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Abstract: The job shop scheduling problem (JSSP) is a fundamental operational research topic with 

numerous applications in the real world. Since the JSSP is an NP-hard (nondeterministic polynomial 

time) problem, approximation approaches are frequently used to rectify it. This study proposes a 

novel biologically-inspired metaheuristic method named Coral Reef Optimization in conjunction 

with two local search techniques, Simulated Annealing (SA) and Variable Neighborhood Search 

(VNS), with significant performance and finding-solutions speed enhancement. The two-hybrid al-

gorithms’ performance is evaluated by solving JSSP of various sizes. The findings demonstrate that 

local search strategies significantly enhance the search efficiency of the two hybrid algorithms com-

pared to the original algorithm. Furthermore, the comparison results with two other metaheuristic 

algorithms that also use the local search feature and five state-of-the-art algorithms found in the 

literature reveal the superior search capability of the two proposed hybrid algorithms. 
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1. Introduction 

Scheduling production is crucial in product manufacturing since it directly influ-

ences system performance and overall manufacturing process efficiency [1]. In various 

enterprises, production scheduling has become a significant issue. Dozens of innovative 

techniques are being scrutinized to increase manufacturing efficiency, emphasizing 

schedule optimization [2]. Accordingly, optimizing production scheduling problems is 

attracting attention in both research and manufacturing realms [3]. 

Industrialization has regarded production schedules as a crucial issue since the 

1950s, and the job shop scheduling problem (JSSP) is a quintessential production sched-

uling model [4]. Since Johnson’s (1954) first methodology of scheduling with two ma-

chines [5], the complexity of the JSSP has grown in correlation with the number of devices 

and jobs. Due to its immense complexity, the JSSP is categorized as NP-hard (nondeter-

ministic polynomial time) [6]. Solving large-scale JSSP in a reasonable time is a challenge 

that has been researched for decades. In addition to increasing workload, JSSP is taking 

on numerous new forms with distinct properties and characteristics. It responds in di-

verse approaches to solving variations of the fundamental JSSP [7]. JSSP is a typical re-

source allocation problem in manufacturing production scheduling. It has innumerable 

applications in many different industrial fields requiring high levels of automation and 

mass production. Among the most successful applications of JSSP are semiconductor and 

electronic component manufacturing, which need mass production and increased auto-

mation to improve production efficiency, reduce production cycle time, and optimize re-

sources. According to a survey by Xiong et al. [8], within five years from 2016 to 2021, 

hundreds of studies and optimization models of various aspects of JSSP and its applica-

tions in the mentioned fields were conducted and presented. 
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Due to significant repercussions on the productivity of the production line, the JSSP 

has never been eradicated from combinatorial optimization. JSSP is categorized as a multi-

stage, static, deterministic job scheduling problem in computer science and operations re-

search and its solving strategies evolve at each stage of research development [8]. The 

fundamental JSSP includes: 

• A set of 𝑛 jobs 𝐽 = { 𝐽𝑖|𝑖 = 1, 2, . . . 𝑛 }, where 𝐽𝑖 denotes ith job (1 ≤  𝑖 ≤  𝑛). 

• A set of 𝑚 machines 𝑀 = { 𝑀𝑗|𝑗 = 1, 2, . . . 𝑚 }, and 𝑀𝑗 denotes jth machine. 

• Each job 𝐽𝑖 has a specific set of operations 𝑂 =  {𝑂𝑖1 , 𝑂𝑖2, . . . , 𝑂𝑖𝑘}, where 𝑘 is the to-

tal number of operations in job 𝐽𝑖. Note that operation 𝑂𝑖𝑗 will be processed only 

once the operation 𝑂𝑖𝑗−1 has been completed in job 𝐽𝑖. 

The primary goal of scheduling is to assign shared resources to concurrent tasks as 

efficiently as possible throughout the processing period. The scheme necessitates allocat-

ing and organizing limited resources pursuant to the problem’s constraints, such as the 

order of activities and processing time, and providing a plan to achieve the optimization 

objectives. The following conditions are the fundamental JSSP requirements [9]: 

• Each operation is performed independently of the others. 

• One job operation cannot begin until all previous operations have been completed. 

• Once a processing operation has begun, it will not be interrupted until the procedure 

is completed. 

• It is impossible to handle multiple operations of the same job simultaneously. 

• Job operations must wait in line until the next suitable machine is available. 

• One machine can only perform one operation at a time. 

• During the unallocated period, the machine will remain idle. 

Notably, the set of constraints in real-world problems is more complex, such as mul-

tiple objective scheduling challenges in a job shop, processing times can be either deter-

ministic (constant) or probabilistic (variable), limit idle time requests to no more than two 

consecutive machines, or no idle time. Any change to the problem’s limitations can create 

a new variation of the problem. Consequently, JSSP solving approaches evolve with each 

research development phase [10]. 

Metaheuristic optimization is one of the practical approaches to JSSP with the ability 

to provide a satisfactory optimization solution in a reasonable time [11]. Metaheuristic 

algorithms employ innovative search strategies to explore the solution space and avoid 

getting stuck in local optima by steering the feasible solution with a bias, enabling the 

rapid generation of high-quality solutions. Contemporary metaheuristic algorithms also 

combine with different mathematical models [12] and analytical operating procedures 

[13] to enhance performance. 

The coral reef optimization approach (CRO) is one of the complex bio-inspired com-

putation methods used to solve engineering and science problems by simulating the “for-

mation” and “reproduction” of corals in coral reefs. The approach was first envisioned by 

Salcedo-Sanz et al. in 2014 [14]. Since then, it has been utilized in various relevant topics, 

including optimal mobile network deployment [15], enhanced battery scheduling of mi-

crogrids [16], and wind speed prediction systems with success in renewable energy in 

“Offshore Wind Farm Design” [17]. This article contributes by proposing modified coral 

reef optimization methods with local search techniques for the JSSP feature. Two hybrid 

algorithms have been developed and presented based on the original coral reef optimiza-

tion (CRO) method. CROLS1 integrates CRO with the Simulated Annealing (SA) strategy, 

whereas CROLS2 combines CRO with the Variable Neighborhood Search (VNS) tech-

nique. This article focuses on the optimizing effect of local search techniques on the CRO 

algorithm. The experiments demonstrate that local search strategies significantly enhance 

the search efficiency of the two hybrid algorithms compared to the original algorithm. 

Furthermore, the comparison results with two other metaheuristic algorithms that also 

use the local search feature and five state-of-the-art algorithms found in the literature re-

veal the superior search capability of the two proposed hybrid algorithms. 
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The remaining of this article is structured into several parts: Section 2 summarizes 

prior work and CRO. Section 3 outlines the basis for the suggested strategy. Then, in Sec-

tion 4, the experimental results are reported. Finally, Section 5 concludes this study. 

2. Related Work 

Since its inception, operation research has focused on exact algorithms for solving 

combinatorial problems involving multiple variables. Exact algorithms are defined as 

guaranteeing accurate solutions to an optimization problem. Utilizing exact algorithms 

could achieve the best solution to almost any bounded combinatorial optimization prob-

lem by identifying all possible solutions in a short timeframe [18]. However, it has been 

asserted that when exact algorithms are employed to handle combinatorial optimization 

issues, the amount of time required to identify the best strategy grows exponentially with 

the complexity of the problem. Branch and bound algorithms and mixed integer program-

ming are the most frequently adopted exact algorithms for JSSP solving [19]. Small-scale 

JSSP rarely represents production environments in actual production, so it is crucial to 

evaluate more complex concerns involving various works and resources. Nevertheless, 

the exact methods are barely applied to large-scale situations due to resource limits and 

lengthy execution times. 

In the context that exact algorithms cannot match the requirements of addressing 

large-scale optimization issues, numerous methods based on artificial intelligence were 

initially proposed and opened a new direction in the research of problem-solving strate-

gies [20], and approximation algorithms are one of the most explored solutions to large-

scale combinatorial optimization issues. Although approximation algorithms are not 

guaranteed to locate an optimal solution but assured of identifying a near-optimal solu-

tion in a decent and realistic amount of computation time. As a result, it has evolved into 

a new research subject for resolving complex and large-scale problems. Approximation 

algorithms may be divided into two categories: heuristic algorithms and metaheuristic 

algorithms [21]. 

Heuristic approaches could be divided into two parts: constructive search methods 

and local search methods [22]. In typical constructive algorithms, solutions are built up 

piece by piece until they are entirely dependent on the problem’s initial constraints or pre-

determined priorities; in the case of scheduling problems, solutions are frequently devel-

oped through operations. These algorithms may “build” processes individually using 

“Dispatching Rules,” for example, programming to find a feasible solution within the con-

straints of a priority hierarchy. Following that, solutions are speedily developed while 

preserving the integrity of solution quality. While with local search methods, the initially 

generated keys are gradually replaced by features learned on a set of neighboring solu-

tions, whether they begin with a random collection of initial solutions or use construction 

algorithms [23]. These methods allow the investigation of neighbor solutions more effi-

ciently in a dilemma space. The disadvantage of these algorithms is that they cannot find 

and utilize global solutions. Consequently, they may become trapped in the local optima 

region. 

Meta-heuristics combines heuristic techniques commonly adopted to handle combi-

natorial optimization issues. Meta-heuristic algorithms employ innovative search strate-

gies to unravel the global optimum and avoid getting entangled in local optima by steer-

ing solution searching with a bias to gain higher viable alternatives more quickly. Some 

bias mechanisms include bias derived from the objective function, bias based on previous 

decisions, the bias of experience, etc. [21]. In this study, diverse and intensified search 

tactics are employed. The diversification strategy’s fundamental objective is to efficiently 

explore all potential solution space neighborhoods by utilizing a metaheuristic method. 

On the other hand, the intensification technique involves using previously gained search 

abilities and exploring through a more local solution subspace. Meta-heuristic algorithms 

are classified into two categories: population-based algorithms and single-point search 

algorithms. Among population-based algorithms, nature-inspired optimization 
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algorithms are ubiquitous in terms of ease of implementation and superior searchability 

[24]. For instance, the GA (genetic algorithm—inspired by evolution) [25,26], PSO (particle 

swarm optimization—influenced by swarm intelligence) [27], and SA (simulated anneal-

ing—inspired by metal cooling behavior) [28] are among the most reliable and effective 

algorithms accessible. 

Significantly, meta-heuristic algorithms differ from blindly random search algo-

rithms in that randomness is used intelligently and biasedly, making them the current 

research trend for solving difficult and complex issues. In addition, combination metaheu-

ristic approaches have been established to leverage the capabilities within each method to 

obtain more robust and exhaustive optimization strategies. Modern metaheuristic algo-

rithms also incorporate various mathematical models and analytical operational tech-

niques to deliver greater performance. Guzman et al. propose a metaheuristic algorithm 

that combines GA with a disjunctive mathematical model and employs the open-source 

solution Coin-OR Branch and Cut to optimize the JSSP [12]. By combining an open-source 

solver with genetic algorithm, the metaheuristic approach enables the development of ef-

ficient solutions and reduces computation time. Viana et al. suggested employing a guid-

ance operator assigned to changing ill-adapted individuals utilizing genetic material from 

well-adapted individuals to enhance the GA population [13]. The results indicate the new 

algorithm achieves a result 45.88% better than the old approach. Wang et al. introduce a 

novel metaheuristic algorithm capable of guiding the search process to promising regions 

based on the expected value affected by the performance of applicant samples and the 

growth rate of the candidate solutions region, called search economics for the job shop 

scheduling problem (SEJSP) [29]. SEJSP also produced positive experimental findings 

when attempting to resolve JSSP. 

In recent years, solving a fundamental problem such as JSSP has been approached in 

the direction of enhancing classical metaheuristic algorithms or combining them with 

other methodologies. Yu et al. [30] improve PSO to NGPSO by incorporating nonlinear 

inertia weight and Gaussian mutation to handle JSSP. Mohamed Kurdi proposed the GA-

CPG-GT method using the GA algorithm with uniform crossover paired with the Giffler 

and Thompson algorithm and yielded positive results when addressing JSSP [31]. T.Jiang 

and C.Zang utilized Gray Wolf Optimization (GWO) algorithm, inspired by the gray 

wolves’ social hierarchy and hunting behaviors, to solve JSSP [32], and Feng Wang et al. 

developed them with some modifications to establish the Discrete Wolf Pack Algorithm 

(DWPA) and achieved numerous exciting results in investigating JSSP [33]. In another 

direction, Alper Hamzaday et al. deployed a novel meta-heuristic technique called Single 

Seekers Society (SSS) to manage JSSP effectively [34]. 

The coral reef optimization approach (CRO) is one of the complex bio-inspired com-

putation methods used to solve engineering and science problems by simulating the “for-

mation” and “reproduction” of corals in coral reefs. The approach was first envisioned by 

Salcedo-Sanz et al. in 2014 [14]. Since then, it has been utilized in various relevant topics, 

including optimal mobile network deployment [15], enhanced battery scheduling of mi-

crogrids [16], and wind speed prediction systems with success in renewable energy in 

“Off-shore Wind Farm Design” [17]. Various hybrid algorithms based on the original ver-

sion have evolved to facilitate better performance while diminishing computing time. For 

example, in 2016, a combination of CRO and a variable neighborhood search method was 

applied to unequal area facility layout problems [35]. Alternatively, another hybrid CRO 

technique takes advantage of Spark’s MapReduce programming paradigm to reduce the 

system’s overall response time and numerous other fascinating applications [36]. 
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3. Materials and Methods 

To properly depict the problem’s reality and make encoding and decoding more ef-

ficient, selecting the most suitable form of methodology is necessary. This choice substan-

tially impacts the success or failure of problem-solving. 

3.1. Representation of Job-Shop Scheduling Problem 

When the coral reef optimization (CRO) technique is used to solve JSSP issues, the 

operation solutions are encoded as sequences of decimal integers. Several other ap-

proaches describe the resolution of JSSP based on the problem’s specific characteristics, 

such as operation-based representation, rule-based priority representation, machine-

based representation, etc. [37,38]. Direct and indirect encoding techniques are the two fun-

damental divisions of these representations. 

Our strategy for describing the solution is based on implementing “random keys.” 

This technique has the advantage of providing a detailed summary of the circumstance. 

Each number in the sequence indicates the number of the individual jobs, and the number 

of occurrences of each position in sequences defines the number of machines the job must 

pass through before completion. In this research, a “random key” technique exposes a 

solution to a problem satisfying the specified criteria below: 

• Each element appearing in a solution represents the job to be processed; 

• The number of appearing jobs correlates to the number of machines they must pass 

through; 

• The order of the element in the solution follows the machine sequence that the job 

must pass through. 

Figure 1 depicts a “random key” in the case of two machines and three jobs: 

 

Figure 1. An example JSSP solution is created by a random key technique. 

The CRO algorithm divides into two main stages: “reef formation” and “coral repro-

duction”: 

Initially, a “reef” is constructed from a square grid of size MxN. Individual corals are 

selected from a population and then randomly placed in any available empty square on 

the reef according to the free/occupation ratio r0 (zero value representing no occupation), 

with the remaining available. Each coral represents a different solution in the solution 

space and will be given a health function; the higher the health function, the greater the 

likelihood that the corals would survive the algorithm’s later generations. The value of 

coral health is calculated using the fitness function, which depends on the objective func-

tions of the problem. 

During the second stage, the CRO performs coral reproduction with five main mech-

anisms being repeated to produce new coral generation (called larvae). Including External 

sexual “Broadcast Spawning”, Internal sexual “Brooding”, “Larvae setting”, Asexual 

“Budding”, and the “Depredation” phase, which are all described in detail below: 

External sexual Broadcast Spawning: in nature, this process is also known as “cross-

reproduction”. Two individuals produce every larva in a population model’s evolution 

by simulating natural selection. This process combines the attributes of each parent to 

create generations of offspring that inherit their positive characteristics to develop better 

individuals. 

Internal sexual Brooding: this process simulates an individual’s mutation in a pop-

ulation during evolution. Each coral in the selected population can change its genetic code 

to create a new individual with the original individual’s characteristics and unique “mu-

tation” attributes. 
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Larvae setting: this process simulates the “fighting of the coral” for space in a finite 

space environment. Only stronger individuals can survive and reproduce to create new 

generations, while weaker individuals are removed from the reef. The larvae are gener-

ated by the above sexual reproduction process and have repeatedly fought with other reef 

corals. Individuals with higher health values will be given more opportunities to develop 

in the reef. 

Asexual budding: this process simulates the asexual reproduction of corals. When 

corals grow to a particular stage, they can separate into new individuals and disperse 

throughout the reef. Usually, healthy corals can produce better, more viable offspring, 

thus gaining preference in this spawning process. So, a select number of individuals with 

excellent health statistics are permitted to reproduce and spread over the reef, but only in 

limited numbers. 

Depredation phase: this process simulates the elimination of corals. To create free 

space for the next generation of corals but without losing the diversity of the population, 

this mechanism only eliminates a part of the weak corals. After the maximum number of 

allowed corals is reached, any remaining similar corals in the reef are eliminated. It keeps 

the reef from growing too many identical corals at once and makes room for the next gen-

eration of corals. It also enhances population diversity to prevent the process from falling 

into a local optimum. 

Figure 2 illustrates the operation of the CRO algorithm on reef size 5 ×  5 with a 

random key implementation corresponding to JSSP, including two machines and three 

jobs with an individual tracked by a red circle. 

The implementation of the CRO algorithm is described in Algorithm 1 as below: 

Algorithm 1: Coral Reef Optimization (CRO). 

Input: 𝑀 × 𝑁: reef size,  𝜌0: occupation rate, 𝐹𝐵: fraction of broadcast spawners, 𝐹𝐴: 

fraction of asexual reproduction, F𝐷: fraction of the worse fitness corals, P𝐷: the depre-

cated probability of the worse fitness corals. 

Output: reasonable solution with best fitness 

 

#Initialization—Reef formation phase: 

1. 𝑀 × 𝑁 ← reef size 

2. Generate initial coral population 

3. Calculate the fitness value of each coral 

4. Deploy randomly on the reef with occupied rate 𝜌0 

5. #Main loop—Coral reproduction phase: 

6. Repeat 

7. Reproduce coral fraction 𝐹𝐵 by external sexual broadcast spawning 

8. Reproduce coral fraction 1 − 𝐹𝐵 by internal sexual brooding 

9. Larvae setting 

10. Reproduce best corals fraction 𝐹𝐴 by asexual budding 

11. Predation of F𝐷 worst reef corals with P𝐷 probability 

12. Until stop_condition 

13. Return best_resonable_solution 
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Figure 2. The phase of CRO algorithm with random key implementation and an individual coral 

tracked by the red circle. 
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3.2. Objective Function 

In this study, we use “minimize the makespan” as the objective function for solving 

the JSSP. This is the time between starting the first job and completing the last one. For a 

fundamental JSSP with a set of n jobs and a set of m machines: Oij is operation of jth job 

that executed on ith machine; pij defines the processing time of jth job that executed on ith 

machine with the starting time (rij) of operation Oij; following that, the time required to 

complete operation Oij can be calculated as follows: 

𝐶𝑖𝑗 = 𝑟𝑖𝑗 +  𝑝𝑖𝑗    (1) 

Because machines and jobs have specific and different completion times, cin and cjm 

are defined as the completion time of the last (nth) operation on ith machine and the com-

pletion time of the last (mth) operation of jth job, respectively. The starting time rij can be 

calculated as below: 

𝑟𝑖𝑗 = 𝑚𝑎𝑥 (𝑐𝑖𝑛 , 𝑐𝑗𝑚)   (2) 

Finally, makespan can be calculated as the time to complete the last operation on the 

last machine: 

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐶𝑖𝑚) (3) 

The scheduler’s scheduling efficiency can be evaluated by comparing the entire idle 

time spent by the machine to the total processing time spent by the system: 

𝐶′ = 1 + 
∑ 𝑙𝑖𝑖

∑ 𝑝𝑗𝑘𝑗,𝑘

=  
𝐶. 𝑚

∑ 𝑝𝑗𝑘𝑗,𝑘

 (4) 

where 𝑙𝑖 denotes the machine’s idle time of machine i; C means of makespan; m denotes 

the total number of machines; pjk denotes the processing time of job i on machine k. 

When applied to the JSSP, the algorithm evaluates the solution quality using the Ob-

jective and Fitness functions derived as Equations (5) and (6). Where the Objective func-

tion indicates how “excellent” the solution is in terms of the performance of the optimized 

function, the Fitness function directs the optimization process by expressing how inextri-

cably the proposed solution meets the defined goal. 

𝑓 =  
1

𝐶𝑚𝑎𝑥

 (5) 

𝐹(𝑖) =  
𝑓(𝑖)

∑ 𝑓(𝑖)
𝑛
1

 (6) 

where 𝐶𝑚𝑎𝑥 (or makespan) is the time between starting the first job and completing the 

last one e, 𝑓(𝑖) is the fitness function, n is the population size. 

3.3. Local Search: Simulated Annealing (SA) 

The first of two local search algorithms mentioned is the SA approach [39]. It is a 

method used to simulate the cooling behavior of metals when exposed to extreme heat. 

The metal is rapidly heated to a high temperature and then progressively cooled accord-

ing to a “cooling schedule” to obtain the ideal crystal structure with the lowest possible 

internal energy. High temperature causes the crystal grains to have a high energy level, 

which allows them to “jump” freely and quickly to their proper locations in the crystal 

structure. During the cooling procedure, the temperature steadily decreases, and the crys-

tals are anticipated to be in their optimal locations once the temperature has been appro-

priately dropped [28]. 

Avoiding local optimization traps is one of the primary differences between SA and 

conventional gradient-based approaches. In other words, each algorithm step uses a prob-

abilistic value to determine whether to transition the system from its current state to an 

adjacent state s* (this state can be better or worse). When this probability is high, the 
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system can easily switch to another state regardless of whether that state is better or worse 

than the previous state. Meanwhile, when this probability is low, the current state is main-

tained if a better state cannot be found. This probability will gradually decrease through 

each loop based on the decrease in system temperature controlled by the “cooling sched-

ule.” This process is repeated until the system reaches a state that is acceptable to the ap-

plication or until the given computation resource has been exhausted [40]. 

The SA is described by Algorithm 2 as follows: 

Algorithm 2: Simulated Annealing 

Input: 𝑡: temperature, 𝑡𝑚𝑖𝑛: min temperature, 𝛼: cooling rate, 𝐹: fitness function, 

𝑆: solution, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟: maximum iteration 

Output: Best_solution 

#Initialization: 

1. 𝑡 ← initial temperature 

2. Best_solution ← 𝑆 

#Main loop: 

While 𝑡 > 𝑡𝑚𝑖𝑛  do 

3. iter ← 0 

4. While iter <  𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do 

5. Select a random solution 𝑆′ 

6. ∆← 𝐹(𝑆′) − 𝐹(𝑆) 

7. If ∆< 0 do 

8. S ←S’ 

9. If 𝐹(𝑆′) < 𝐹(Best_solution) do 

10. Best_solution ←S’ 

11. Else if 𝑟𝑎𝑛𝑑(0,1) < 𝑒
−∆

𝑡⁄  do 

12. S ←S’ 

13. iter ← iter + 1 

14. t ← t ∗ α 

15. Return Best_solution 

3.4. Local Search: Variable Neighborhood Search (VNS) 

Variable Neighborhood Search (VNS) is another ancillary local search technique [41]. 

This approach executes the search process by altering the solution’s neighborhood struc-

ture to identify the optimal solution, using a combination of two nested loops: shake and 

local search. The VNS algorithm’s fundamental design is simple and sometimes needs no 

additional parameters. It is primarily accomplished by transforming solutions from one 

state to another across the whole solution space using neighborhood structures (NS). Each 

neighborhood in the VNS solution space is considered a subset of the overall solution 

space, so it is possible to retrieve a trapped solution in one structure by using it in another 

structure. VNS systematically adjusts the neighborhood by moving from one NS to an-

other while searching via nested loops, which are referred to as shake and local search 

Inside the algorithm, the shaking loop enables the algorithm to move to a different NS; 

meanwhile, the local search loop is responsible for finding the best solution in the current 

neighborhood structure. The cycle of local search is repeated until a more acceptable so-

lution is discovered. The allowed loop will control the shaking loop. As a result, the algo-

rithm expands the search space and improves the ability to locate the optimal solution 

[42]. Algorithm 3 describes the VNS as follows: 
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Algorithm 3: Variable Neighborhood Search 

Input: 𝑘: index denoting the neighborhood structure, 𝑘𝑚𝑎𝑥: total number of neighbor-

hood structures, 𝑥: solution, 𝐹: fitness function, 𝑁𝑘: solution set in 𝑘-th neighborhood 

structure, 𝑡: computation time 

Output: Best_solution 

#Initialization: 

1. Best_solution ← initial solution 𝑥 

#Main loop: 

While 𝑡 < 𝑡𝑚𝑎𝑥  do 

2. k← 1 

3. While k<  𝑘𝑚𝑎𝑥 do 

4. 𝑥′ ← 𝑆ℎ𝑎𝑘𝑒(𝑁𝑘 , 𝑥) 

5. 𝑥′′ ← 𝐿𝑜𝑐𝑎𝑙_𝑠𝑒𝑎𝑟𝑐ℎ(𝑥′) 

6. If 𝐹(𝑥′′) < 𝐹(𝑥) do 

7. 𝑥 ← 𝑥′′ 

8. k← 1 

9. Else 

10. k←k+1 

11. t ← Cpu_Time() 

12. Return Best_solution 

3.5. Proposal Approaches 

With the two local search techniques mentioned above, we propose two hybrid algo-

rithms named CROLS1 and CROLS2 based on the CRO algorithm described in the follow-

ing flow chart in Figure 3: 

 

Figure 3. CRO applied local search techniques. 

Typically, algorithms that identify the optimal solution from a random initial solu-

tion, such as the CRO, take significant time to obtain an optimal result. Occasionally, the 

search process becomes trapped in the local optimum and cannot converge to the optimal 

answer. Combining local search approaches is recommended to reduce the convergence 

time to the optimal solution, avoid needless local optimal, and enhance search efficiency. 

The process is performed by searching for answers in the neighborhood of the input 
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solution, modifying the structure, and locating the optimal solutions in the solution space; 

or discovering the ideal solution when the search process is close to the optimal solution, 

while preventing other mechanisms from altering the solution’s structure. We found that 

employing local search strategies on all current problem solutions is time-consuming and 

unnecessary. So, two distinct search strategies were employed to optimize computation 

time and enhance algorithm performance: 

With CROLS1, applied only with the current best solution, the probability of imple-

mentation is small at the beginning and increases until the end of the search. The idea is 

to increase the local search when the found solution is close to the optimal solution. 

With CROLS2, apply the local search on several best solutions selected through the 

budding process above. The idea here is to find the optimal solution through all the neigh-

borhoods of the potential solutions. 

Algorithm 4 describes the CROLS1 and CROLS2 algorithms as follows: 

Algorithm 4: Hybrid Coral Reef Optimization Algorithms (CROLS1 and CROLS2) 

Input: 𝑀 × 𝑁: reef size,  𝜌0: occupation rate, 𝐹𝐵: fraction of broadcast spawners, 𝐹𝐴: 

fraction of asexual reproduction, F𝐷: fraction of the worse fitness corals, P𝐷: the depre-

cated probability of the worse fitness corals. 

Output: Reasonable solution with best fitness 

#Initialization—Reef formation phase: 

1. Choose running CROLS1 or CROLS2 

2. 𝑀 × 𝑁 ← reef size 

3. Generate initial coral population 

4. Calculate the fitness value of each coral 

5. Deploy randomly on the reef with occupied rate 𝜌0 

6. #Main loop—Coral reproduction phase: 

7. Repeat 

8. Reproduce coral fraction 𝐹𝐵 by external sexual broadcast spawning 

9. Reproduce coral fraction 1 − 𝐹𝐵 by internal sexual brooding 

10. Larvae evaluation 

11. Larvae setting 

12. If running CROLS1 then apply “Local search strategy: SA” 

13. else running CROLS2 apply “Local search strategy: VNS” 

14. end if 

15. Reproduce best corals fraction 𝐹𝐴 by asexual budding 

16. Predation of F𝐷 worst reef corals with P𝐷 probability 

17. Until stop_condition 

18. Return best _solution 

3.6. Time Complexity 

Without any loss of generality, let 𝑓 be the optimization problem by CRO, 𝑓𝑆𝐴 and 

𝑓𝑉𝑁𝑆 be the local search problems by SA and VNS approach, respectively. Assume that 

the computational time complexity of evaluating the problem’s function value is 𝑂(𝑓). 

Accordingly, the computational time complexity of CRO is defined as 𝑂(𝑓 ×  𝑖𝑡𝑒𝑟𝑚𝑎𝑥 ×

 𝑛𝑐𝑜𝑟𝑎𝑙) and the computational time complexity of two hybrid algorithms CROLS1 and 

CROLS2 are 𝑂((𝑓 + 𝑓𝑆𝐴 × 𝑛𝑆𝐴)  × 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 ×  𝑛𝑐𝑜𝑟𝑎𝑙) and 𝑂((𝑓 + 𝑓𝑉𝑁𝑆 × 𝑛𝑉𝑁𝑆)  ×  𝑖𝑡𝑒𝑟𝑚𝑎𝑥 ×

 𝑛𝑐𝑜𝑟𝑎𝑙), respectively, where 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is the maximum number of iterations, 𝑛𝑐𝑜𝑟𝑎𝑙  is the 

number of corals (population size), 𝑛𝑆𝐴 is the number of corals that performed SA tech-

nique on and 𝑛𝑉𝑁𝑆 is the number of corals that performed VNS technique on. 
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4. Experiment Results and Discussion 

This section provides a brief and accurate description of the experimental data, their 

interpretation, and the discussion derived from the investigation. 

4.1. Dataset 

In this study, we employ a subset of JSSP from Lawrence (1984) (LA) [43], one of the 

typical instances for addressing JSSP to evaluate the algorithm’s efficiency. The two pri-

mary components of input data are machine sequence and processing time. Where ma-

chine sequence reflects the execution order on the machines for each specific job, pro-

cessing time represents the time consumption for each operation above. The most signifi-

cant difference between LA instances is their complexity and the number of possible so-

lutions to the problem, which grows exponentially with the number of jobs and machines. 

These are all feasible (n!m) solutions to problems involving n jobs and m machines. LA is 

also a well-known instance group in JSSP commonly used with a significant level of nor-

malization and convergence. LA contains groups of sizes 10 × 5, 15 × 5, 20 × 5, 10 × 10, 15 

× 10, 20 × 10, 30 × 10 and 15 × 15. Due to the similarity of the problem posed within each 

size group, we chose two sample examples from each size group to conduct the experi-

ments and related comparisons so that the experimental method is not spread. 

4.2. Parameters Used in the Algorithm 

A plurality of metaheuristic optimization algorithms use randomly generated pa-

rameters to direct their search for the optimal solution. Consequently, establishing the 

criteria is among the most critical procedures. These settings stipulate the algorithm’s ex-

ploration and mining capabilities and substantially impact the algorithm’s performance. 

We chose suitable parameters for the hybrid algorithm based on the theory of general 

evolutionary algorithms and JSSP experiments. These parameters are shown in Table 1 

below: 

Table 1. Parameters used in the hybrid algorithms. 

Parameter Technique Definition Range 

𝑀 × 𝑁 CRO Reef size [10 × 10, 30 × 30] 

Iter CRO Number of iterations (generations) [50, 200] 

Fb CRO Probability of Broadcast spawning process [0.8, 0.9] 

Fa CRO Probability of Budding process [0.05, 0.15] 

r0 CRO Initial free/occupied ratio [0.6, 0.8] 

Fd CRO Probability of selecting weak individuals from the population [0.01, 0.1] 

Pd CRO Probability of removing weak individuals from the population [0.01, 0.1] 

k CRO Number of chances for a new coral to colonize a reef [2, 4] 

ke CRO Maximum number of allowed equal corals [0.1, 0.3] 

𝑡𝑚𝑖𝑛 SA Min temperature [0.0001, 1] 

𝛼 SA Cooling rate [0.7, 0.99] 

𝑁𝑘 VNS Solution set in neighborhood structure [1, L] 

Where L = number of jobs × number of machines. 

Based on the experimental findings, we believe that the algorithm’s parameters may 

fluctuate based on the complexity and size of the problem. It should be emphasized that 

even though the setup parameters are identical, the outcomes in different situations are 

not equivalent. It is necessary to experiment with alternative setup settings to discover the 

ideal solution in a reasonable time for problems of varying sizes. We conducted the trial-

and-error methodology for tuning parameters through a series of experiments to acquire 

a suitable parameter set. Table 2 summarizes parameter setting recommendations for two 

hybrid proposal algorithms with different problem sizes. 
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Table 2. Suggested parameters set for different sizes of problem. 

Size 𝑴 × 𝑵 r0 Fb Fa Fd Pd k tmin α Nk 

Small 10 × 10 0.6 0.9 0.05 0.01 0.1 3 0.5 0.85 L 

Medium 20 × 20 0.7 0.85 0.05 0.05 0.1 3 0.5 0.85 L 

Large 30 × 30 0.7 0.85 0.1 0.1 0.1 3 0.5 0.85 L 

4.3. Experiment Results 

The experimental approach is conducted in two steps: first, we will evaluate the im-

pact of local search on CRO via an aggregated outcomes table of CRO and two hybrid 

algorithms. Friedman’s test and Wilcoxon’s signed-rank test were also performed later 

based on the discovered table to evaluate the results statistically. Second, we evaluate the 

effectiveness of local search approaches applied to CRO by comparing the best search re-

sults of CROLS1, CROLS2, and two algorithms that also employ local search techniques: 

HGA [44] (hybrid genetic algorithm integrated with local search and some novel genetic 

operators) and MA [45] (memetic algorithm combines global search and local search, ex-

changing and inserting depending on the critical route). The proposed algorithm is coded 

in Python on a computer with 3.1 GHz Intel (R) Core i5 CPU and 24 GB of RAM. 

4.3.1. Search Performance on CRO-Based Algorithm with Different Reef Sizes 

We will evaluate the impact of local search on CRO via an aggregated outcomes table 

of CRO and two hybrid algorithms. Table 3 depicts the best, the worst, the mean, and the 

standard deviation (SD) of the makespan values derived from 30 independent executions 

of each method on 16 JSSP instances. 

Table 3. CRO-based algorithms statistics for 16 LA instances. 

Instance Size Reef Size Method Opt Best Worst Mean SD Time (s) 

LA01 10 × 5 

10 × 10 

CRO 666 666 674 668.91 2.4 128.45 

CROLS1 666 666 666 666 0 39.91 

CROLS2 666 666 666 666 0 33.18 

20 × 20 

CRO 666 666 671 667.73 1.58 45.09 

CROLS1 666 666 671 668.45 1.79 20.45 

CROLS2 666 666 666 666 0 15.64 

30 × 30 

CRO 666 666 674 669.55 2.7 44.27 

CROLS1 666 666 671 668.09 2 20.27 

CROLS2 666 666 671 667.45 1.91 14.64 

LA02 10 × 5 

10 × 10 

CRO 655 655 676 664.91 6.41 118.73 

CROLS1 655 655 655 655 0 40.91 

CROLS2 655 655 655 655 0 33.91 

20 × 20 

CRO 655 655 671 663.73 5.68 43.82 

CROLS1 655 655 671 662.27 5.57 18.55 

CROLS2 655 655 655 655 0 15.27 

30 × 30 

CRO 655 655 676 665.36 6.62 44.55 

CROLS1 655 655 671 663.18 6.02 18.55 

CROLS2 655 655 670 661.09 6.21 14.09 

LA06 15 × 5 

10 × 10 

CRO 926 926 946 935.45 7.54 169.09 

CROLS1 926 926 926 926 0 151.82 

CROLS2 926 926 926 926 0 149.73 

20 × 20 

CRO 926 926 940 931.73 4.73 125.91 

CROLS1 926 926 940 932.36 5.46 100.73 

CROLS2 926 926 926 926 0 92.45 
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30 × 30 

CRO 926 926 946 935 7.82 76.36 

CROLS1 926 926 940 931.18 5.04 46.55 

CROLS2 926 926 940 933.18 5.09 41.09 

LA07 15 × 5 

10 × 10 

CRO 890 899 922 906.45 6.24 175.73 

CROLS1 890 890 895 890.73 1.54 148.18 

CROLS2 890 890 892 890.45 0.81 133.55 

20 × 20 

CRO 890 895 916 905.73 5.8 117.91 

CROLS1 890 890 916 907 5.04 94.82 

CROLS2 890 890 890 890 0 88.73 

30 × 30 

CRO 890 890 922 908.18 7.38 78.09 

CROLS1 890 890 916 906.91 5.29 45.91 

CROLS2 890 890 916 905.09 5.92 33.64 

LA11 20 × 5 

10 × 10 

CRO 1222 1222 1257 1235.64 13.41 237.36 

CROLS1 1222 1222 1222 1222 0 224.09 

CROLS2 1222 1222 1222 1222 0 229.73 

20 × 20 

CRO 1222 1222 1244 1228.55 7.15 166.91 

CROLS1 1222 1222 1244 1229.64 7.13 147.91 

CROLS2 1222 1222 1222 1222 0 136.55 

30 × 30 

CRO 1222 1222 1257 1233.45 12.58 128.82 

CROLS1 1222 1222 1244 1230.73 8.52 100.18 

CROLS2 1222 1222 1244 1229.91 7.89 95.72 

LA12 20 × 5 

10 × 10 

CRO 1039 1039 1062 1049.55 6.96 241.45 

CROLS1 1039 1039 1042 1039.36 0.92 228.55 

CROLS2 1039 1039 1039 1039 0 217.64 

20 × 20 

CRO 1039 1039 1062 1049.55 6.87 164.27 

CROLS1 1039 1039 1062 1051.91 6.62 157.91 

CROLS2 1039 1039 1039 1039 0 149.91 

30 × 30 

CRO 1039 1039 1060 1048.27 7.96 120.09 

CROLS1 1039 1039 1043 1047.45 7.27 103.45 

CROLS2 1039 1039 1039 1050.91 7.01 89.91 

LA16 10 × 10 

10 × 10 

CRO 945 971 1024 979.27 22.73 349.64 

CROLS1 945 945 979 958.91 10.69 317.73 

CROLS2 945 945 980 959.36 12.44 315.64 

20 × 20 

CRO 945 948 1011 981.91 17.11 239.73 

CROLS1 945 945 956 949.64 4.37 212.55 

CROLS2 945 945 955 948.91 4 198.64 

30 × 30 

CRO 945 948 1011 976.55 19.06 177.64 

CROLS1 945 945 955 947.73 2.93 125.91 

CROLS2 945 945 955 948.73 4.13 132.55 

LA17 10 × 10 

10 × 10 

CRO 784 799 888 833.55 31.06 337.09 

CROLS1 784 787 807 795.18 7.55 309.73 

CROLS2 784 788 807 797.91 7.79 297.55 

20 × 20 

CRO 784 788 832 811.91 13.08 252.64 

CROLS1 784 784 788 785.36 1.69 198.55 

CROLS2 784 784 799 790.36 5.71 222.91 

30 × 30 

CRO 784 788 832 808.27 13.51 183.18 

CROLS1 784 784 799 788.55 4.88 128.82 

CROLS2 784 784 799 787.09 4.43 130.09 

LA21 15 × 10 10 × 10 CRO 1046 1069 1146 1105.73 79.28 553.64 
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CROLS1 1046 1056 1117 1100.64 10.07 487.18 

CROLS2 1046 1055 1115 1099 8.29 473.09 

20 × 20 

CRO 1046 1069 1100 1071.45 49.41 345.91 

CROLS1 1046 1046 1054 1048.82 3.27 269.36 

CROLS2 1046 1046 1066 1053.09 6.34 274.27 

30 × 30 

CRO 1046 1106 1250 1172.64 51.47 256.64 

CROLS1 1046 1046 1066 1052.55 7.76 164.36 

CROLS2 1046 1046 1066 1052.55 6.88 165.55 

LA22 15 × 10 

10 × 10 

CRO 927 978 1220 1178.36 30.51 538.45 

CROLS1 927 930 1011 983.45 16.83 479.73 

CROLS2 927 934 988 976.09 8.32 464.09 

20 × 20 

CRO 927 944 1150 1030.64 57.45 356.27 

CROLS1 927 927 974 944.18 16.83 267.91 

CROLS2 927 927 944 932.18 4.8 265.55 

30 × 30 

CRO 927 935 1150 1030.09 53.54 248.27 

CROLS1 927 927 944 932.73 5.69 185.18 

CROLS2 927 927 944 934.27 6.21 174.27 

LA26 20 × 10 

10 × 10 

CRO 1218 1333 1358 1349.64 22.89 759.64 

CROLS1 1218 1246 1316 1297.09 10.72 655.82 

CROLS2 1218 1242 1323 1305.82 12.36 651.91 

20 × 20 

CRO 1218 1256 1280 1263.27 45.98 536.64 

CROLS1 1218 1218 1253 1235.91 12.07 456.91 

CROLS2 1218 1218 1246 1230.27 8.97 440.36 

30 × 30 

CRO 1218 1226 1275 1255.82 44.37 359.91 

CROLS1 1218 1218 1246 1229.91 10.75 281.73 

CROLS2 1218 1218 1246 1231.09 9.12 246.27 

LA27 20 × 10 

10 × 10 

CRO 1235 1323 1495 1446.55 30.3 748.09 

CROLS1 1235 1255 1310 1275.36 8.51 688.91 

CROLS2 1235 1256 1304 1261.09 8.29 650.64 

20 × 20 

CRO 1235 1305 1415 1461.09 22.57 541.09 

CROLS1 1235 1235 1305 1260.55 28.95 459.45 

CROLS2 1235 1235 1246 1239.18 4.1 447.36 

30 × 30 

CRO 1235 1255 1375 1359.55 25.96 336.18 

CROLS1 1235 1235 1246 1239.09 4.2 260.18 

CROLS2 1235 1235 1246 1240.27 4.09 239.27 

LA32 30 × 10 

10 × 10 

CRO 1850 1934 2328 2254.91 96.2 827.91 

CROLS1 1850 1852 1896 1862.73 13.75 713.55 

CROLS2 1850 1850 1888 1866.73 9.77 693.09 

20 × 20 

CRO 1850 1932 2126 2074.85 30.69 740.73 

CROLS1 1850 1850 1865 1855.36 5.77 646.64 

CROLS2 1850 1850 1856 1852.18 2.29 630.18 

30 × 30 

CRO 1850 1912 2105 1998.52 30.26 566.64 

CROLS1 1850 1850 1856 1853 2.05 453.45 

CROLS2 1850 1850 1856 1852.18 2.33 418.45 

LA33 30 × 10 

10 × 10 

CRO 1719 1865 2131 2014.73 65 824.18 

CROLS1 1719 1720 1752 1732.27 12.43 726.09 

CROLS2 1719 1722 1752 1730.27 11.39 692.82 

20 × 20 
CRO 1719 1818 2056 1955.73 55.54 737.91 

CROLS1 1719 1719 1723 1720.45 1.56 643.09 
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CROLS2 1719 1719 1732 1723.91 5.48 617.27 

30 × 30 

CRO 1719 1805 2034 1934.91 60.59 557.82 

CROLS1 1719 1719 1732 1723.45 4.97 441.73 

CROLS2 1719 1719 1732 1724.18 5.14 438.82 

LA39 15 × 15 

10 × 10 

CRO 1233 1388 1466 1498.82 42.44 869.09 

CROLS1 1233 1238 1316 1278.73 16.66 725.73 

CROLS2 1233 1274 1318 1279.82 13.48 624.45 

20 × 20 

CRO 1233 1368 1428 1419.36 7.61 834.09 

CROLS1 1233 1238 1264 1241.64 27.32 675.45 

CROLS2 1233 1239 1264 1244.91 29.39 568.73 

30 × 30 

CRO 1233 1332 1403 1397.21 24.37 752.09 

CROLS1 1233 1233 1255 1243.09 34.44 592.64 

CROLS2 1233 1233 1255 1237.55 13.78 502.82 

LA40 15 × 15 

10 × 10 

CRO 1222 1396 1506 1451.25 49.25 875 

CROLS1 1222 1240 1336 1313.27 11.24 728.45 

CROLS2 1222 1269 1305 1288.45 35.41 625.36 

20 × 20 

CRO 1222 1364 1455 1390.35 58.7 826.82 

CROLS1 1222 1240 1299 1270.27 35.09 674.73 

CROLS2 1222 1239 1299 1273.09 30.93 568.82 

30 × 30 

CRO 1222 1342 1424 1374.33 24.88 739.82 

CROLS1 1222 1228 1264 1238.25 15.89 585.45 

CROLS2 1222 1232 1279 1248.45 23.22 495.55 

Table 3 shows that the local search strategies have made the CRO algorithm more 

stable, as the amplitude of the mean between the best to the worst and the standard devi-

ation in all cases have improved. CROLS2 demonstrates greater stability with smaller 

standard deviations than CRO and CROLS1 in most instances. Additionally, local search 

methods assist in reducing the worst-case of CROLS1 and CROLS2 compared to CRO. 

Similar to the best value acquired by each hybrid algorithm, the local search technique 

helps CROLS1 and CROLS2 reach the best-known optimal values for the situations exam-

ined. In most instances, CROLS1 and CROLS2 can get the best-known outcomes with reef 

sizes of 10 × 10 and 20 × 20. However, for instances of high complexity, such as LA39 and 

LA40, the best results can only be reached with reef sizes of 30 × 30. 

CROLS1 and CROLS2 significantly reduce the search duration compared to the orig-

inal method. This is more noticeable when the complexity of the instance is greater; the 

computational time can be reduced by up to 30% for LA40. In addition, for complex cases 

such as LA39 and LA40, the CROLS2 algorithm surpasses CROLS1 when outcomes are 

similar, but the execution time is reduced by more than 10%. Technically, CROLS1 and 

CROLS2 have 20% and 100% more fitness function calls than the original algorithm since 

they employ local search techniques. Even though this increases the amount of computa-

tional work, it helps the algorithm converge quickly and experimentally shows that 

CROLS1 and CROLS2 are still more rapid at searching than the original CRO. 

To evaluate the improvement of the two hybrid algorithms compared to CRO statis-

tically, we performed Friedman’s test on the data in Table 3. Friedman’s test, based on the 

ranking, will be utilized to determine the difference between three CRO-based algorithms 

using experimental findings collected from 16 LA instances and categorized by three reef 

sizes 10 × 10, 20 × 20, and 30 × 30. The “mean rank” and Friedman’s test statistic results of 

three algorithms participating in the evaluation will be described in Tables 4 and 5, re-

spectively. 

According to Table 4, there is little difference in the mean rank of the CRO algorithm 

between reef sizes. The mean rank of CROLS1 and CROLS2 are significantly different 

from CRO, indicating that local search techniques substantially impact these two 
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algorithms. Table 5 provides the test statistics for Friedman’s test with a significance level 

of α = 0.05. All 𝜒2 values are larger than the critical value 𝜒0
2 = 5.991, and all ρ values 

are less than 0.05, demonstrating statistically significant differences in the performance of 

three CRO-based algorithms. 

Table 4. Mean rank of three CRO-based algorithms. 

Algorithm 
Mean Rank 

Reef Size 10 × 10 Reef Size 20 × 20 Reef Size 30 × 30 

CRO 3.00 2.69 2.94 

CROLS1 1.56 2.06 1.47 

CROLS2 1.44 1.25 1.59 

Table 5. Friedman’s test statistic of three CRO-based algorithm. 

 Χ2 ρ 

Reef Size 10 × 10 25.733 0.000003 

Reef Size 20 × 20 16.625 0.000245 

Reef Size 30 × 30 21.556 0.000021 

Following Friedman’s test made a significant result, we performed Wilcoxon’s 

signed-rank test as a posthoc analysis to determine the difference between three CRO-

based algorithms in pairwise group. The search findings of three reef sizes will be aver-

aged to feed the Wilcoxon’s test with a statistical significance of 0.05. Table 6 provides the 

statistical results of the Wilcoxon’s test. 

Table 6. Wilcoxon’s test statistic of three CRO-based algorithms. 

 CRO-CROLS1 CRO-CROLS2 CROLS1-CROLS2 

Z −3.516 −3.516 −1.533 

p 0.000438 0.000438 0.125153 

Using the Z distribution table, we can find the critical value of Z is 1.96 at a statistical 

significance of 0.05. According to Table 6, the statistical findings of two pairs of algo-

rithms, CRO-CROLS1 and CRO-CROLS2, are nearly equivalent as Z = −3.516 (|Z| > 1.96) 

and p = 0.000438 < 0.05. So, the null hypothesis is rejected at statistical significance of 0.05; 

the advantage of local search approaches on CROLS1 and CROLS2 compared to the orig-

inal CRO algorithm is statistically significant. In contrast, the values Z = −1.533 (|Z|< 1.96), 

and p = 0.125153 > 0.05 indicate no significant performance difference between the 

CROLS1 and CROLS2 hybrid algorithms. 

4.3.2. Comparison of the Computational Result of CRO-Based Algorithms with Other 

Implemented Local Search Technique Algorithms 

This experiment aims to test the algorithm’s efficiency in finding the optimal value 

of the problem. We choose MA and HGA as two algorithms employing local search strat-

egies to compare the performance of algorithms that use such techniques. Five algorithms 

are mentioned in Table 7, including the original algorithm CRO and two proposed hybrid 

algorithms CROLS1 and CROLS2. Each CRO algorithm is executed 30 times with three 

different reef sizes and takes the best value obtained in Table 7. The results of HGA and 

MA were consulted from the research of Y. Wang et al. [44] and L. Gao et al. [45], respec-

tively. 
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Table 7. Experiment results of five metaheuristic algorithms employing local search techniques. 

Ins. Size. Opt. 
CRO CROLS1 CROLS2 

HGA MA 
10 × 10 20 × 20 30 × 30 10 × 10 20 × 20 30 × 30 10 × 10 20 × 20 30 × 30 

LA01 10 × 5 666 666 666 666 666 666 666 666 666 666 666 666 

LA02 10 × 5 655 655 655 655 655 655 655 655 655 655 655 655 

LA06 15 × 5 926 926 926 926 926 926 926 926 926 926 926 926 

LA07 15 × 5 890 899 895 890 890 890 890 890 890 890 890 890 

LA11 20 × 5 1222 1228 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 

LA12 20 × 5 1039 1042 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039 

LA16 10 × 10 945 956 955 955 945 945 945 945 945 945 945 945 

LA17 10 × 10 784 799 788 788 787 784 784 788 784 784 784 784 

LA21 15 × 10 1046 1069 1069.9 1056 1046 1046 1046 1055 1046 1046 1046 1055 

LA22 15 × 10 927 978 944 935 930 927 927 934 928 927 935 927 

LA26 20 × 10 1218 1333 1256 1226 1246 1218 1218 1242 1218 1218 1218 1218 

LA27 20 × 10 1235 1323 1305 1255 1255 1235 1235 1256 1246 1246 1236 1261 

LA32 30 × 10 1850 1934 1932 1912 1852 1850 1850 1850 1850 1850 1850 1850 

LA33 30 × 10 1719 1865 1818 1805 1720 1719 1719 1722 1719 1719 1719 1719 

LA39 15 × 15 1233 1388 1368 1332 1238 1238 1233 1274 1239 1233 1233 1241 

LA40 15 × 15 1222 1396 1364 1342 1240 1240 1228 1269 1239 1232 1229 1233 

It can be seen that the two-hybrid algorithms CROLS1 and CROLS2 can discover the 

optimal solution in the majority of instances with the reef size set to 20 × 20 and 30 × 30. 

However, the original algorithm CRO can only find the optimal solution in a few cases 

with a small number of jobs and machines. Compared with the other two metaheuristics, 

the performance of the two-proposed hybrid algorithm is superior when the reef size is 

20 × 20 or 30 × 30 in some instances of the problem. 

4.3.3. Comparison of the Computational Result of CRO-Based Algorithms with Other 

Contemporary Algorithms 

To further verify the effectiveness of CRO and two proposed hybrid algorithms, we 

performed extensive experiments on the 12 LA instances mentioned before, Fisher and 

Thompson instances [46]: FT06, FT10, FT20; Applegate and Cook instances [47]: ORB01–

ORB09; and five of Adams et al. instances [48] denoted as ABZ05 to ABZ09. Three CRO-

based algorithms were compared with the results of five state-of-the-art algorithms found 

in the literature: Multi-Crossover Local Search Genetic Algorithm (mXLSGA) [49], hybrid 

PSO enhanced with nonlinear inertia weight, and Gaussian mutation (NGPSO) [30], single 

seekers society (SSS) algorithm [34], genetic algorithm with a critical-path-guided Giffler 

and Thompson crossover operator (GA-CPG-GT) [31], discrete wolf pack algorithm 

(DWPA) [33]. The best makespan produced by the CRO-based algorithms with reef size 

30 × 30 from 10 independent runs was utilized as a performance criterion. Table 8 presents 

the experimental results for the 34 instances, listing the instance name, problem size (num-

ber of tasks × number of machines), best-known solution (BKS), and best solution achieved 

by each of the compared algorithms. 
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Table 8. Comparison of experimental results between CRO-based algorithms and other state-of-the-

art algorithms for 34 instances. The symbol “-” means “not evaluated in that instance.”. 

Instance Size BKS CRO CROLS1 CROLS2 
mXLSGA 

(2020) 

NGPSO 

(2020) 

SSS 

(2020) 

GA-CPG-

GT (2019) 

DWPA 

(2019) 

LA01 10 × 5 666 666 666 666 666 666 666 666 666 

LA02 10 × 5 655 655 655 655 655 655 655 655 655 

LA06 15 × 5 926 926 926 926 926 926 926 926 926 

LA07 15 × 5 890 890 890 890 890 890 890 890 890 

LA11 20 × 5 1222 1222 1222 1222 1222 1222 1222 1222 1222 

LA12 20 × 5 1039 1039 1039 1039 1039 1039 - 1039 1039 

LA16 10 × 10 945 955 945 945 945 945 947 946 993 

LA17 10 × 10 784 788 784 784 784 794 - 784 793 

LA21 15 × 10 1046 1056 1046 1046 1059 1183 1076 1090 1105 

LA22 15 × 10 927 935 927 927 935 927 - 954 989 

LA26 20 × 10 1218 1226 1218 1218 1218 1218 - 1237 1303 

LA27 20 × 10 1235 1255 1235 1246 1269 1394 - 1313 1346 

LA32 30 × 10 1850 1912 1850 1850 1850 1850 - 1850 1850 

LA33 30 × 10 1719 1805 1719 1719 1719 1719 - 1719 1719 

LA39 15 × 15 1233 1332 1233 1233 1258 1662 - 1290 1334 

LA40 15 × 15 1222 1342 1228 1232 1243 1222 1252 1252 1347 

FT06 6 × 6 55 55 55 55 55 55 55 55 - 

FT10 10 × 10 930 934 930 930 930 930 936 935 - 

FT20 20 × 5 1165 1197 1174 1170 1165 1210 1165 1180 - 

ABZ05 10 × 10 1234 1255 1234 1234 1234 1234 - 1238 - 

ABZ06 10 × 10 943 988 943 943 943 943 - 947 - 

ABZ07 20 × 15 656 755 731 727 695 713 - - - 

ABZ08 20 × 15 665 720 709 705 713 729 - - - 

ABZ09 20 × 15 679 817 707 711 721 930 - - - 

ORB01 10 × 10 1059 1120 1070 1072 1068 1174 - 1084 - 

ORB02 10 × 10 888 927 899 895 889 913 - 890 - 

ORB03 10 × 10 1005 1097 1021 1023 1023 1104 - 1037 - 

ORB04 10 × 10 1005 1121 1005 1005 1005 1005 - 1028 - 

ORB05 10 × 10 887 904 890 894 889 887 - 894 - 

ORB06 10 × 10 1010 1085 1020 1023 1019 1124 - 1035 - 

ORB07 10 × 10 397 418 397 397 397 397 - 404 - 

ORB08 10 × 10 899 988 912 907 907 1020 - 937 - 

ORB09 10 × 10 934 955 938 940 940 980 - 943 - 

ORB10 10 × 10 944 1010 967 950 944 1027 - 967 - 

We can observe that the original CRO algorithm can only discover the optimal value 

in a few basic cases, such as LA01, LA02, LA06, LA07, LA11, LA12, and FT06, but the rest 

of the CRO results are relatively decent and equivalent to GA-CPG-GT. While both the 

CROLS1 and CROLS2 hybrid algorithms demonstrated efficiency, CROLS1 obtained the 

best comparative value in 11/12 LA cases, 2/3 FT instances, 3/5 ABZ instances, and 5/10 

ORB instances. CROLS2 produced comparable results, with 11/12 LA instances, 2/3 FT 

instances, 3/5 ABZ instances, and 5/10 ORB instances better or equal to the compared re-

sults of five state-of-the-art algorithms. The findings of two algorithms, CROLS1 and 

CROLS2, outperform SSS, GA-CPG-GT, DWPA algorithms, and competitive comparison 

with mXLSGA and NGPSO, even outperforming NGPSO in ABZ instances and some in-

stances as ORB01, ORB03, ORB08, ORB10. 
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4.3.4. Improvement of Search Efficiency 

We utilize the mean deviation from the optimal makespan of the two hybrid algo-

rithms CROLS1 and CROLS2 that surpass the original approach CRO in terms of search 

performance to evaluate the two hybrid algorithms’ performance enhancement. The pro-

gression of search effectiveness is calculated using the following formula: 

𝑷𝑰(𝑪𝑹𝑶𝑳𝑺/𝑪𝑹𝑶) =  
𝑺(𝑪𝑹𝑶)−𝑺(𝑪𝑹𝑶𝑳𝑺) 

𝑺(𝑶𝒑𝒕)
 × 𝟏𝟎𝟎% (7) 

where 𝑷𝑰(𝑪𝑹𝑶𝑳𝑺/𝑪𝑹𝑶)  is the percentage of improvement, 𝑺(𝑪𝑹𝑶𝑳𝑺)  is the minuscule 

makespan by CROLS, 𝑺(𝑪𝑹𝑶) is the minuscule makespan by CRO and 𝑺(𝑶𝒑𝒕) is the mi-

nuscule makespan in comparison between CROLS and CRO. 

Table 9 represents the percentage performance increase in CROLS1 and CROLS2 

over the original CRO. 

Table 9. Improve performance of two hybrid algorithms. 

Instance Size 
CROLS1 CROLS2 

10 × 10 20 × 20 30 × 30 10 × 10 20 × 20 30 × 30 

LA01 10 × 5 0 0 0 0 0 0 

LA02 10 × 5 1.68 0.46 0.15 1.68 0.46 0.15 

LA06 15 × 5 0 0 0 0 0 0 

LA07 15 × 5 1.01 0.56 0 1.01 0.56 0 

LA11 20 × 5 0.49 0 0 0.49 0 0 

LA12 20 × 5 0.29 0 0 0.29 0 0 

LA16 10 × 10 2.43 0.32 0.32 2.75 0.32 0.32 

LA17 10 × 10 1.53 0.51 0.51 1.4 0.51 0.51 

LA21 15 × 10 2.2 2.28 0.96 1.34 2.28 0.96 

LA22 15 × 10 5.18 1.83 0.86 4.75 1.73 0.86 

LA26 20 × 10 7.14 3.12 0.66 7.47 3.12 0.66 

LA27 20 × 10 5.51 5.67 1.62 5.43 4.78 0.73 

LA32 30 × 10 4.43 4.43 3.35 4.54 4.43 3.35 

LA33 30 × 10 8.44 5.76 5 8.32 5.76 5 

LA39 15 × 15 12.17 10.54 8.03 9.25 10.46 8.03 

LA40 15 × 15 12.77 10.15 9.33 10.39 10.23 9 

Analyzing Table 9 reveals that the local search approaches have enhanced the origi-

nal CRO algorithm’s search performance. The improvement is not too obvious in the sim-

ple instances (LA01–LA22), with most PI metrics below 3%. Nonetheless, when the prob-

lem complexity increased, both CROLS1 and CROLS2 performed significantly more ef-

fectively than the original CRO. In LA26 and LA27, CROLS1 and CROLS2 outperform 

CRO when working on small reef sizes such as 10 × 10 and 20 × 20 with a PI of approxi-

mately 5%. However, when operating on reef sizes 30 × 30, CRO is as efficient as two 

hybrid algorithms with a PI of less than 2%; since when the population size increases, the 

searchability of CRO will increase, and even the original CRO can find a good solution. 

Even in LA40, where it is difficult for the CRO to discover the best-known solution, the PI 

reaches a peak of approximately 10%, which occurs in all reef sizes. This demonstrates the 

positive impact of local search algorithms on search performance. 

4.3.5. Convergence Ability 

The algorithm’s ability to converge to the optimal solution is a second criterion for 

comparison. The collection of data is dependent on the experimental outcomes of the 

LA01 instance. Table 10 displays the average number of generations required to discover 

the optimal solution for three CRO algorithms with three different reef sizes. 
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Table 10. Average objective function evaluations test needed to find the optimal solution. 

Reef Size 10 × 10 20 × 20 30 × 30 

CRO 150.5 42.2 30.4 

CROLS1 13.4 10.6 10.4 

CROLS2 12.2 8 6.4 

First, as the reef size parameter increases, the number of generations conducted to 

explore the optimal solution for the three algorithms decreases most noticeably for the 

original CRO. Second, the two hybrid algorithms have significantly fewer generations 

than the original. In this scenario, the CROLS2 algorithm exhibits the quickest conver-

gence capability. Experimental results proved that local search strategies significantly en-

hanced the search process and expedited finding optimal answers. For optimal perfor-

mance, it is preferable to utilize local search approaches later in the algorithm because 

they have little impact in the early stages and waste time. Figures 4–6 depict the conver-

gence graph of three CRO, CROLS1, and CROLS2 methods for three reef sizes (10 × 10, 20 

× 20, and 30 × 30) in five instances LA01, LA16, LA26, LA32, and LA40. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 4. Convergence graph of CRO-based with reef size 10 × 10: (a) LA01, (b) LA16, (c) LA26, (d) 

LA32, (e) LA40. 
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Figure 5. Convergence graph of CRO-based with reef size 20 × 20: (a) LA01, (b) LA16, (c) LA26, (d) 

LA32, (e) LA40. 
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Figure 6. Convergence graph of CRO-based with reef size 30 × 30: (a) LA01, (b) LA16, (c) LA26, (d) 

LA32, (e) LA40. 

The optimal solution (corresponding to the makespan value 666) of the LA01 instance 

is shown in Figure 7 through Gantt-chart, including ten jobs (J1–J10) and five machines 

(M0–M4), with each color representing a job. 

 

Figure 7. Representing optimal solution of LA01 instance by Gantt-chart. 
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This paper presents two novel hybrid algorithms, CROLS1 and CROLS2, that utilize 

distinct search strategies. The CROLS1 algorithm employs simulated annealing (SA) to 

find the global optimal solution and avoid the local optimum. This technique increases 

the likelihood of obtaining the optimal response while decreasing execution time. In the 

second model, VNS is applied to the most significant number of probable solutions in 
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CROLS2. This search strategy aims to create new, superior individuals by utilizing the 

reef-wide potential and increasing its convergence. 

The experiment presented that local search tactics have made the CRO algorithm 

more stable, as the mean amplitude and standard deviation have improved. Local search 

approaches also reduce CROLS1 and CROLS2 worst-case compared to CRO and let them 

find the best-known optimal values for each case more conveniently. CROLS1 and 

CROLS2 considerably shorten search time compared to the original CRO, even saving 

computational time by up to 30% for the LA40 instance. For complicated scenarios such 

as LA39 and LA40, CROLS2 surpassed CROLS1 when results are similar, but the execu-

tion time is 10% faster. Statistical analyses such as Friedman’s and Wilcoxon’s tests also 

confirm that the improvement of CROLS1 and CROLS2 compared to the original algo-

rithm is significant. Comparing the best search results with two metaheuristic algorithms 

that employ other local search strategies, MA and HGA, CROLS1 and CROLS2 demon-

strate their superiority in complex problem scenarios. To further verify the effectiveness 

of CRO and two proposed hybrid algorithms, we conducted extensive experiments on the 

34 instances of varying complexity as LA, FT, ABZ, and ORB. The achieved results were 

compared with five state-of-the-art algorithms in related works: mXLSGA, NGPSO, SSS, 

GA-CPG-GT, and DWPA. By analyzing the results, we can conclude that the two pro-

posed hybrid algorithms get competitive results in JSSP instances and can obtain good 

makespan results. 

This research focuses on investigating the improvement of the local search approach 

on the CRO algorithm, which is demonstrated through positive experimental evidence. 

The efficiency of the two hybrid algorithms is further seen when their best search out-

comes are comparable with the best-known results. Numerous multi-objective optimiza-

tion techniques and various JSSP have been suggested for more challenging issues. In the 

upcoming plan, we aim to develop the optimal algorithm for multi-objectives and opti-

mize the processing time. Developing algorithms to handle multi-objective optimization 

problems is an exciting future research path to increase the relevance of JSSP in manufac-

turing. 
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