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Abstract: The technological requirement for ever more efficient materials for the energy and electron-
ics sectors has led to the consideration of numerous compositionally and structurally complicated
systems. These systems include solid solutions that are difficult to model using electronic structure
calculations because of the numerous possibilities in the arrangement of atoms in supercells. The
plethora of such possible arrangements leads to extensive and large numbers of potential supercells,
and this renders the investigation of defect properties practically intractable. We consider recent
advances in oxide interfaces where studies have demonstrated that it is feasible to tune their defect
processes effectively. In this review, we aim to contribute to the ongoing discussion in the community
on simple, efficient and tractable ways to realise research in solid solutions and oxide interfaces.
The review considers the foundations of relevant thermodynamic models to extract point defect
parameters and the special quasirandom structures method to model the supercell of solid solutions.
Examples of previous work are given to highlight these methodologies. The review concludes with
future directions, systems to be considered and a brief assessment of the relevant methodologies.

Keywords: defect engineering; solid solutions; special quasirandom structures; electronic materials;
solid oxide fuel cells; nuclear materials

1. Introduction

The ever-increasing technological requirements for materials for energy conversion,
solar cells, fuel cells, supercapacitors, hydrogen production and nuclear and microelec-
tronic applications [1–20] leads to the consideration of more complicated materials (solid
solutions and random alloys) whose properties can be optimised via the tuning of composi-
tion and/or external parameters (i.e., strain) [21–30]. It should be noted that the substantial
computational resources that have become available in the past few decades have rendered
the investigation of the physical and chemical properties of materials using atomistic sim-
ulation (for example, using density functional theory (DFT)) an exciting field of research
that is complementary to experimental work. Although DFT can offer significant insights
into the properties of crystalline materials, it can be difficult and/or time-consuming to
apply for solid solutions. This is due to the fact that the replication of the statistics of solid
solutions requires the simulation of numerous and very large supercells. This combination
of large supercells with the high number of calculations that are required to study defect
processes and the impact of all the distinct local environments that will exist into solid
solutions renders brute force approaches uneconomical or even practically computationally
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intractable [31–35]. In the past few years, there is also an increased application of thermo-
dynamic models (for example, the cBΩ model) that can act in conjunction with experiment
and computational modelling to investigate the defect process of solid solutions [36–44].

The first part of the present review focuses on computational ways to model random
alloys and solid solutions in an efficient way. The initial part briefly discusses methodolo-
gies (special quasirandom structures (SQS), cluster expansion (CE) and thermodynamic
models) that are then used to explore the simulation of key paradigms. The second part
of the review highlights recent advances in the understanding of oxide interfaces and the
ways in which these can be used to tune defect processes.

2. Methodology
2.1. Thermodynamic Methodology

There have been numerous thermodynamic models aiming to model point defects
and their processes in solids, but the cBΩ model by Varotsos and Alexopoulos is ac-
knowledged as a very efficient and rigorous way to link microscopic and macroscopic
properties [36,37,45–51]. The cBΩ model links the activation Gibbs free energy of a point
defect with macroscopic bulk properties of the solid material:

gact = cactBΩ (1)

where B is the isothermal bulk modulus, Ω is the mean atomic volume of the host material
and cact is a dimensionless coefficient that is temperature- and pressure-independent.

From Equation (1), it can be derived that the Arrhenius behaviour of the diffusion
coefficients for a single diffusion mechanism is:

D(T, P) = f ga2
0νe−

cact BΩ
kBT (2)

where f is the correlation factor, g is a geometrical factor, a0 is the lattice constant, ν is the
attempt frequency and kB is Boltzmann’s constant. Additionally, point defect thermody-
namic parameters such as the activation entropy sact, activation enthalpy hact and activation
volume υact can be deduced via the following relations [37]:

sact = −∂gact

∂T
|P = −cactΩ

{
∂B
∂T
|P + βB

}
(3)

hact = gact + Tsact = cactΩ
{

B− T
(

βB− ∂B
∂T
|P
)}

(4)

υact =
∂gact

∂P
|T = cactΩ

{
∂B
∂P
|T − 1

}
(5)

where β denotes the volumetric coefficient of thermal expansion. These point defect
parameters are functions of the elastic and expansion properties of the bulk material.

The cBΩ model can be employed to self- or hetero-diffusion in the A1−xBx alloy
by considering that the B atoms can be treated as defects [37]. Therefore, the previous
relations (Equations (1) and (3)–(5)) can be used to describe the point defect parameters.
Henceforth in these expressions, the elastic properties, expansion properties, thermal
expansion coefficient and pressure and temperature derivatives will refer to the binary
alloy. Therefore, to estimate the defect parameters of A1−xBx, it is imperative to properly
determine its bulk properties.

The molar volume of the A1−xBx alloy with respect to the composition and T (or P) is
expressed via [37]:

VA1−x Bx (x, T) = (1− x)VA(T) + xVB(T) (6)

where VA and VB are the molar volumes of the two end members and x is the molar
concentration of component B. It should be stressed that this relation assumes that the
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volume change of the alloy obeys Vegard’s law (i.e., the volume change of the alloy due to
the replacement of atoms A with atoms B does not depend on the concentration x). This
is a good approximation for a number of systems, but it should be noted that for alloys
which strongly deviate from Vegard’s law, there should be a third term in Equation (6)
representing the deviation from linearity.

Compressibility is defined by κ = 1/B = −
(

1
V

)
(∂V/∂P|T). The composition and

temperature dependence of the isothermal bulk modulus of A1−xBx alloy can be derived
by differentiating its molar volume (Equation (6)) with respect to P [37]:

BA1−x Bx (x, T) =
1 + x(µ− 1)
1 + x( µ

λ − 1)
BA (7)

where µ = VB/VA = ΩB
ΩA

is the ratio of the molar volumes or the mean atomic volumes of
the end members, whereas λ = BB/BA is the ratio of their bulk moduli.

Differentiating Equation (7) with respect to T or P, we obtain the isobaric temperature

derivative (
∂BA1−x Bx

∂T |P) and the isothermal pressure derivative (
∂BA1−x Bx

∂P |T) of the bulk
modulus of the alloy:

∂BA1−x Bx (x)
∂T |P = 1+x(µ−1)

1+x( µ
λ−1)

∂BA
∂T |P

+BA
(1−x)µ(βGe−βSi)[1− x

λ (1−µ)]−x µ
λ (1−x+xµ)

(
1

BA

∂BA
∂T |P−

1
BB

∂BB
∂T |P

)
(1−x+x µ

λ )
2

(8)

and
∂BA1−x Bx (x)

∂P |T =

1+x(µ−1)
1+x( µ

λ−1)
∂BA
∂P |T − x µ

λ

(1−x)(1−λ)(1− 1
λ )+(1−x+xµ)

(
∂BA
∂P |T−

1
λ

∂BB
∂P |T

)
(1−x+x µ

λ )
2

(9)

The volumetric coefficient of thermal expansion of the alloy, βA1−x Bx , is given by [37]:

βA1−x Bx (x, T) = βA

1 + x(µ− 1)

(
1 +

∂
∂T

(
∂BA
∂P |T

)
βA

(
∂BA
∂P |T−1

)
)

1 + x(µ− 1)
(10)

The T derivative of the quantity ∂B
∂P |T in Equation (10) can be estimated through

the approximation, ∂B/∂P|T ≈ ∂BS

∂P|T + 2Tβγ
, where BS is the adiabatic bulk modulus and γ is the

Grüneisen constant [37]. Considering that the T dependencies of ∂BS

∂P and γ are practically

negligible, ∂
∂T

(
∂BA
∂P |T

)
can be approximated with 2γ

(
β + T

(
∂β
∂T

)
|P
)

, which is tractable as
it contains terms that can be accessed [37].

These relations provide a way to calculate the elastic and expansion properties, and
cact as a function of concentration. At T = 0 K, gact is replaced by hact

o , and thus, cact is equal
to hact

o /BoΩo [37]. With available experimental diffusion data for a temperature range,
the mean value method is also sufficient to calculate cact [50]. Employing Equation (2) in
logarithmic form,

lnD = lnln
(

f ga2
0ν
)
− cact BΩ

kBT
(11)

This infers the linear dependence of the experimentally determined lnD with the
calculated BΩ

kBT using the cBΩ model for a single diffusion mechanism. Trivially, cact is the
slope of the corresponding linear fitting.
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2.2. Cluster Expansion and Special Quasirandom Structures

Modelling crystal structures using DFT is straightforward from a structural point
of view as all that is required is the construction of supercells with periodic boundary
conditions. Complications arise when there is structural disorder (i.e., non-stoichiometry
and/or atomic species able to occupy multiple crystal sites). Modelling such a system using
DFT with the use of large supercells where atoms are randomly inserted in sites can be
computationally very expensive, and reproduction of the statistics of the random system
may even be practically intractable. Conversely, the SQS approach effectively enables the
use of DFT in disordered systems by extracting the physical properties of the random alloy
from a small designed cell.

The properties of random alloys (for example, the band gap, total energy and point
defect energies) are strongly dependent upon the arrangement of the atoms on the underly-
ing lattice, which is known as configuration σ. In the cluster expansion (CE) method, the
dependence of a given property f on σ can be described via [52–58]:

f (σ) = ∑
α

Dα JαΠα(σ) (12)

where α is a figure (cluster) that comprises a group of k lattice sites (k = 1, 2, 3 indicates single
site, pair, and triplet, and so on), Dα is the degeneracy factor that expresses the number of
symmetrically equivalent figures of type α per lattice site, Πα(σ) is the correlation function
and Jα is the effective cluster interaction for figure α. When the effective cluster interactions
are figured, Equation (12) may be used to extract the properties of any lattice configuration.

Although CE can be deemed as a robust way to characterise the ordered and disordered
states within a single framework, the SQS methodology is far more computationally efficient
when considering the physical properties of the random alloy. In practice, SQSs are
designed small-unit-cell ordered structures that possess correlation functions comparable
to the correlation functions of the random alloy [31,59,60]. Since in random alloys there
is no pattern in the occupation of the available sites, this results in the alloy correlation
functions being expressed as the product of the lattice-averaged spin variables. In a random
binary A1−xBx alloy [58], 〈

Πα

〉
R = (2x− 1)kα (13)

where kα is the number of vertices in figure α. One of the major advantages of the SQS
approach in comparison to the CE method is that it can be employed to resolve non-scalar
properties such as elastic constants.

Employing periodically repeating supercells may induce erroneous correlations that
are not appropriate when modelling a random alloy. The error due to the SQS approxima-
tion is [58]:

fSQS − 〈 f (σ)〉R = ∑
α

Dα Jα[
(
Πα

)
SQS −

〈
Πα

〉
R] (14)

The basic assumption at the heart of the SQS method is that interatomic interactions
at large distances are weaker than interactions at smaller distances. This means that the
cluster expansion of a property is strongly dependent upon the cluster interactions of
the short-ranged clusters. Consequently, it is feasible to form SQSs cells that reproduce
the pair and multisite correlation functions of the random alloy between the first few
nearest neighbours.

Arguably, more extended SQSs cells can be better because they have smaller periodicity
errors and in essence serve as better approximations of the real random alloy. This in turn
implies that the predicted physical properties for more extended SQS cells will more
accurately match the properties of the random alloy. Nevertheless, it should be noted that
in previous investigations for numerous systems, most experimental derived properties
rapidly converged with respect to the ones predicted using SQS, with relatively small SQS
cells (typically less than 100 atoms) [31,59–63].
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3. Advanced Materials for Energy Applications

In this section, we will briefly consider the requirements of key energy sectors and
their need for advanced materials, with a focus on solid solutions. This is not an exhaustive
account but rather aims to introduce the issues. Solid solutions are relevant and under
investigation in solid oxide fuel cells, batteries, nuclear fuel, semiconductors, catalysts and
superconductors [64–90].

Considering nuclear energy, there is significant research effort for the future generation
reactors as nuclear energy is deemed to be an important component of the energy mix
aiming to lower CO2 emissions. These advanced nuclear reactors will be required to be
safer, more economic and proliferation-resistant. To meet these targets, the community is
working on mixed oxide fuels that will be thorium-based due to the abundance of thorium
compared to uranium and its highest proliferation resistance [91–95].

There are numerous applications of the SQS and cBΩ model methodologies in the
literature [64–83]. This is driven by the introduction of new material systems and the
requirement for easy and inexpensive screening in an effort to lead to application as soon as
possible. In that respect, the cBΩ model has been employed to expand our understanding
of the defect chemistry of novel microelectronic and nuclear fuel systems.

As expected, most of the studies on nuclear fuel materials from a theoretical perspec-
tive focus UO2, but given the requirement for proliferation-resistant fuels (for example,
ThO2 and mixed oxides), there are numerous systems and conditions that need to be in-
vestigated. Interestingly, in recent studies [40,43,70], there was a combination of molecular
dynamics simulations and thermodynamic calculations based on the cBΩ model to consider
a wide range of pressures (0–10 GPa), PuO2 and mixed oxide fuels. These studies can
serve as a paradigm and a first step for the understanding of these systems, which can be
expensive, time-consuming and difficult to study experimentally.

More recently, density functional theory calculations were used in conjunction with the
SQS approach to predict the formation of MAX phase solid solutions [90]. MAX phases have
a range of ceramic and metallic properties and are thus important candidate materials for
numerous applications, including aerospace and nuclear engineering [28–30,75]. Figure 1
illustrates typical 128-atom SQS structures to mimic the (Zr1−xMx)2AlC and Zr2(Al1−xAx)C
MAX phases for x = 0.25 and 0.5 [90]. The results are confirmed by the available experimen-
tal data and by employing chemical bonding analysis (crystal-orbital Hamilton population)
predict that (Zr1−xMx)2AlC (M = Nb, Ta) and Zr2(Al1−xAx)C (A = Bi, Pb, Sn) MAX phases
can be synthesised [90].

In a further, very significant advancement, Dahlqvist and Rosen [75] performed an
extensive (2702 compositions) theoretical study (employing SQS) of MAX phase alloys.
This investigation identified as thermodynamically stable 92 i-MAX (in-plane chemical
ordering) and 291 solid solution MAX phases [75]. In essence, the study by Dahlqvist and
Rosen [75] resulted in a very significant expansion of the MAX phase family and provides
promising routes for more focused experimental work. This is illustrated in Figure 2.

The advent of new materials (post-silicon) systems for the new era of nanoelectronics
and radiation-tolerant electronic devices has regenerated the interest in the dopant-defect
properties and interactions of semiconductor materials (for example, references [26,32–34]
and references therein). Materials of interest include the more “classical” systems Ge,
Si1−xGex and III–V alloys and the more “modern” systems such as two-dimensional sys-
tems including graphene and silicene. For example, Christopoulos et al. [34] employed
density function theory and the SQS approach to investigate the effect of electronegativity
(of the local environment) on the electronic properties of dopant atoms. It should be stressed
that Si1−xGex alloys can be considered as solid solutions as there are two atoms randomly
occupying one lattice site (diamond lattice structure). The study by Christopoulos et al. [34]
demonstrated that the Bader charge of the dopant atom is highly influenced by the local
environment (nearest neighbour), and therefore, dopants may behave differently in areas
where there are more Si atoms (Si-rich) compared to areas dominated by Ge atoms (Ge-rich).
This is illustrated in Figure 3 for Al-doped Si1−xGex alloys (x = 0.125, 0.25, 0.375, 0.5, 0.625,
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0.75 and 0.875), in which there are significant changes in the charge density depending
mainly on the composition of the nearest neighbour atoms to the Al substitutional atom.
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x = 0.25 and 0.5 (a) (Zr0.75M0.25)2AlC, (b) (Zr0.5M0.5)2AlC, (c) Zr2(Al0.75A0.25)C, (d) Zr2(Al0.5A0.5)C.
Green spheres represent Zr, whereas blue and red spheres represent Al and C atoms, respectively.
Reprinted with permission from the PCCP Owner Societies [90].
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alloys (x = 0.125, 0.25, 0.375, 0.5. 0.625, 0.75 and 0.875) showing the interaction of substitutional Al [34].

4. Oxide Interfaces

Nuclear wasteform elements can be encapsulated and immobilised in designed glass–
ceramic composites (refer to [58] and references therein). In that respect, understanding
the structure–property relations is worthwhile. For these systems, molecular dynamics
calculations provide a solid starting point to investigate the impact of the glass–crystal
interface on the glass composition [58]. For example, in the study by Rushton et al. (refer
to [58] and references therein), molecular dynamics calculations were used to model the
interface between MgO and CaO crystals and a mixed alkali borosilicate glass (glass used
for the immobilisation of high-level wasteform from the reprocessing of Magnox fuel). A
typical system is illustrated in Figure 4 [58]. These studies demonstrated that the crystal
remained practically unchanged; however, the glass exhibited considerable structural
changes [58]. The alkali concentration increased at the layer closest to the glass–crystal
interface, whereas the in the glass network, the crystal induced a partial ordering (with
depth up to 10 Å into the glass) [58]. These changes (ordering decreases the entropy in the
glass) need to be understood in depth using thermodynamic analysis, and in this respect
the cBΩ model may be important.
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Interfaces are also important for energy applications. For example, Garcia-Barriocanal et al. [96]
observed colossal conductivity in very thin (~1 nm) yttria-stabilised zirconia (YSZ, here
ZrO2 with 8 mol% Y2O3) layers that were enclosed epitaxially between layers of SrTiO3.
These SrTiO3/YSZ/SrTiO3 heterostructures were determined to have conductivities higher than
bulk YSZ by 8 orders of magnitude [96]. They were deemed by Garcia-Barriocanal et al. [96] to
be ionic conductivities due to the 7% tensile strain in the YSZ thin films and the disorder
of oxygen at the interface. The existence of colossal ionic conductivity can lead to very
efficient oxygen-ion conducting electrolytes in solid oxide fuel cells (SOFCs) and in effect
has the potential to revolutionise the way we generate and store electricity. The findings
of Garcia-Barriocanal et al. [96] have, however, raised a debate in the community about
whether the determined conductivity is due to ionic charge carriers (i.e., oxygen diffusion)
or electronic charge carriers in the SrTiO3 layers [97–104].

A recent experimental study by Cavallaro et al. [102] in a SrTiO3/YSZ/SrTiO3 het-
erostructure determined that the total conductivity dependence is inconsistent with ionic
transport in YSZ. Kushima and Yildiz [100] employed DFT in conjunction with the nudged
elastic band (NEB) method to calculate the migration enthalpy barrier in biaxially strained
bulk YSZ. This study is consistent with an ionic enhancement of up to 4 orders of magni-
tude. The DFT calculations of Kushima and Yildiz [100] were confined to small supercells
at 0 K. Pennycook et al. [103] used quantum molecular dynamics to simulate oxygen-
deficient strained ZrO2, calculating a migration energy of 0.4 eV. This was compared with
the experimentally determined activation enthalpy for oxygen vacancy migration in un-
strained YSZ (refer [96]), resulting in an enhancement in ionic conductivity of 4 × 106. De
Souza et al. [104] criticised the inconsistency of comparing strained ZrO2 with unstrained
YSZ and suggested that the enhancement of the ionic conductivity would be far smaller.
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That is, considering the experimental migration enthalpies between strained and unstrained
YSZ, the enhancement would be less than 4 × 104.

Recent studies focus on the reduction of the activation enthalpy of oxygen migration
and the impact of strain. This is because the enhancement of the ionic conductivity is
defined by the ratio of the ionic conductivity in the strained (σion) over the unstrained state
(σ0

ion), given by:

σion

σ0
ion
≈ exp

(
−

∆Hmig − ∆H0
mig

kBT

)
exp

(
∆Smig − ∆S0

mig

kB

)
(15)

where kB is Boltzmann’s constant, T is the temperature, ∆Hmig is the migration enthalpy
and ∆Smig is the migration entropy.

Using Maxwell’s relation, the change in the activation entropy of migration ∆Smig
is [104,105]:

∂∆Smig

∂p
= −

∂∆Vmig

∂T
(16)

where p is the pressure when there is strain in the film.
The intricacies of oxide interfaces have been thoroughly investigated recently [106–110].

In a recent study, Lee et al. [108] used ionic interfaces to form a non-stoichiometric oxygen
vacancy concentration. In particular, the oxide nanobrush architecture they created led to a
colossal oxygen vacancy concentration at the fluorite–bixbyite (CeO2-Y2O3) interface [108].
This is an example of how designed interfacial oxide architectures can in essence tune the
formation and transport properties of intrinsic defects that are key for the development of
advanced energy technologies.

From a more fundamental material science perspective, the study of Chiabrera et al. [106]
determined that tuning the non-stoichiometry in grain boundaries can be used to modify
the transport properties. In particular, Chiabrera et al. [106] determined that strain induced
defects in the grain boundaries of La1−xSrxMnO3±δ (LSM) enhance the oxygen mass
transport and abate the electronic and magnetic order. This is consistent with previous
work [111–113] but opposite to other oxides in which grain boundaries typically reduce
oxygen diffusion [114,115].

The aim of the use of designed interfaces and nanocomposites with complicated
architectures and compositions is to be able to tune the physical properties of energy
materials and to reduce the use of expensive and scarce materials (for example, rare-earth
materials). This can be more difficult in superconducting materials where rare-earth atoms
are fundamentally important [116–130].

5. Machine Learning Approaches for Defect Prediction

Recent advances in machine learning [131] have been exploited to discover and design
of new materials [132] and to solve a large range of predictive problems in materials’ defect
processes [133,134], which are important for the structural integrity assessment of system
components and effective scheduling of maintenance work, in application areas that are
safety-critical and require uninterrupted and reliable operation.

Typically, machine learning models are constructed by training them on known
datasets, which may include actual or simulated data. The models are subsequently
exposed to hitherto unseen (new) data about components that are exposed to conditions
similar to those of the training set, and they produce predictions, typically in the form of
interpolation or extrapolation depending on the specifics of the application under study.

For instance, Mathew et al. [135] employ neural networks to predict irradiation em-
brittlement in low-alloy ferritic steel forgings and welds, which are typically used in most
reactor pressure vessels of modern light–water nuclear reactors. Irradiation embrittle-
ment causes the formation of many atomic-scale defects within the metal grains and such
defects impede the motion of dislocations, leading to an increase in the hardness and a
reduction in ductility of steel. Predicting irradiation embrittlement is critical for the safe
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and continued operation of the reactor. The research was based on two separate datasets,
namely the IVAR data from the Irradiation Variables Experiment [136] and data from the
US civil power database (NUREG) [137], which contains the accumulated experience from
irradiated surveillance samples from US operators, and built a feed-forward multilayer
perceptron (MLP) [138]. The main challenge for irradiation embrittlement forecasting is
to establish the correct correlations between the many exposure parameters. Irradiation
temperature is one of the most important of these parameters, and although it is feasible to
assimilate data on the embrittlement of steels at many temperatures, to predict the actual
temperature dependence of embrittlement in a particular steel is hard because of the effect
of temperature on other variables such as irradiation flux and the composition of the steel
itself. The predictions produced by the ANN that was developed in this study come with
high uncertainty; however, once the model is set up, it is relatively easy to retrain it (and
improve its performance) as more surveillance data become available.

In a similar spirit, [139] explores the application of probabilistic kernel machines,
specifically Gaussian processes, for weld stress prediction, using 16 different kernel func-
tions for prediction. The aim of that work is to produce predictions that would be useful
for the a priori scheduling of maintenance for stainless steel pipes, which are critical com-
ponents for the safe and uninterrupted operation of power plants. Kernel machines are
employed in pattern analysis to identify general types of relations (for example, clusters,
classifications, principal components) in datasets. The use of kernel functions enables these
methods to work in the implicit feature space, without computing the coordinates of data
points in that space; hence this “kernel trick” affords cheaper computation. A Gaussian
process is a kernel machine with a multivariate normal distribution, and can be seen as the
distribution over functions with a continuous domain. The approach was tested using the
dataset offered in [140], whose measurements were obtained using various techniques such
as deep hole drilling, neutron diffraction and block removal splitting and layering as part
of a UK nuclear power industry research programme.

The work in [141] compares different data-driven approaches, specifically artificial
neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs), for the
prediction of residual stress in stainless steel welds found in pressure vessels and pipe
systems of energy systems. It was established that the application of such data-based
models—compared to the finite element approach—is relatively simple and does not
require comprehensive information for generating accurate results. The comparison of
the approaches was conducted by considering various benchmarks, and ANNs trained
using the Levenberg–Marquadt algorithm, and ANFISs based on a hybrid algorithm were
found to be better than the ANNs model trained by resilient-backpropagation and ANFISs
based on the backpropagation method. However, no single best method emerged from the
performance indicators that were considered.

6. Summary, Perspective and Future Outlook

In the present review, we considered the modelling of solid solutions and oxide
interfaces, which are fundamental to understand in order to optimise them for numerous
applications, including nanoelectronics and energy applications such as fuel cells, batteries
and nuclear materials. In the examples highlighted here, it is clear that these modelling
techniques can (a) be used to further understand defective materials and in a sense aid
experimental work (characterisation), (b) lead to the discovery of new solid solution and
thus guide the synthesis to the most fruitful systems and (c) result in the fundamental
understanding of interfacial properties.

The use of expensive and scarce materials (for example, rare earths or precious metals)
in most advanced energy systems needs to be reconsidered so that there is sustainable pro-
duction. For example, most of the rare earths are mined in China and the local demand will
soon outstrip supply. This can lead to a potential reduction in rare-earth exports, which will
have a grave impact on a number of industries in numerous countries. Apart from recycling
or the discovery and use of more mines, is there a way to move away from the dependence
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on scarce materials in advanced energy and nanoelectronic applications? This is a key
question that will need to be addressed in the coming years. From the perspective of the
present review, it is evident that the manipulation of materials via strained or complicated
nanocomposite architectures has the potential to tune materials properties and thus lead to
more efficient materials. Manufacturing solutions will play a key role in implementing the
required changes and induced complexity at a reasonable cost. In this respect, the funda-
mental theoretical understanding of materials under strain and at nanocomposite interfaces
will become very important. This will require advanced computational techniques based
on electronic structure calculations but also thermodynamic modelling. It is anticipated
that well-established thermodynamic approaches such as the cBΩ model can prove to be a
valuable ally to atomistic modelling. These models will need to be expanded, though, to
account for the intricacies and the complexities of the emerging nanomaterials and their
complicated architectures. The technological requirement for advanced materials will need
to be addressed in the near future, and advanced designed material configurations could
be the way forward to reduce the dependency on rare earths.

The application of artificial intelligence techniques, especially machine learning, could
be a promising way to enhance efforts on the design of new materials, on the monitoring of
existing infrastructure integrity and on infrastructure degradation forecasting. A critical
factor for the successful deployment of such techniques, however, is the availability of
appropriate datasets to train the models. Transfer learning, that is, the application of
knowledge gained in one domain to a different, but in some ways similar, domain, might
be a promising direction to explore, along with the development of more sophisticated
cyber-physical systems that can exploit both physical and simulated data.
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