obtains comparable results
with supervised baseline algorithms and performs much better than unsupervised baseline
algorithms especially on the corpora including long texts. The reason is totally due to our
event connection graph. Based on this graph, the nodes (or words), which can represent the
core event mentioned in one text, can be finally extracted. The unrelated noisy words are
ignored when calculating text similarity. For this reason, we can acquire accurate similarity
results on both long and short texts. Besides, to further improve performance, graph
embedding is used to encode the information carried by the entire graph into the chosen
nodes to make the chosen nodes carry the global information expressed by entire text. The
significant test results also prove the reliability of the high performance of our calculation.

Table 4. The comparison of our calculation with the baseline algorithms (highest values in bold. ***,
**, and * indicate three significant levels as 0.01, 0.05, and 0.1.).

Methods
English Chinese Spanish

Para Q&Q MA Q&Q MA MA

supervised

TextCNN 0.84 *** 0.82 ** — 0.86 *** — —
LSTM 0.83 ** 0.84 ** — 0.83 ** — —

LSTM+BIA 0.83 *** 0.87 ** — 0.89 *** — —
BERT-base 0.85 *** 0.89 *** — 0.91 *** — —
Con-SIM 0.87 *** 0.90 *** — 0.92 *** — —
RCMD 0.90 *** 0.92 *** — 0.93 *** — —

unsupervised

AVE 0.58 * 0.61 ** 0.42 * 0.63 ** 0.49 * 0.48 **
TR+AVE 0.65 ** 0.66 ** 0.49 ** 0.68 ** 0.55 ** 0.59 **
TR+CON 0.69 * 0.71 *** 0.53 ** 0.66 ** 0.53 ** 0.57 **

Ours 0.82 *** 0.86 *** 0.68 *** 0.89 *** 0.67 *** 0.71 ***

In the experiments, there are also two SOTA text similarity calculations, Con-SIM
and RCMD. They both obtain extraordinary results. Moreover, it can be observed that
RCMD even obtains over 90% F1 value across all the testing corpora. These two methods
both have two layers. The lower layer is text encoder, where Con-SIM takes BERT as the
encoder and RCMD takes a more powerful model (RoBERTa) as encoder. The difference is
that RoBERTa has more parameters; thus, RCMD obtains higher performance. The upper
level is the interaction layer, where Con-SIM takes hierarchical interactive attention and
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RCMD takes two matrixes to model local interaction (inner sentence) and global interaction
(outer sentence) to obtain sentence matching results. As indicated in the experiments, our
proposed method obtains lower performance than those SOTA methods. However, it is
easy to be explained. Those SOTA methods all take pretrained models to encode input texts
with massive parameters. Anyway, those methods need to consume training data to adjust
model to deal with domain-specific data. As domain changed, these methods are easy to
be distorted as shown in the experiments. Compared with those methods, our proposed
method is unsupervised based. Thus, it keeps its performance across domains. Anyway,
with the help of passage-level document representation, our proposed method can obtain
high performance. Though the performance is lower than the ones with pretrained models,
its performance is much higher than the baseline unsupervised methods.

5.2.5. Ablation Results

In Section 4, we provide two improvements on our calculation. One is to detect and
link similar triggers to involve the relations among the similar or related events into the
event connection graph. The other is node representation via graph embedding, which lets
the representations of the chosen nodes integrate the information carried by the entire event
connection graph. In the following table, we record the results obtained by our calculation
in the following two settings. One is with or without linking similar triggers. The other is
with or without node representation.

As shown in Table 5, it can be found that two improvements both enhance the per-
formance of our calculation. Between them, node representation brings more boost. The
advance brought from these two improvements is easy to be explained. Regarding the ad-
vance brought from the linkage of similar triggers, since we find similar triggers via tuning
their vector representations and further link them, our event connection graph can cover
more relations among events. Via this comprehensive graph, we can locate the core event
more accurately. Regarding the advance brought from node representation, the pre-trained
vector representations of the chosen nodes can only express their inherent information, i.e.,
only representing the local information carried by the chosen nodes. After we tune node
representation via graph embedding, the vector representations of the chosen nodes can
integrate the information carried by the entire event connection graph. Via these nodes,
text similarity can be calculated more accurately. Anyway, the representations of the chosen
nodes after graph embedding can cover both the inherent information themselves and the
information carried by the global graph. It can bring more boost on the performance than
the linkage of similar triggers.

Table 5. The ablation results of our calculation (highest values in bold).

Methods
English Chinese Spanish

Para Q&Q MA Q&Q MA MA

Only via graph 0.76 0.80 0.55 0.81 0.56 0.57
+linking triggers 0.78 0.82 0.59 0.85 0.60 0.62

+node representation 0.81 0.84 0.63 0.87 0.65 0.69
+linking triggers and
node representation 0.82 0.86 0.68 0.89 0.67 0.71

5.2.6. Task Transferring

Text similarity calculation is a fundamental component of many artificial intelligence
applications. We cannot predefine the domain and the task where these applications
are applied. We then add a test to compare the capacities of different algorithms in the
transferring scenario across different tasks and languages. The testing corpora are collected
from different domains and different languages. Regarding supervised algorithms, we
train them on one corpus and test them on another corpus. There are three kinds of corpora
in English, two in Chinese, and one in Spanish. For English, we combine two corpora as
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training set and test the algorithms on the remaining corpus. For Chinese, we train the
algorithms on one corpus and test them on the other corpus. For Spanish, since we only
have one corpus, we do not test the algorithms in this language.

To conduct the experiments on the task transferring scenario, we take supervised
algorithms and unsupervised algorithms in two ways. Regarding unsupervised algorithms,
since they do not have training stage, we run them directly on each corpus and record
the results. Anyway, since both languages (English and Chinese) have the corpus about
query match task, we test all the algorithms on this task while training on one language
and testing on the other language (noted as E-C and C-E indicating English to Chinese and
Chinese to English). In this test, all the algorithms are given cross-lingual word embeddings
trained on the corpus formed via sentence alignment [56]. We also add significant test to
see the credibility of the obtained results.

As shown in Table 6, it can be found that supervised algorithms degrade much
compared with the results shown in Table 4. In Table 4, the results are obtained in the
situation that training and testing are performed on the same corpus. This phenomenon
indicates that task transferring (or corpus changing) deeply affects the performance of
supervised algorithms. The reason is obvious. Since supervised algorithms count on
the transcendental knowledge (this knowledge indicates data distribution assumption)
derived from training corpus to deal with novel data, they are easy to be distorted by
the other corpus which owns diverse distribution. On the contrary, there is no training
corpus for unsupervised algorithms. Thus, they do not make any assumption about data
distribution, which causes they are not affected by task transferring (or corpus changing).
Our calculation is one kind of unsupervised algorithms. It keeps high quality across all
the corpora. The significant test results prove the reliability of the high quality of our
calculation.

Table 6. The results of all the algorithms in the transferring scenario (highest values in bold. ***, **,
and * indicate three significant levels as 0.01, 0.05, and 0.1.).

Methods
English Chinese C-E E-C

Para Q&Q MA Q&Q MA Q&Q Q&Q

supervised

TextCNN 0.61 *** 0.60 ** 0.49 ** 0.47 * 0.51 * 0.31 ** 0.27 **
LSTM 0.56 ** 0.59 ** 0.51 * 0.54 ** 0.52 ** 0.23 * 0.22 *

LSTM+BIA 0.54 ** 0.53 ** 0.47 * 0.55 ** 0.56 ** 0.26 * 0.24 *
BERT-base 0.57 *** 0.55 *** 0.53 ** 0.49 *** 0.51 ** 0.48 ** 0.41 **
Con-SIM 0.52 *** 0.53 *** 0.51 * 0.47 *** 0.50 * 0.44 ** 0.38 **
RCMD 0.53 *** 0.56 *** 0.54 * 0.46 *** 0.53 ** 0.42 ** 0.43 **

unsupervised

AVE 0.58 * 0.61 ** 0.42 * 0.63 ** 0.49 * 0.61 ** 0.63 **
TR+AVE 0.65 ** 0.66 ** 0.49 ** 0.68 ** 0.55 ** 0.66 ** 0.68 **
TR+CON 0.69 * 0.71 *** 0.53 ** 0.66 ** 0.53 ** 0.71 *** 0.66 **

Ours 0.82 *** 0.86 *** 0.68 *** 0.89 *** 0.67 *** 0.86 *** 0.89 ***

6. Conclusions and Future Work

Text similarity calculation is a fundamental task for many high-level artificial intel-
ligence applications, such as text clustering, text summarization, and Q&A. Traditional
similarity calculations are conducted in terms of either making two similar texts close in
a high-dimensional space (supervised methods) or measuring the number of concurrent
words shared by two texts (unsupervised methods). They ignore a fact that, in many
scenarios, text is used to record events. Text similarity is mostly decided by whether two
texts mention the same core event or not. This paper just proposes a novel text similarity
calculation via constructing an event connection graph to disclose the core event mentioned
in one text. To better model the relations among events, we tune the vectors of the triggers
to detect related events and link them in the event connection graph. This approach can
locate the core event more accurately. The nodes which can represent the core event are
chosen and utilized to measure text similarity. Moreover, we adopt graph embedding to
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tune the vectors of the chosen nodes to integrate the global information carried by the entire
text into the chosen nodes. This way can further boost the performance of our calculation.
Experimental results prove the high performance of our similarity calculation.

Though our paper can combine the merits from supervised and unsupervised similar-
ity calculations and can be applied in many text-related downstream applications which
need text similarity as their component. Our calculation has time issue needed to be further
solved. In particular, our calculation needs to form a passage-level event representation.
This kind of operation needs extra time. Thus, though our calculation has higher accuracy,
it is not fit to online applications, especially some time-insensitive applications.

One issue needed to be mentioned is that, to link semantically similar triggers to let
our event connection graph cover more relations among events, we need to predefine a
threshold to decide whether two triggers are similar or not. As shown in the experiments,
this parameter setting is not optimal for some corpus. It is chosen via balancing the
results across all the testing corpora. Therefore, in the future work, we hope to set it
dynamically. The other work we hope to carry out is to improve efficiency. The process
of graph construction is time-consuming. We hope to construct some template graphs at
advance. During the calculating stage, we choose the corresponding template graph via
some matching score and complete the matched template graph using some specific words
chosen from input text.
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