

Appl. Sci. 2022, 12, 9867. https://doi.org/10.3390/app12199867 www.mdpi.com/journal/applsci

Article

Modified Coral Reef Optimization Methods for Job Shop

Scheduling Problems

Chin-Shiuh Shieh 1, Thanh-Tuan Nguyen 1,2,*, Wan-Wei Lin 1, Dinh-Cuong Nguyen 1 and Mong-Fong Horng 1

1 Department of Electronic Engineering, National Kaohsiung University of Science and Technology,

Kaohsiung 807618, Taiwan
2 Department of Electronic and Automation Engineering, Nha Trang University, Nha Trang 650000, Vietnam

* Correspondence: tuannt@ntu.edu.vn

Abstract: The job shop scheduling problem (JSSP) is a fundamental operational research topic with

numerous applications in the real world. Since the JSSP is an NP-hard (nondeterministic polynomial

time) problem, approximation approaches are frequently used to rectify it. This study proposes a

novel biologically-inspired metaheuristic method named Coral Reef Optimization in conjunction

with two local search techniques, Simulated Annealing (SA) and Variable Neighborhood Search

(VNS), with significant performance and finding-solutions speed enhancement. The two-hybrid al-

gorithms’ performance is evaluated by solving JSSP of various sizes. The findings demonstrate that

local search strategies significantly enhance the search efficiency of the two hybrid algorithms com-

pared to the original algorithm. Furthermore, the comparison results with two other metaheuristic

algorithms that also use the local search feature and five state-of-the-art algorithms found in the

literature reveal the superior search capability of the two proposed hybrid algorithms.

Keywords: coral reef optimization; hybrid approach; local search; job-shop scheduling

1. Introduction

Scheduling production is crucial in product manufacturing since it directly influ-

ences system performance and overall manufacturing process efficiency [1]. In various

enterprises, production scheduling has become a significant issue. Dozens of innovative

techniques are being scrutinized to increase manufacturing efficiency, emphasizing

schedule optimization [2]. Accordingly, optimizing production scheduling problems is

attracting attention in both research and manufacturing realms [3].

Industrialization has regarded production schedules as a crucial issue since the

1950s, and the job shop scheduling problem (JSSP) is a quintessential production sched-

uling model [4]. Since Johnson’s (1954) first methodology of scheduling with two ma-

chines [5], the complexity of the JSSP has grown in correlation with the number of devices

and jobs. Due to its immense complexity, the JSSP is categorized as NP-hard (nondeter-

ministic polynomial time) [6]. Solving large-scale JSSP in a reasonable time is a challenge

that has been researched for decades. In addition to increasing workload, JSSP is taking

on numerous new forms with distinct properties and characteristics. It responds in di-

verse approaches to solving variations of the fundamental JSSP [7]. JSSP is a typical re-

source allocation problem in manufacturing production scheduling. It has innumerable

applications in many different industrial fields requiring high levels of automation and

mass production. Among the most successful applications of JSSP are semiconductor and

electronic component manufacturing, which need mass production and increased auto-

mation to improve production efficiency, reduce production cycle time, and optimize re-

sources. According to a survey by Xiong et al. [8], within five years from 2016 to 2021,

hundreds of studies and optimization models of various aspects of JSSP and its applica-

tions in the mentioned fields were conducted and presented.

Citation: Shieh, C.-S.; Nguyen, T.-T.;

Lin, W.-W.; Nguyen, D.-C.;

Horng, M.-F. Modified Coral Reef

Optimization Methods for Job Shop

Scheduling Problems. Appl. Sci. 2022,

12, 9867. https://doi.org/10.3390/

app12199867

Academic Editors: Tudor Cioara,

Ionut Anghel, Cristina Bianca Pop

and Viorica Rozina Chifu

Received: 18 August 2022

Accepted: 27 September 2022

Published: 30 September 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Appl. Sci. 2022, 12, 9867 2 of 26

Due to significant repercussions on the productivity of the production line, the JSSP

has never been eradicated from combinatorial optimization. JSSP is categorized as a multi-

stage, static, deterministic job scheduling problem in computer science and operations re-

search and its solving strategies evolve at each stage of research development [8]. The

fundamental JSSP includes:

• A set of 𝑛 jobs 𝐽 = { 𝐽𝑖|𝑖 = 1, 2, . . . 𝑛 }, where 𝐽𝑖 denotes ith job (1 ≤ 𝑖 ≤ 𝑛).

• A set of 𝑚 machines 𝑀 = { 𝑀𝑗|𝑗 = 1, 2, . . . 𝑚 }, and 𝑀𝑗 denotes jth machine.

• Each job 𝐽𝑖 has a specific set of operations 𝑂 = {𝑂𝑖1 , 𝑂𝑖2, . . . , 𝑂𝑖𝑘}, where 𝑘 is the to-

tal number of operations in job 𝐽𝑖. Note that operation 𝑂𝑖𝑗 will be processed only

once the operation 𝑂𝑖𝑗−1 has been completed in job 𝐽𝑖.

The primary goal of scheduling is to assign shared resources to concurrent tasks as

efficiently as possible throughout the processing period. The scheme necessitates allocat-

ing and organizing limited resources pursuant to the problem’s constraints, such as the

order of activities and processing time, and providing a plan to achieve the optimization

objectives. The following conditions are the fundamental JSSP requirements [9]:

• Each operation is performed independently of the others.

• One job operation cannot begin until all previous operations have been completed.

• Once a processing operation has begun, it will not be interrupted until the procedure

is completed.

• It is impossible to handle multiple operations of the same job simultaneously.

• Job operations must wait in line until the next suitable machine is available.

• One machine can only perform one operation at a time.

• During the unallocated period, the machine will remain idle.

Notably, the set of constraints in real-world problems is more complex, such as mul-

tiple objective scheduling challenges in a job shop, processing times can be either deter-

ministic (constant) or probabilistic (variable), limit idle time requests to no more than two

consecutive machines, or no idle time. Any change to the problem’s limitations can create

a new variation of the problem. Consequently, JSSP solving approaches evolve with each

research development phase [10].

Metaheuristic optimization is one of the practical approaches to JSSP with the ability

to provide a satisfactory optimization solution in a reasonable time [11]. Metaheuristic

algorithms employ innovative search strategies to explore the solution space and avoid

getting stuck in local optima by steering the feasible solution with a bias, enabling the

rapid generation of high-quality solutions. Contemporary metaheuristic algorithms also

combine with different mathematical models [12] and analytical operating procedures

[13] to enhance performance.

The coral reef optimization approach (CRO) is one of the complex bio-inspired com-

putation methods used to solve engineering and science problems by simulating the “for-

mation” and “reproduction” of corals in coral reefs. The approach was first envisioned by

Salcedo-Sanz et al. in 2014 [14]. Since then, it has been utilized in various relevant topics,

including optimal mobile network deployment [15], enhanced battery scheduling of mi-

crogrids [16], and wind speed prediction systems with success in renewable energy in

“Offshore Wind Farm Design” [17]. This article contributes by proposing modified coral

reef optimization methods with local search techniques for the JSSP feature. Two hybrid

algorithms have been developed and presented based on the original coral reef optimiza-

tion (CRO) method. CROLS1 integrates CRO with the Simulated Annealing (SA) strategy,

whereas CROLS2 combines CRO with the Variable Neighborhood Search (VNS) tech-

nique. This article focuses on the optimizing effect of local search techniques on the CRO

algorithm. The experiments demonstrate that local search strategies significantly enhance

the search efficiency of the two hybrid algorithms compared to the original algorithm.

Furthermore, the comparison results with two other metaheuristic algorithms that also

use the local search feature and five state-of-the-art algorithms found in the literature re-

veal the superior search capability of the two proposed hybrid algorithms.

Appl. Sci. 2022, 12, 9867 3 of 26

The remaining of this article is structured into several parts: Section 2 summarizes

prior work and CRO. Section 3 outlines the basis for the suggested strategy. Then, in Sec-

tion 4, the experimental results are reported. Finally, Section 5 concludes this study.

2. Related Work

Since its inception, operation research has focused on exact algorithms for solving

combinatorial problems involving multiple variables. Exact algorithms are defined as

guaranteeing accurate solutions to an optimization problem. Utilizing exact algorithms

could achieve the best solution to almost any bounded combinatorial optimization prob-

lem by identifying all possible solutions in a short timeframe [18]. However, it has been

asserted that when exact algorithms are employed to handle combinatorial optimization

issues, the amount of time required to identify the best strategy grows exponentially with

the complexity of the problem. Branch and bound algorithms and mixed integer program-

ming are the most frequently adopted exact algorithms for JSSP solving [19]. Small-scale

JSSP rarely represents production environments in actual production, so it is crucial to

evaluate more complex concerns involving various works and resources. Nevertheless,

the exact methods are barely applied to large-scale situations due to resource limits and

lengthy execution times.

In the context that exact algorithms cannot match the requirements of addressing

large-scale optimization issues, numerous methods based on artificial intelligence were

initially proposed and opened a new direction in the research of problem-solving strate-

gies [20], and approximation algorithms are one of the most explored solutions to large-

scale combinatorial optimization issues. Although approximation algorithms are not

guaranteed to locate an optimal solution but assured of identifying a near-optimal solu-

tion in a decent and realistic amount of computation time. As a result, it has evolved into

a new research subject for resolving complex and large-scale problems. Approximation

algorithms may be divided into two categories: heuristic algorithms and metaheuristic

algorithms [21].

Heuristic approaches could be divided into two parts: constructive search methods

and local search methods [22]. In typical constructive algorithms, solutions are built up

piece by piece until they are entirely dependent on the problem’s initial constraints or pre-

determined priorities; in the case of scheduling problems, solutions are frequently devel-

oped through operations. These algorithms may “build” processes individually using

“Dispatching Rules,” for example, programming to find a feasible solution within the con-

straints of a priority hierarchy. Following that, solutions are speedily developed while

preserving the integrity of solution quality. While with local search methods, the initially

generated keys are gradually replaced by features learned on a set of neighboring solu-

tions, whether they begin with a random collection of initial solutions or use construction

algorithms [23]. These methods allow the investigation of neighbor solutions more effi-

ciently in a dilemma space. The disadvantage of these algorithms is that they cannot find

and utilize global solutions. Consequently, they may become trapped in the local optima

region.

Meta-heuristics combines heuristic techniques commonly adopted to handle combi-

natorial optimization issues. Meta-heuristic algorithms employ innovative search strate-

gies to unravel the global optimum and avoid getting entangled in local optima by steer-

ing solution searching with a bias to gain higher viable alternatives more quickly. Some

bias mechanisms include bias derived from the objective function, bias based on previous

decisions, the bias of experience, etc. [21]. In this study, diverse and intensified search

tactics are employed. The diversification strategy’s fundamental objective is to efficiently

explore all potential solution space neighborhoods by utilizing a metaheuristic method.

On the other hand, the intensification technique involves using previously gained search

abilities and exploring through a more local solution subspace. Meta-heuristic algorithms

are classified into two categories: population-based algorithms and single-point search

algorithms. Among population-based algorithms, nature-inspired optimization

Appl. Sci. 2022, 12, 9867 4 of 26

algorithms are ubiquitous in terms of ease of implementation and superior searchability

[24]. For instance, the GA (genetic algorithm—inspired by evolution) [25,26], PSO (particle

swarm optimization—influenced by swarm intelligence) [27], and SA (simulated anneal-

ing—inspired by metal cooling behavior) [28] are among the most reliable and effective

algorithms accessible.

Significantly, meta-heuristic algorithms differ from blindly random search algo-

rithms in that randomness is used intelligently and biasedly, making them the current

research trend for solving difficult and complex issues. In addition, combination metaheu-

ristic approaches have been established to leverage the capabilities within each method to

obtain more robust and exhaustive optimization strategies. Modern metaheuristic algo-

rithms also incorporate various mathematical models and analytical operational tech-

niques to deliver greater performance. Guzman et al. propose a metaheuristic algorithm

that combines GA with a disjunctive mathematical model and employs the open-source

solution Coin-OR Branch and Cut to optimize the JSSP [12]. By combining an open-source

solver with genetic algorithm, the metaheuristic approach enables the development of ef-

ficient solutions and reduces computation time. Viana et al. suggested employing a guid-

ance operator assigned to changing ill-adapted individuals utilizing genetic material from

well-adapted individuals to enhance the GA population [13]. The results indicate the new

algorithm achieves a result 45.88% better than the old approach. Wang et al. introduce a

novel metaheuristic algorithm capable of guiding the search process to promising regions

based on the expected value affected by the performance of applicant samples and the

growth rate of the candidate solutions region, called search economics for the job shop

scheduling problem (SEJSP) [29]. SEJSP also produced positive experimental findings

when attempting to resolve JSSP.

In recent years, solving a fundamental problem such as JSSP has been approached in

the direction of enhancing classical metaheuristic algorithms or combining them with

other methodologies. Yu et al. [30] improve PSO to NGPSO by incorporating nonlinear

inertia weight and Gaussian mutation to handle JSSP. Mohamed Kurdi proposed the GA-

CPG-GT method using the GA algorithm with uniform crossover paired with the Giffler

and Thompson algorithm and yielded positive results when addressing JSSP [31]. T.Jiang

and C.Zang utilized Gray Wolf Optimization (GWO) algorithm, inspired by the gray

wolves’ social hierarchy and hunting behaviors, to solve JSSP [32], and Feng Wang et al.

developed them with some modifications to establish the Discrete Wolf Pack Algorithm

(DWPA) and achieved numerous exciting results in investigating JSSP [33]. In another

direction, Alper Hamzaday et al. deployed a novel meta-heuristic technique called Single

Seekers Society (SSS) to manage JSSP effectively [34].

The coral reef optimization approach (CRO) is one of the complex bio-inspired com-

putation methods used to solve engineering and science problems by simulating the “for-

mation” and “reproduction” of corals in coral reefs. The approach was first envisioned by

Salcedo-Sanz et al. in 2014 [14]. Since then, it has been utilized in various relevant topics,

including optimal mobile network deployment [15], enhanced battery scheduling of mi-

crogrids [16], and wind speed prediction systems with success in renewable energy in

“Off-shore Wind Farm Design” [17]. Various hybrid algorithms based on the original ver-

sion have evolved to facilitate better performance while diminishing computing time. For

example, in 2016, a combination of CRO and a variable neighborhood search method was

applied to unequal area facility layout problems [35]. Alternatively, another hybrid CRO

technique takes advantage of Spark’s MapReduce programming paradigm to reduce the

system’s overall response time and numerous other fascinating applications [36].

Appl. Sci. 2022, 12, 9867 5 of 26

3. Materials and Methods

To properly depict the problem’s reality and make encoding and decoding more ef-

ficient, selecting the most suitable form of methodology is necessary. This choice substan-

tially impacts the success or failure of problem-solving.

3.1. Representation of Job-Shop Scheduling Problem

When the coral reef optimization (CRO) technique is used to solve JSSP issues, the

operation solutions are encoded as sequences of decimal integers. Several other ap-

proaches describe the resolution of JSSP based on the problem’s specific characteristics,

such as operation-based representation, rule-based priority representation, machine-

based representation, etc. [37,38]. Direct and indirect encoding techniques are the two fun-

damental divisions of these representations.

Our strategy for describing the solution is based on implementing “random keys.”

This technique has the advantage of providing a detailed summary of the circumstance.

Each number in the sequence indicates the number of the individual jobs, and the number

of occurrences of each position in sequences defines the number of machines the job must

pass through before completion. In this research, a “random key” technique exposes a

solution to a problem satisfying the specified criteria below:

• Each element appearing in a solution represents the job to be processed;

• The number of appearing jobs correlates to the number of machines they must pass

through;

• The order of the element in the solution follows the machine sequence that the job

must pass through.

Figure 1 depicts a “random key” in the case of two machines and three jobs:

Figure 1. An example JSSP solution is created by a random key technique.

The CRO algorithm divides into two main stages: “reef formation” and “coral repro-

duction”:

Initially, a “reef” is constructed from a square grid of size MxN. Individual corals are

selected from a population and then randomly placed in any available empty square on

the reef according to the free/occupation ratio r0 (zero value representing no occupation),

with the remaining available. Each coral represents a different solution in the solution

space and will be given a health function; the higher the health function, the greater the

likelihood that the corals would survive the algorithm’s later generations. The value of

coral health is calculated using the fitness function, which depends on the objective func-

tions of the problem.

During the second stage, the CRO performs coral reproduction with five main mech-

anisms being repeated to produce new coral generation (called larvae). Including External

sexual “Broadcast Spawning”, Internal sexual “Brooding”, “Larvae setting”, Asexual

“Budding”, and the “Depredation” phase, which are all described in detail below:

External sexual Broadcast Spawning: in nature, this process is also known as “cross-

reproduction”. Two individuals produce every larva in a population model’s evolution

by simulating natural selection. This process combines the attributes of each parent to

create generations of offspring that inherit their positive characteristics to develop better

individuals.

Internal sexual Brooding: this process simulates an individual’s mutation in a pop-

ulation during evolution. Each coral in the selected population can change its genetic code

to create a new individual with the original individual’s characteristics and unique “mu-

tation” attributes.

Appl. Sci. 2022, 12, 9867 6 of 26

Larvae setting: this process simulates the “fighting of the coral” for space in a finite

space environment. Only stronger individuals can survive and reproduce to create new

generations, while weaker individuals are removed from the reef. The larvae are gener-

ated by the above sexual reproduction process and have repeatedly fought with other reef

corals. Individuals with higher health values will be given more opportunities to develop

in the reef.

Asexual budding: this process simulates the asexual reproduction of corals. When

corals grow to a particular stage, they can separate into new individuals and disperse

throughout the reef. Usually, healthy corals can produce better, more viable offspring,

thus gaining preference in this spawning process. So, a select number of individuals with

excellent health statistics are permitted to reproduce and spread over the reef, but only in

limited numbers.

Depredation phase: this process simulates the elimination of corals. To create free

space for the next generation of corals but without losing the diversity of the population,

this mechanism only eliminates a part of the weak corals. After the maximum number of

allowed corals is reached, any remaining similar corals in the reef are eliminated. It keeps

the reef from growing too many identical corals at once and makes room for the next gen-

eration of corals. It also enhances population diversity to prevent the process from falling

into a local optimum.

Figure 2 illustrates the operation of the CRO algorithm on reef size 5 × 5 with a

random key implementation corresponding to JSSP, including two machines and three

jobs with an individual tracked by a red circle.

The implementation of the CRO algorithm is described in Algorithm 1 as below:

Algorithm 1: Coral Reef Optimization (CRO).

Input: 𝑀 × 𝑁: reef size, 𝜌0: occupation rate, 𝐹𝐵: fraction of broadcast spawners, 𝐹𝐴:

fraction of asexual reproduction, F𝐷: fraction of the worse fitness corals, P𝐷: the depre-

cated probability of the worse fitness corals.

Output: reasonable solution with best fitness

#Initialization—Reef formation phase:

1. 𝑀 × 𝑁 ← reef size

2. Generate initial coral population

3. Calculate the fitness value of each coral

4. Deploy randomly on the reef with occupied rate 𝜌0

5. #Main loop—Coral reproduction phase:

6. Repeat

7. Reproduce coral fraction 𝐹𝐵 by external sexual broadcast spawning

8. Reproduce coral fraction 1 − 𝐹𝐵 by internal sexual brooding

9. Larvae setting

10. Reproduce best corals fraction 𝐹𝐴 by asexual budding

11. Predation of F𝐷 worst reef corals with P𝐷 probability

12. Until stop_condition

13. Return best_resonable_solution

Appl. Sci. 2022, 12, 9867 7 of 26

Figure 2. The phase of CRO algorithm with random key implementation and an individual coral

tracked by the red circle.

Appl. Sci. 2022, 12, 9867 8 of 26

3.2. Objective Function

In this study, we use “minimize the makespan” as the objective function for solving

the JSSP. This is the time between starting the first job and completing the last one. For a

fundamental JSSP with a set of n jobs and a set of m machines: Oij is operation of jth job

that executed on ith machine; pij defines the processing time of jth job that executed on ith

machine with the starting time (rij) of operation Oij; following that, the time required to

complete operation Oij can be calculated as follows:

𝐶𝑖𝑗 = 𝑟𝑖𝑗 + 𝑝𝑖𝑗 (1)

Because machines and jobs have specific and different completion times, cin and cjm

are defined as the completion time of the last (nth) operation on ith machine and the com-

pletion time of the last (mth) operation of jth job, respectively. The starting time rij can be

calculated as below:

𝑟𝑖𝑗 = 𝑚𝑎𝑥 (𝑐𝑖𝑛 , 𝑐𝑗𝑚) (2)

Finally, makespan can be calculated as the time to complete the last operation on the

last machine:

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐶𝑖𝑚) (3)

The scheduler’s scheduling efficiency can be evaluated by comparing the entire idle

time spent by the machine to the total processing time spent by the system:

𝐶′ = 1 +
∑ 𝑙𝑖𝑖

∑ 𝑝𝑗𝑘𝑗,𝑘

=
𝐶. 𝑚

∑ 𝑝𝑗𝑘𝑗,𝑘

 (4)

where 𝑙𝑖 denotes the machine’s idle time of machine i; C means of makespan; m denotes

the total number of machines; pjk denotes the processing time of job i on machine k.

When applied to the JSSP, the algorithm evaluates the solution quality using the Ob-

jective and Fitness functions derived as Equations (5) and (6). Where the Objective func-

tion indicates how “excellent” the solution is in terms of the performance of the optimized

function, the Fitness function directs the optimization process by expressing how inextri-

cably the proposed solution meets the defined goal.

𝑓 =
1

𝐶𝑚𝑎𝑥

 (5)

𝐹(𝑖) =
𝑓(𝑖)

∑ 𝑓(𝑖)
𝑛
1

 (6)

where 𝐶𝑚𝑎𝑥 (or makespan) is the time between starting the first job and completing the

last one e, 𝑓(𝑖) is the fitness function, n is the population size.

3.3. Local Search: Simulated Annealing (SA)

The first of two local search algorithms mentioned is the SA approach [39]. It is a

method used to simulate the cooling behavior of metals when exposed to extreme heat.

The metal is rapidly heated to a high temperature and then progressively cooled accord-

ing to a “cooling schedule” to obtain the ideal crystal structure with the lowest possible

internal energy. High temperature causes the crystal grains to have a high energy level,

which allows them to “jump” freely and quickly to their proper locations in the crystal

structure. During the cooling procedure, the temperature steadily decreases, and the crys-

tals are anticipated to be in their optimal locations once the temperature has been appro-

priately dropped [28].

Avoiding local optimization traps is one of the primary differences between SA and

conventional gradient-based approaches. In other words, each algorithm step uses a prob-

abilistic value to determine whether to transition the system from its current state to an

adjacent state s* (this state can be better or worse). When this probability is high, the

Appl. Sci. 2022, 12, 9867 9 of 26

system can easily switch to another state regardless of whether that state is better or worse

than the previous state. Meanwhile, when this probability is low, the current state is main-

tained if a better state cannot be found. This probability will gradually decrease through

each loop based on the decrease in system temperature controlled by the “cooling sched-

ule.” This process is repeated until the system reaches a state that is acceptable to the ap-

plication or until the given computation resource has been exhausted [40].

The SA is described by Algorithm 2 as follows:

Algorithm 2: Simulated Annealing

Input: 𝑡: temperature, 𝑡𝑚𝑖𝑛: min temperature, 𝛼: cooling rate, 𝐹: fitness function,

𝑆: solution, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟: maximum iteration

Output: Best_solution

#Initialization:

1. 𝑡 ← initial temperature

2. Best_solution ← 𝑆

#Main loop:

While 𝑡 > 𝑡𝑚𝑖𝑛 do

3. iter ← 0

4. While iter < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do

5. Select a random solution 𝑆′

6. ∆← 𝐹(𝑆′) − 𝐹(𝑆)

7. If ∆< 0 do

8. S ←S’

9. If 𝐹(𝑆′) < 𝐹(Best_solution) do

10. Best_solution ←S’

11. Else if 𝑟𝑎𝑛𝑑(0,1) < 𝑒
−∆

𝑡⁄ do

12. S ←S’

13. iter ← iter + 1

14. t ← t ∗ α

15. Return Best_solution

3.4. Local Search: Variable Neighborhood Search (VNS)

Variable Neighborhood Search (VNS) is another ancillary local search technique [41].

This approach executes the search process by altering the solution’s neighborhood struc-

ture to identify the optimal solution, using a combination of two nested loops: shake and

local search. The VNS algorithm’s fundamental design is simple and sometimes needs no

additional parameters. It is primarily accomplished by transforming solutions from one

state to another across the whole solution space using neighborhood structures (NS). Each

neighborhood in the VNS solution space is considered a subset of the overall solution

space, so it is possible to retrieve a trapped solution in one structure by using it in another

structure. VNS systematically adjusts the neighborhood by moving from one NS to an-

other while searching via nested loops, which are referred to as shake and local search

Inside the algorithm, the shaking loop enables the algorithm to move to a different NS;

meanwhile, the local search loop is responsible for finding the best solution in the current

neighborhood structure. The cycle of local search is repeated until a more acceptable so-

lution is discovered. The allowed loop will control the shaking loop. As a result, the algo-

rithm expands the search space and improves the ability to locate the optimal solution

[42]. Algorithm 3 describes the VNS as follows:

Appl. Sci. 2022, 12, 9867 10 of 26

Algorithm 3: Variable Neighborhood Search

Input: 𝑘: index denoting the neighborhood structure, 𝑘𝑚𝑎𝑥: total number of neighbor-

hood structures, 𝑥: solution, 𝐹: fitness function, 𝑁𝑘: solution set in 𝑘-th neighborhood

structure, 𝑡: computation time

Output: Best_solution

#Initialization:

1. Best_solution ← initial solution 𝑥

#Main loop:

While 𝑡 < 𝑡𝑚𝑎𝑥 do

2. k← 1

3. While k< 𝑘𝑚𝑎𝑥 do

4. 𝑥′ ← 𝑆ℎ𝑎𝑘𝑒(𝑁𝑘 , 𝑥)

5. 𝑥′′ ← 𝐿𝑜𝑐𝑎𝑙_𝑠𝑒𝑎𝑟𝑐ℎ(𝑥′)

6. If 𝐹(𝑥′′) < 𝐹(𝑥) do

7. 𝑥 ← 𝑥′′

8. k← 1

9. Else

10. k←k+1

11. t ← Cpu_Time()

12. Return Best_solution

3.5. Proposal Approaches

With the two local search techniques mentioned above, we propose two hybrid algo-

rithms named CROLS1 and CROLS2 based on the CRO algorithm described in the follow-

ing flow chart in Figure 3:

Figure 3. CRO applied local search techniques.

Typically, algorithms that identify the optimal solution from a random initial solu-

tion, such as the CRO, take significant time to obtain an optimal result. Occasionally, the

search process becomes trapped in the local optimum and cannot converge to the optimal

answer. Combining local search approaches is recommended to reduce the convergence

time to the optimal solution, avoid needless local optimal, and enhance search efficiency.

The process is performed by searching for answers in the neighborhood of the input

Appl. Sci. 2022, 12, 9867 11 of 26

solution, modifying the structure, and locating the optimal solutions in the solution space;

or discovering the ideal solution when the search process is close to the optimal solution,

while preventing other mechanisms from altering the solution’s structure. We found that

employing local search strategies on all current problem solutions is time-consuming and

unnecessary. So, two distinct search strategies were employed to optimize computation

time and enhance algorithm performance:

With CROLS1, applied only with the current best solution, the probability of imple-

mentation is small at the beginning and increases until the end of the search. The idea is

to increase the local search when the found solution is close to the optimal solution.

With CROLS2, apply the local search on several best solutions selected through the

budding process above. The idea here is to find the optimal solution through all the neigh-

borhoods of the potential solutions.

Algorithm 4 describes the CROLS1 and CROLS2 algorithms as follows:

Algorithm 4: Hybrid Coral Reef Optimization Algorithms (CROLS1 and CROLS2)

Input: 𝑀 × 𝑁: reef size, 𝜌0: occupation rate, 𝐹𝐵: fraction of broadcast spawners, 𝐹𝐴:

fraction of asexual reproduction, F𝐷: fraction of the worse fitness corals, P𝐷: the depre-

cated probability of the worse fitness corals.

Output: Reasonable solution with best fitness

#Initialization—Reef formation phase:

1. Choose running CROLS1 or CROLS2

2. 𝑀 × 𝑁 ← reef size

3. Generate initial coral population

4. Calculate the fitness value of each coral

5. Deploy randomly on the reef with occupied rate 𝜌0

6. #Main loop—Coral reproduction phase:

7. Repeat

8. Reproduce coral fraction 𝐹𝐵 by external sexual broadcast spawning

9. Reproduce coral fraction 1 − 𝐹𝐵 by internal sexual brooding

10. Larvae evaluation

11. Larvae setting

12. If running CROLS1 then apply “Local search strategy: SA”

13. else running CROLS2 apply “Local search strategy: VNS”

14. end if

15. Reproduce best corals fraction 𝐹𝐴 by asexual budding

16. Predation of F𝐷 worst reef corals with P𝐷 probability

17. Until stop_condition

18. Return best _solution

3.6. Time Complexity

Without any loss of generality, let 𝑓 be the optimization problem by CRO, 𝑓𝑆𝐴 and

𝑓𝑉𝑁𝑆 be the local search problems by SA and VNS approach, respectively. Assume that

the computational time complexity of evaluating the problem’s function value is 𝑂(𝑓).

Accordingly, the computational time complexity of CRO is defined as 𝑂(𝑓 × 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 ×

 𝑛𝑐𝑜𝑟𝑎𝑙) and the computational time complexity of two hybrid algorithms CROLS1 and

CROLS2 are 𝑂((𝑓 + 𝑓𝑆𝐴 × 𝑛𝑆𝐴) × 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 × 𝑛𝑐𝑜𝑟𝑎𝑙) and 𝑂((𝑓 + 𝑓𝑉𝑁𝑆 × 𝑛𝑉𝑁𝑆) × 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 ×

 𝑛𝑐𝑜𝑟𝑎𝑙), respectively, where 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum number of iterations, 𝑛𝑐𝑜𝑟𝑎𝑙 is the

number of corals (population size), 𝑛𝑆𝐴 is the number of corals that performed SA tech-

nique on and 𝑛𝑉𝑁𝑆 is the number of corals that performed VNS technique on.

Appl. Sci. 2022, 12, 9867 12 of 26

4. Experiment Results and Discussion

This section provides a brief and accurate description of the experimental data, their

interpretation, and the discussion derived from the investigation.

4.1. Dataset

In this study, we employ a subset of JSSP from Lawrence (1984) (LA) [43], one of the

typical instances for addressing JSSP to evaluate the algorithm’s efficiency. The two pri-

mary components of input data are machine sequence and processing time. Where ma-

chine sequence reflects the execution order on the machines for each specific job, pro-

cessing time represents the time consumption for each operation above. The most signifi-

cant difference between LA instances is their complexity and the number of possible so-

lutions to the problem, which grows exponentially with the number of jobs and machines.

These are all feasible (n!m) solutions to problems involving n jobs and m machines. LA is

also a well-known instance group in JSSP commonly used with a significant level of nor-

malization and convergence. LA contains groups of sizes 10 × 5, 15 × 5, 20 × 5, 10 × 10, 15

× 10, 20 × 10, 30 × 10 and 15 × 15. Due to the similarity of the problem posed within each

size group, we chose two sample examples from each size group to conduct the experi-

ments and related comparisons so that the experimental method is not spread.

4.2. Parameters Used in the Algorithm

A plurality of metaheuristic optimization algorithms use randomly generated pa-

rameters to direct their search for the optimal solution. Consequently, establishing the

criteria is among the most critical procedures. These settings stipulate the algorithm’s ex-

ploration and mining capabilities and substantially impact the algorithm’s performance.

We chose suitable parameters for the hybrid algorithm based on the theory of general

evolutionary algorithms and JSSP experiments. These parameters are shown in Table 1

below:

Table 1. Parameters used in the hybrid algorithms.

Parameter Technique Definition Range

𝑀 × 𝑁 CRO Reef size [10 × 10, 30 × 30]

Iter CRO Number of iterations (generations) [50, 200]

Fb CRO Probability of Broadcast spawning process [0.8, 0.9]

Fa CRO Probability of Budding process [0.05, 0.15]

r0 CRO Initial free/occupied ratio [0.6, 0.8]

Fd CRO Probability of selecting weak individuals from the population [0.01, 0.1]

Pd CRO Probability of removing weak individuals from the population [0.01, 0.1]

k CRO Number of chances for a new coral to colonize a reef [2, 4]

ke CRO Maximum number of allowed equal corals [0.1, 0.3]

𝑡𝑚𝑖𝑛 SA Min temperature [0.0001, 1]

𝛼 SA Cooling rate [0.7, 0.99]

𝑁𝑘 VNS Solution set in neighborhood structure [1, L]

Where L = number of jobs × number of machines.

Based on the experimental findings, we believe that the algorithm’s parameters may

fluctuate based on the complexity and size of the problem. It should be emphasized that

even though the setup parameters are identical, the outcomes in different situations are

not equivalent. It is necessary to experiment with alternative setup settings to discover the

ideal solution in a reasonable time for problems of varying sizes. We conducted the trial-

and-error methodology for tuning parameters through a series of experiments to acquire

a suitable parameter set. Table 2 summarizes parameter setting recommendations for two

hybrid proposal algorithms with different problem sizes.

Appl. Sci. 2022, 12, 9867 13 of 26

Table 2. Suggested parameters set for different sizes of problem.

Size 𝑴 × 𝑵 r0 Fb Fa Fd Pd k tmin α Nk

Small 10 × 10 0.6 0.9 0.05 0.01 0.1 3 0.5 0.85 L

Medium 20 × 20 0.7 0.85 0.05 0.05 0.1 3 0.5 0.85 L

Large 30 × 30 0.7 0.85 0.1 0.1 0.1 3 0.5 0.85 L

4.3. Experiment Results

The experimental approach is conducted in two steps: first, we will evaluate the im-

pact of local search on CRO via an aggregated outcomes table of CRO and two hybrid

algorithms. Friedman’s test and Wilcoxon’s signed-rank test were also performed later

based on the discovered table to evaluate the results statistically. Second, we evaluate the

effectiveness of local search approaches applied to CRO by comparing the best search re-

sults of CROLS1, CROLS2, and two algorithms that also employ local search techniques:

HGA [44] (hybrid genetic algorithm integrated with local search and some novel genetic

operators) and MA [45] (memetic algorithm combines global search and local search, ex-

changing and inserting depending on the critical route). The proposed algorithm is coded

in Python on a computer with 3.1 GHz Intel (R) Core i5 CPU and 24 GB of RAM.

4.3.1. Search Performance on CRO-Based Algorithm with Different Reef Sizes

We will evaluate the impact of local search on CRO via an aggregated outcomes table

of CRO and two hybrid algorithms. Table 3 depicts the best, the worst, the mean, and the

standard deviation (SD) of the makespan values derived from 30 independent executions

of each method on 16 JSSP instances.

Table 3. CRO-based algorithms statistics for 16 LA instances.

Instance Size Reef Size Method Opt Best Worst Mean SD Time (s)

LA01 10 × 5

10 × 10

CRO 666 666 674 668.91 2.4 128.45

CROLS1 666 666 666 666 0 39.91

CROLS2 666 666 666 666 0 33.18

20 × 20

CRO 666 666 671 667.73 1.58 45.09

CROLS1 666 666 671 668.45 1.79 20.45

CROLS2 666 666 666 666 0 15.64

30 × 30

CRO 666 666 674 669.55 2.7 44.27

CROLS1 666 666 671 668.09 2 20.27

CROLS2 666 666 671 667.45 1.91 14.64

LA02 10 × 5

10 × 10

CRO 655 655 676 664.91 6.41 118.73

CROLS1 655 655 655 655 0 40.91

CROLS2 655 655 655 655 0 33.91

20 × 20

CRO 655 655 671 663.73 5.68 43.82

CROLS1 655 655 671 662.27 5.57 18.55

CROLS2 655 655 655 655 0 15.27

30 × 30

CRO 655 655 676 665.36 6.62 44.55

CROLS1 655 655 671 663.18 6.02 18.55

CROLS2 655 655 670 661.09 6.21 14.09

LA06 15 × 5

10 × 10

CRO 926 926 946 935.45 7.54 169.09

CROLS1 926 926 926 926 0 151.82

CROLS2 926 926 926 926 0 149.73

20 × 20

CRO 926 926 940 931.73 4.73 125.91

CROLS1 926 926 940 932.36 5.46 100.73

CROLS2 926 926 926 926 0 92.45

Appl. Sci. 2022, 12, 9867 14 of 26

30 × 30

CRO 926 926 946 935 7.82 76.36

CROLS1 926 926 940 931.18 5.04 46.55

CROLS2 926 926 940 933.18 5.09 41.09

LA07 15 × 5

10 × 10

CRO 890 899 922 906.45 6.24 175.73

CROLS1 890 890 895 890.73 1.54 148.18

CROLS2 890 890 892 890.45 0.81 133.55

20 × 20

CRO 890 895 916 905.73 5.8 117.91

CROLS1 890 890 916 907 5.04 94.82

CROLS2 890 890 890 890 0 88.73

30 × 30

CRO 890 890 922 908.18 7.38 78.09

CROLS1 890 890 916 906.91 5.29 45.91

CROLS2 890 890 916 905.09 5.92 33.64

LA11 20 × 5

10 × 10

CRO 1222 1222 1257 1235.64 13.41 237.36

CROLS1 1222 1222 1222 1222 0 224.09

CROLS2 1222 1222 1222 1222 0 229.73

20 × 20

CRO 1222 1222 1244 1228.55 7.15 166.91

CROLS1 1222 1222 1244 1229.64 7.13 147.91

CROLS2 1222 1222 1222 1222 0 136.55

30 × 30

CRO 1222 1222 1257 1233.45 12.58 128.82

CROLS1 1222 1222 1244 1230.73 8.52 100.18

CROLS2 1222 1222 1244 1229.91 7.89 95.72

LA12 20 × 5

10 × 10

CRO 1039 1039 1062 1049.55 6.96 241.45

CROLS1 1039 1039 1042 1039.36 0.92 228.55

CROLS2 1039 1039 1039 1039 0 217.64

20 × 20

CRO 1039 1039 1062 1049.55 6.87 164.27

CROLS1 1039 1039 1062 1051.91 6.62 157.91

CROLS2 1039 1039 1039 1039 0 149.91

30 × 30

CRO 1039 1039 1060 1048.27 7.96 120.09

CROLS1 1039 1039 1043 1047.45 7.27 103.45

CROLS2 1039 1039 1039 1050.91 7.01 89.91

LA16 10 × 10

10 × 10

CRO 945 971 1024 979.27 22.73 349.64

CROLS1 945 945 979 958.91 10.69 317.73

CROLS2 945 945 980 959.36 12.44 315.64

20 × 20

CRO 945 948 1011 981.91 17.11 239.73

CROLS1 945 945 956 949.64 4.37 212.55

CROLS2 945 945 955 948.91 4 198.64

30 × 30

CRO 945 948 1011 976.55 19.06 177.64

CROLS1 945 945 955 947.73 2.93 125.91

CROLS2 945 945 955 948.73 4.13 132.55

LA17 10 × 10

10 × 10

CRO 784 799 888 833.55 31.06 337.09

CROLS1 784 787 807 795.18 7.55 309.73

CROLS2 784 788 807 797.91 7.79 297.55

20 × 20

CRO 784 788 832 811.91 13.08 252.64

CROLS1 784 784 788 785.36 1.69 198.55

CROLS2 784 784 799 790.36 5.71 222.91

30 × 30

CRO 784 788 832 808.27 13.51 183.18

CROLS1 784 784 799 788.55 4.88 128.82

CROLS2 784 784 799 787.09 4.43 130.09

LA21 15 × 10 10 × 10 CRO 1046 1069 1146 1105.73 79.28 553.64

Appl. Sci. 2022, 12, 9867 15 of 26

CROLS1 1046 1056 1117 1100.64 10.07 487.18

CROLS2 1046 1055 1115 1099 8.29 473.09

20 × 20

CRO 1046 1069 1100 1071.45 49.41 345.91

CROLS1 1046 1046 1054 1048.82 3.27 269.36

CROLS2 1046 1046 1066 1053.09 6.34 274.27

30 × 30

CRO 1046 1106 1250 1172.64 51.47 256.64

CROLS1 1046 1046 1066 1052.55 7.76 164.36

CROLS2 1046 1046 1066 1052.55 6.88 165.55

LA22 15 × 10

10 × 10

CRO 927 978 1220 1178.36 30.51 538.45

CROLS1 927 930 1011 983.45 16.83 479.73

CROLS2 927 934 988 976.09 8.32 464.09

20 × 20

CRO 927 944 1150 1030.64 57.45 356.27

CROLS1 927 927 974 944.18 16.83 267.91

CROLS2 927 927 944 932.18 4.8 265.55

30 × 30

CRO 927 935 1150 1030.09 53.54 248.27

CROLS1 927 927 944 932.73 5.69 185.18

CROLS2 927 927 944 934.27 6.21 174.27

LA26 20 × 10

10 × 10

CRO 1218 1333 1358 1349.64 22.89 759.64

CROLS1 1218 1246 1316 1297.09 10.72 655.82

CROLS2 1218 1242 1323 1305.82 12.36 651.91

20 × 20

CRO 1218 1256 1280 1263.27 45.98 536.64

CROLS1 1218 1218 1253 1235.91 12.07 456.91

CROLS2 1218 1218 1246 1230.27 8.97 440.36

30 × 30

CRO 1218 1226 1275 1255.82 44.37 359.91

CROLS1 1218 1218 1246 1229.91 10.75 281.73

CROLS2 1218 1218 1246 1231.09 9.12 246.27

LA27 20 × 10

10 × 10

CRO 1235 1323 1495 1446.55 30.3 748.09

CROLS1 1235 1255 1310 1275.36 8.51 688.91

CROLS2 1235 1256 1304 1261.09 8.29 650.64

20 × 20

CRO 1235 1305 1415 1461.09 22.57 541.09

CROLS1 1235 1235 1305 1260.55 28.95 459.45

CROLS2 1235 1235 1246 1239.18 4.1 447.36

30 × 30

CRO 1235 1255 1375 1359.55 25.96 336.18

CROLS1 1235 1235 1246 1239.09 4.2 260.18

CROLS2 1235 1235 1246 1240.27 4.09 239.27

LA32 30 × 10

10 × 10

CRO 1850 1934 2328 2254.91 96.2 827.91

CROLS1 1850 1852 1896 1862.73 13.75 713.55

CROLS2 1850 1850 1888 1866.73 9.77 693.09

20 × 20

CRO 1850 1932 2126 2074.85 30.69 740.73

CROLS1 1850 1850 1865 1855.36 5.77 646.64

CROLS2 1850 1850 1856 1852.18 2.29 630.18

30 × 30

CRO 1850 1912 2105 1998.52 30.26 566.64

CROLS1 1850 1850 1856 1853 2.05 453.45

CROLS2 1850 1850 1856 1852.18 2.33 418.45

LA33 30 × 10

10 × 10

CRO 1719 1865 2131 2014.73 65 824.18

CROLS1 1719 1720 1752 1732.27 12.43 726.09

CROLS2 1719 1722 1752 1730.27 11.39 692.82

20 × 20
CRO 1719 1818 2056 1955.73 55.54 737.91

CROLS1 1719 1719 1723 1720.45 1.56 643.09

Appl. Sci. 2022, 12, 9867 16 of 26

CROLS2 1719 1719 1732 1723.91 5.48 617.27

30 × 30

CRO 1719 1805 2034 1934.91 60.59 557.82

CROLS1 1719 1719 1732 1723.45 4.97 441.73

CROLS2 1719 1719 1732 1724.18 5.14 438.82

LA39 15 × 15

10 × 10

CRO 1233 1388 1466 1498.82 42.44 869.09

CROLS1 1233 1238 1316 1278.73 16.66 725.73

CROLS2 1233 1274 1318 1279.82 13.48 624.45

20 × 20

CRO 1233 1368 1428 1419.36 7.61 834.09

CROLS1 1233 1238 1264 1241.64 27.32 675.45

CROLS2 1233 1239 1264 1244.91 29.39 568.73

30 × 30

CRO 1233 1332 1403 1397.21 24.37 752.09

CROLS1 1233 1233 1255 1243.09 34.44 592.64

CROLS2 1233 1233 1255 1237.55 13.78 502.82

LA40 15 × 15

10 × 10

CRO 1222 1396 1506 1451.25 49.25 875

CROLS1 1222 1240 1336 1313.27 11.24 728.45

CROLS2 1222 1269 1305 1288.45 35.41 625.36

20 × 20

CRO 1222 1364 1455 1390.35 58.7 826.82

CROLS1 1222 1240 1299 1270.27 35.09 674.73

CROLS2 1222 1239 1299 1273.09 30.93 568.82

30 × 30

CRO 1222 1342 1424 1374.33 24.88 739.82

CROLS1 1222 1228 1264 1238.25 15.89 585.45

CROLS2 1222 1232 1279 1248.45 23.22 495.55

Table 3 shows that the local search strategies have made the CRO algorithm more

stable, as the amplitude of the mean between the best to the worst and the standard devi-

ation in all cases have improved. CROLS2 demonstrates greater stability with smaller

standard deviations than CRO and CROLS1 in most instances. Additionally, local search

methods assist in reducing the worst-case of CROLS1 and CROLS2 compared to CRO.

Similar to the best value acquired by each hybrid algorithm, the local search technique

helps CROLS1 and CROLS2 reach the best-known optimal values for the situations exam-

ined. In most instances, CROLS1 and CROLS2 can get the best-known outcomes with reef

sizes of 10 × 10 and 20 × 20. However, for instances of high complexity, such as LA39 and

LA40, the best results can only be reached with reef sizes of 30 × 30.

CROLS1 and CROLS2 significantly reduce the search duration compared to the orig-

inal method. This is more noticeable when the complexity of the instance is greater; the

computational time can be reduced by up to 30% for LA40. In addition, for complex cases

such as LA39 and LA40, the CROLS2 algorithm surpasses CROLS1 when outcomes are

similar, but the execution time is reduced by more than 10%. Technically, CROLS1 and

CROLS2 have 20% and 100% more fitness function calls than the original algorithm since

they employ local search techniques. Even though this increases the amount of computa-

tional work, it helps the algorithm converge quickly and experimentally shows that

CROLS1 and CROLS2 are still more rapid at searching than the original CRO.

To evaluate the improvement of the two hybrid algorithms compared to CRO statis-

tically, we performed Friedman’s test on the data in Table 3. Friedman’s test, based on the

ranking, will be utilized to determine the difference between three CRO-based algorithms

using experimental findings collected from 16 LA instances and categorized by three reef

sizes 10 × 10, 20 × 20, and 30 × 30. The “mean rank” and Friedman’s test statistic results of

three algorithms participating in the evaluation will be described in Tables 4 and 5, re-

spectively.

According to Table 4, there is little difference in the mean rank of the CRO algorithm

between reef sizes. The mean rank of CROLS1 and CROLS2 are significantly different

from CRO, indicating that local search techniques substantially impact these two

Appl. Sci. 2022, 12, 9867 17 of 26

algorithms. Table 5 provides the test statistics for Friedman’s test with a significance level

of α = 0.05. All 𝜒2 values are larger than the critical value 𝜒0
2 = 5.991, and all ρ values

are less than 0.05, demonstrating statistically significant differences in the performance of

three CRO-based algorithms.

Table 4. Mean rank of three CRO-based algorithms.

Algorithm
Mean Rank

Reef Size 10 × 10 Reef Size 20 × 20 Reef Size 30 × 30

CRO 3.00 2.69 2.94

CROLS1 1.56 2.06 1.47

CROLS2 1.44 1.25 1.59

Table 5. Friedman’s test statistic of three CRO-based algorithm.

 Χ2 ρ

Reef Size 10 × 10 25.733 0.000003

Reef Size 20 × 20 16.625 0.000245

Reef Size 30 × 30 21.556 0.000021

Following Friedman’s test made a significant result, we performed Wilcoxon’s

signed-rank test as a posthoc analysis to determine the difference between three CRO-

based algorithms in pairwise group. The search findings of three reef sizes will be aver-

aged to feed the Wilcoxon’s test with a statistical significance of 0.05. Table 6 provides the

statistical results of the Wilcoxon’s test.

Table 6. Wilcoxon’s test statistic of three CRO-based algorithms.

 CRO-CROLS1 CRO-CROLS2 CROLS1-CROLS2

Z −3.516 −3.516 −1.533

p 0.000438 0.000438 0.125153

Using the Z distribution table, we can find the critical value of Z is 1.96 at a statistical

significance of 0.05. According to Table 6, the statistical findings of two pairs of algo-

rithms, CRO-CROLS1 and CRO-CROLS2, are nearly equivalent as Z = −3.516 (|Z| > 1.96)

and p = 0.000438 < 0.05. So, the null hypothesis is rejected at statistical significance of 0.05;

the advantage of local search approaches on CROLS1 and CROLS2 compared to the orig-

inal CRO algorithm is statistically significant. In contrast, the values Z = −1.533 (|Z|< 1.96),

and p = 0.125153 > 0.05 indicate no significant performance difference between the

CROLS1 and CROLS2 hybrid algorithms.

4.3.2. Comparison of the Computational Result of CRO-Based Algorithms with Other

Implemented Local Search Technique Algorithms

This experiment aims to test the algorithm’s efficiency in finding the optimal value

of the problem. We choose MA and HGA as two algorithms employing local search strat-

egies to compare the performance of algorithms that use such techniques. Five algorithms

are mentioned in Table 7, including the original algorithm CRO and two proposed hybrid

algorithms CROLS1 and CROLS2. Each CRO algorithm is executed 30 times with three

different reef sizes and takes the best value obtained in Table 7. The results of HGA and

MA were consulted from the research of Y. Wang et al. [44] and L. Gao et al. [45], respec-

tively.

Appl. Sci. 2022, 12, 9867 18 of 26

Table 7. Experiment results of five metaheuristic algorithms employing local search techniques.

Ins. Size. Opt.
CRO CROLS1 CROLS2

HGA MA
10 × 10 20 × 20 30 × 30 10 × 10 20 × 20 30 × 30 10 × 10 20 × 20 30 × 30

LA01 10 × 5 666 666 666 666 666 666 666 666 666 666 666 666

LA02 10 × 5 655 655 655 655 655 655 655 655 655 655 655 655

LA06 15 × 5 926 926 926 926 926 926 926 926 926 926 926 926

LA07 15 × 5 890 899 895 890 890 890 890 890 890 890 890 890

LA11 20 × 5 1222 1228 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222

LA12 20 × 5 1039 1042 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039

LA16 10 × 10 945 956 955 955 945 945 945 945 945 945 945 945

LA17 10 × 10 784 799 788 788 787 784 784 788 784 784 784 784

LA21 15 × 10 1046 1069 1069.9 1056 1046 1046 1046 1055 1046 1046 1046 1055

LA22 15 × 10 927 978 944 935 930 927 927 934 928 927 935 927

LA26 20 × 10 1218 1333 1256 1226 1246 1218 1218 1242 1218 1218 1218 1218

LA27 20 × 10 1235 1323 1305 1255 1255 1235 1235 1256 1246 1246 1236 1261

LA32 30 × 10 1850 1934 1932 1912 1852 1850 1850 1850 1850 1850 1850 1850

LA33 30 × 10 1719 1865 1818 1805 1720 1719 1719 1722 1719 1719 1719 1719

LA39 15 × 15 1233 1388 1368 1332 1238 1238 1233 1274 1239 1233 1233 1241

LA40 15 × 15 1222 1396 1364 1342 1240 1240 1228 1269 1239 1232 1229 1233

It can be seen that the two-hybrid algorithms CROLS1 and CROLS2 can discover the

optimal solution in the majority of instances with the reef size set to 20 × 20 and 30 × 30.

However, the original algorithm CRO can only find the optimal solution in a few cases

with a small number of jobs and machines. Compared with the other two metaheuristics,

the performance of the two-proposed hybrid algorithm is superior when the reef size is

20 × 20 or 30 × 30 in some instances of the problem.

4.3.3. Comparison of the Computational Result of CRO-Based Algorithms with Other

Contemporary Algorithms

To further verify the effectiveness of CRO and two proposed hybrid algorithms, we

performed extensive experiments on the 12 LA instances mentioned before, Fisher and

Thompson instances [46]: FT06, FT10, FT20; Applegate and Cook instances [47]: ORB01–

ORB09; and five of Adams et al. instances [48] denoted as ABZ05 to ABZ09. Three CRO-

based algorithms were compared with the results of five state-of-the-art algorithms found

in the literature: Multi-Crossover Local Search Genetic Algorithm (mXLSGA) [49], hybrid

PSO enhanced with nonlinear inertia weight, and Gaussian mutation (NGPSO) [30], single

seekers society (SSS) algorithm [34], genetic algorithm with a critical-path-guided Giffler

and Thompson crossover operator (GA-CPG-GT) [31], discrete wolf pack algorithm

(DWPA) [33]. The best makespan produced by the CRO-based algorithms with reef size

30 × 30 from 10 independent runs was utilized as a performance criterion. Table 8 presents

the experimental results for the 34 instances, listing the instance name, problem size (num-

ber of tasks × number of machines), best-known solution (BKS), and best solution achieved

by each of the compared algorithms.

Appl. Sci. 2022, 12, 9867 19 of 26

Table 8. Comparison of experimental results between CRO-based algorithms and other state-of-the-

art algorithms for 34 instances. The symbol “-” means “not evaluated in that instance.”.

Instance Size BKS CRO CROLS1 CROLS2
mXLSGA

(2020)

NGPSO

(2020)

SSS

(2020)

GA-CPG-

GT (2019)

DWPA

(2019)

LA01 10 × 5 666 666 666 666 666 666 666 666 666

LA02 10 × 5 655 655 655 655 655 655 655 655 655

LA06 15 × 5 926 926 926 926 926 926 926 926 926

LA07 15 × 5 890 890 890 890 890 890 890 890 890

LA11 20 × 5 1222 1222 1222 1222 1222 1222 1222 1222 1222

LA12 20 × 5 1039 1039 1039 1039 1039 1039 - 1039 1039

LA16 10 × 10 945 955 945 945 945 945 947 946 993

LA17 10 × 10 784 788 784 784 784 794 - 784 793

LA21 15 × 10 1046 1056 1046 1046 1059 1183 1076 1090 1105

LA22 15 × 10 927 935 927 927 935 927 - 954 989

LA26 20 × 10 1218 1226 1218 1218 1218 1218 - 1237 1303

LA27 20 × 10 1235 1255 1235 1246 1269 1394 - 1313 1346

LA32 30 × 10 1850 1912 1850 1850 1850 1850 - 1850 1850

LA33 30 × 10 1719 1805 1719 1719 1719 1719 - 1719 1719

LA39 15 × 15 1233 1332 1233 1233 1258 1662 - 1290 1334

LA40 15 × 15 1222 1342 1228 1232 1243 1222 1252 1252 1347

FT06 6 × 6 55 55 55 55 55 55 55 55 -

FT10 10 × 10 930 934 930 930 930 930 936 935 -

FT20 20 × 5 1165 1197 1174 1170 1165 1210 1165 1180 -

ABZ05 10 × 10 1234 1255 1234 1234 1234 1234 - 1238 -

ABZ06 10 × 10 943 988 943 943 943 943 - 947 -

ABZ07 20 × 15 656 755 731 727 695 713 - - -

ABZ08 20 × 15 665 720 709 705 713 729 - - -

ABZ09 20 × 15 679 817 707 711 721 930 - - -

ORB01 10 × 10 1059 1120 1070 1072 1068 1174 - 1084 -

ORB02 10 × 10 888 927 899 895 889 913 - 890 -

ORB03 10 × 10 1005 1097 1021 1023 1023 1104 - 1037 -

ORB04 10 × 10 1005 1121 1005 1005 1005 1005 - 1028 -

ORB05 10 × 10 887 904 890 894 889 887 - 894 -

ORB06 10 × 10 1010 1085 1020 1023 1019 1124 - 1035 -

ORB07 10 × 10 397 418 397 397 397 397 - 404 -

ORB08 10 × 10 899 988 912 907 907 1020 - 937 -

ORB09 10 × 10 934 955 938 940 940 980 - 943 -

ORB10 10 × 10 944 1010 967 950 944 1027 - 967 -

We can observe that the original CRO algorithm can only discover the optimal value

in a few basic cases, such as LA01, LA02, LA06, LA07, LA11, LA12, and FT06, but the rest

of the CRO results are relatively decent and equivalent to GA-CPG-GT. While both the

CROLS1 and CROLS2 hybrid algorithms demonstrated efficiency, CROLS1 obtained the

best comparative value in 11/12 LA cases, 2/3 FT instances, 3/5 ABZ instances, and 5/10

ORB instances. CROLS2 produced comparable results, with 11/12 LA instances, 2/3 FT

instances, 3/5 ABZ instances, and 5/10 ORB instances better or equal to the compared re-

sults of five state-of-the-art algorithms. The findings of two algorithms, CROLS1 and

CROLS2, outperform SSS, GA-CPG-GT, DWPA algorithms, and competitive comparison

with mXLSGA and NGPSO, even outperforming NGPSO in ABZ instances and some in-

stances as ORB01, ORB03, ORB08, ORB10.

Appl. Sci. 2022, 12, 9867 20 of 26

4.3.4. Improvement of Search Efficiency

We utilize the mean deviation from the optimal makespan of the two hybrid algo-

rithms CROLS1 and CROLS2 that surpass the original approach CRO in terms of search

performance to evaluate the two hybrid algorithms’ performance enhancement. The pro-

gression of search effectiveness is calculated using the following formula:

𝑷𝑰(𝑪𝑹𝑶𝑳𝑺/𝑪𝑹𝑶) =
𝑺(𝑪𝑹𝑶)−𝑺(𝑪𝑹𝑶𝑳𝑺)

𝑺(𝑶𝒑𝒕)
 × 𝟏𝟎𝟎% (7)

where 𝑷𝑰(𝑪𝑹𝑶𝑳𝑺/𝑪𝑹𝑶) is the percentage of improvement, 𝑺(𝑪𝑹𝑶𝑳𝑺) is the minuscule

makespan by CROLS, 𝑺(𝑪𝑹𝑶) is the minuscule makespan by CRO and 𝑺(𝑶𝒑𝒕) is the mi-

nuscule makespan in comparison between CROLS and CRO.

Table 9 represents the percentage performance increase in CROLS1 and CROLS2

over the original CRO.

Table 9. Improve performance of two hybrid algorithms.

Instance Size
CROLS1 CROLS2

10 × 10 20 × 20 30 × 30 10 × 10 20 × 20 30 × 30

LA01 10 × 5 0 0 0 0 0 0

LA02 10 × 5 1.68 0.46 0.15 1.68 0.46 0.15

LA06 15 × 5 0 0 0 0 0 0

LA07 15 × 5 1.01 0.56 0 1.01 0.56 0

LA11 20 × 5 0.49 0 0 0.49 0 0

LA12 20 × 5 0.29 0 0 0.29 0 0

LA16 10 × 10 2.43 0.32 0.32 2.75 0.32 0.32

LA17 10 × 10 1.53 0.51 0.51 1.4 0.51 0.51

LA21 15 × 10 2.2 2.28 0.96 1.34 2.28 0.96

LA22 15 × 10 5.18 1.83 0.86 4.75 1.73 0.86

LA26 20 × 10 7.14 3.12 0.66 7.47 3.12 0.66

LA27 20 × 10 5.51 5.67 1.62 5.43 4.78 0.73

LA32 30 × 10 4.43 4.43 3.35 4.54 4.43 3.35

LA33 30 × 10 8.44 5.76 5 8.32 5.76 5

LA39 15 × 15 12.17 10.54 8.03 9.25 10.46 8.03

LA40 15 × 15 12.77 10.15 9.33 10.39 10.23 9

Analyzing Table 9 reveals that the local search approaches have enhanced the origi-

nal CRO algorithm’s search performance. The improvement is not too obvious in the sim-

ple instances (LA01–LA22), with most PI metrics below 3%. Nonetheless, when the prob-

lem complexity increased, both CROLS1 and CROLS2 performed significantly more ef-

fectively than the original CRO. In LA26 and LA27, CROLS1 and CROLS2 outperform

CRO when working on small reef sizes such as 10 × 10 and 20 × 20 with a PI of approxi-

mately 5%. However, when operating on reef sizes 30 × 30, CRO is as efficient as two

hybrid algorithms with a PI of less than 2%; since when the population size increases, the

searchability of CRO will increase, and even the original CRO can find a good solution.

Even in LA40, where it is difficult for the CRO to discover the best-known solution, the PI

reaches a peak of approximately 10%, which occurs in all reef sizes. This demonstrates the

positive impact of local search algorithms on search performance.

4.3.5. Convergence Ability

The algorithm’s ability to converge to the optimal solution is a second criterion for

comparison. The collection of data is dependent on the experimental outcomes of the

LA01 instance. Table 10 displays the average number of generations required to discover

the optimal solution for three CRO algorithms with three different reef sizes.

Appl. Sci. 2022, 12, 9867 21 of 26

Table 10. Average objective function evaluations test needed to find the optimal solution.

Reef Size 10 × 10 20 × 20 30 × 30

CRO 150.5 42.2 30.4

CROLS1 13.4 10.6 10.4

CROLS2 12.2 8 6.4

First, as the reef size parameter increases, the number of generations conducted to

explore the optimal solution for the three algorithms decreases most noticeably for the

original CRO. Second, the two hybrid algorithms have significantly fewer generations

than the original. In this scenario, the CROLS2 algorithm exhibits the quickest conver-

gence capability. Experimental results proved that local search strategies significantly en-

hanced the search process and expedited finding optimal answers. For optimal perfor-

mance, it is preferable to utilize local search approaches later in the algorithm because

they have little impact in the early stages and waste time. Figures 4–6 depict the conver-

gence graph of three CRO, CROLS1, and CROLS2 methods for three reef sizes (10 × 10, 20

× 20, and 30 × 30) in five instances LA01, LA16, LA26, LA32, and LA40.

(a) (b)

(c) (d)

(e)

Figure 4. Convergence graph of CRO-based with reef size 10 × 10: (a) LA01, (b) LA16, (c) LA26, (d)

LA32, (e) LA40.

 50

 00

 50

 00

 50

 00

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 01: reef si e 10 10

CRO

CRO 1

CRO 2

 5

 5

 5
 00

 50

1000

1050

1100

1150

1200

1250

1300

1350

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 1 : reef si e 10 10

CRO

CRO 1

CRO 2

1333

12

12 21200

1300

1 00

1500

1 00

1 00

1 00

1 00

2000

2100

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 2 : reef si e 10 10

CRO

CRO 1

CRO 2

1 3

1 52

1 501 00

2000

2200

2 00

2 00

2 00

3000

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 32: reef si e 10 10

CRO

CRO 1

CRO 2

13

12 0

12

1200

1300

1 00

1500

1 00

1 00

1 00

1 00

2000

2100

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 0: reef si e 10 10

CRO

CRO 1

CRO 2

Appl. Sci. 2022, 12, 9867 22 of 26

(a) (b)

(c) (d)

(e)

Figure 5. Convergence graph of CRO-based with reef size 20 × 20: (a) LA01, (b) LA16, (c) LA26, (d)

LA32, (e) LA40.

(a) (b)

 50

 00

 50

 00

 50

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 01: reef si e 20 20

CRO

CRO 1

CRO 2

 55

 5

 5
 00

 50

1000

1050

1100

1150

1200

1250

1300

1350

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 1 : reef si e 20 20

CRO

CRO 1

CRO 2

125

121

121
1200

1300

1 00

1500

1 00

1 00

1 00

1 00

2000

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 2 : reef si e 20 20

CRO

CRO 1

CRO 2

1 32

1 50

1 501 00

2000

2200

2 00

2 00

2 00

3000

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 32: reef si e 20 20

CRO

CRO 1

CRO 2

13

12 0

123
1200

1300

1 00

1500

1 00

1 00

1 00

1 00

2000

2100

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 0: reef si e 20 20

CRO

CRO 1

CRO 2

 50

 00

 50

 00

 50

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 01: reef si e 30 30

CRO

CRO 1

CRO 2

 55

 5

 5
 00

 50

1000

1050

1100

1150

1200

1250

1300

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 1 : reef si e 30 30

CRO

CRO 1

CRO 2

Appl. Sci. 2022, 12, 9867 23 of 26

(c) (d)

(e)

Figure 6. Convergence graph of CRO-based with reef size 30 × 30: (a) LA01, (b) LA16, (c) LA26, (d)

LA32, (e) LA40.

The optimal solution (corresponding to the makespan value 666) of the LA01 instance

is shown in Figure 7 through Gantt-chart, including ten jobs (J1–J10) and five machines

(M0–M4), with each color representing a job.

Figure 7. Representing optimal solution of LA01 instance by Gantt-chart.

5. Conclusions

This paper presents two novel hybrid algorithms, CROLS1 and CROLS2, that utilize

distinct search strategies. The CROLS1 algorithm employs simulated annealing (SA) to

find the global optimal solution and avoid the local optimum. This technique increases

the likelihood of obtaining the optimal response while decreasing execution time. In the

second model, VNS is applied to the most significant number of probable solutions in

125

121

121
1200

1300

1 00

1500

1 00

1 00

1 00

1 00

2000

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 2 : reef si e 30 30

CRO

CRO 1

CRO 2

1 12

1 50

1 501 00

2000

2200

2 00

2 00

2 00

3000

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 32: reef si e 30 30

CRO

CRO 1

CRO 2

13 2

122

12321200

1300

1 00

1500

1 00

1 00

1 00

1 00

2000

2100

0 20 0 0 0 100 120 1 0 1 0 1 0 200

Con ergence graph for 0: reef si e 30 30

CRO

CRO 1

CRO 2

Appl. Sci. 2022, 12, 9867 24 of 26

CROLS2. This search strategy aims to create new, superior individuals by utilizing the

reef-wide potential and increasing its convergence.

The experiment presented that local search tactics have made the CRO algorithm

more stable, as the mean amplitude and standard deviation have improved. Local search

approaches also reduce CROLS1 and CROLS2 worst-case compared to CRO and let them

find the best-known optimal values for each case more conveniently. CROLS1 and

CROLS2 considerably shorten search time compared to the original CRO, even saving

computational time by up to 30% for the LA40 instance. For complicated scenarios such

as LA39 and LA40, CROLS2 surpassed CROLS1 when results are similar, but the execu-

tion time is 10% faster. Statistical analyses such as Friedman’s and Wilcoxon’s tests also

confirm that the improvement of CROLS1 and CROLS2 compared to the original algo-

rithm is significant. Comparing the best search results with two metaheuristic algorithms

that employ other local search strategies, MA and HGA, CROLS1 and CROLS2 demon-

strate their superiority in complex problem scenarios. To further verify the effectiveness

of CRO and two proposed hybrid algorithms, we conducted extensive experiments on the

34 instances of varying complexity as LA, FT, ABZ, and ORB. The achieved results were

compared with five state-of-the-art algorithms in related works: mXLSGA, NGPSO, SSS,

GA-CPG-GT, and DWPA. By analyzing the results, we can conclude that the two pro-

posed hybrid algorithms get competitive results in JSSP instances and can obtain good

makespan results.

This research focuses on investigating the improvement of the local search approach

on the CRO algorithm, which is demonstrated through positive experimental evidence.

The efficiency of the two hybrid algorithms is further seen when their best search out-

comes are comparable with the best-known results. Numerous multi-objective optimiza-

tion techniques and various JSSP have been suggested for more challenging issues. In the

upcoming plan, we aim to develop the optimal algorithm for multi-objectives and opti-

mize the processing time. Developing algorithms to handle multi-objective optimization

problems is an exciting future research path to increase the relevance of JSSP in manufac-

turing.

Author Contributions: Conceptualization, C.-S.S.; methodology, D.-C.N.; software, D.-C.N.; vali-

dation, T.-T.N.; writing—original draft preparation, T.-T.N.; writing—review and editing, C.-S.S.

and W.-W.L.; visualization, D.-C.N. and W.-W.L.; supervision, C.-S.S.; project administration, C.-

S.S. and M.-F.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly supported by National Science and Technology Council, Taiwan

with grant numbers 111-2221-E-992-066 and 109-2221-E-992-073-MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data supporting the reported results are available upon request.

Acknowledgments: The authors would also like to thank the anonymous reviewers for their con-

structive comments which led to improvements in the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. MarcoBaptista. How Important Is Production Scheduling Today? April 2020. Available online: https://blogs.sw.sie-

mens.com/opcenter/how-important-is-production-scheduling-today/ (accessed on 31 August 2022).

2. Ben Hmida, J.; Lee, J.; Wang, X.; Boukadi, F. Production scheduling for continuous manufacturing systems with quality con-

straints. Prod. Manuf. Res. 2014, 2, 95–111. https://doi.org/10.1080/21693277.2014.892846.

3. Jiang, Z.; Yuan, S.; Ma, J.; Wang, Q. The evolution of production scheduling from Industry 3.0 through Industry 4.0. Int. J. Prod.

Res. 2021, 60, 3534–3554. https://doi.org/10.1080/00207543.2021.1925772.

4. Graves, S.C. A Review of Production Scheduling. Oper. Res. 1981, 29, 646–675. https://doi.org/10.1287/opre.29.4.646.

5. Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68.

https://doi.org/10.1002/nav.3800010110.

Appl. Sci. 2022, 12, 9867 25 of 26

6. Garey, M.R.; Johnson, D.S.; Sethi, R. The Complexity of Flowshop and Jobshop Scheduling. Math. Oper. Res. 1976, 1, 117–129.

https://doi.org/10.1287/moor.1.2.117.

7. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0.

J. Intell. Manuf. 2017, 30, 1809–1830. https://doi.org/10.1007/s10845-017-1350-2.

8. Xiong, H.; Shi, S.; Ren, D.; Hu, J. A survey of job shop scheduling problem: The types and models. Comput. Oper. Res. 2022, 142,

105731. https://doi.org/10.1016/j.cor.2022.105731.

9. Xhafa, F.; Abraham, A. Metaheuristics for Scheduling in Industrial and Manufacturing Applications. Available online:

https://link.springer.com/book/10.1007/978-3-540-78985-7 (accessed on 1 July 2022).

10. Pinedo, M.L. Planning and Scheduling in Manufacturing and Services. 2009. Available online:

https://link.springer.com/book/10.1007/978-1-4419-0910-7 (accessed on 3 July 2022).

11. Türkyılma , .; Şen ar, Ö.; Ünal, I.; Bulkan, S. A research survey: Heuristic approaches for solving multi objective flexible job

shop problems. J. Intell. Manuf. 2020, 31, 1949–1983. https://doi.org/10.1007/s10845-020-01547-4.

12. Guzman, E.; Andres, B.; Poler, R. Matheuristic Algorithm for Job-Shop Scheduling Problem Using a Disjunctive Mathematical

Model. Computers 2021, 11, 1. https://doi.org/10.3390/computers11010001.

13. Viana, M.S.; Contreras, R.C.; Junior, O.M. A New Frequency Analysis Operator for Population Improvement in Genetic Algo-

rithms to Solve the Job Shop Scheduling Problem. Sensors 2022, 22, 4561. https://doi.org/10.3390/s22124561.

14. Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J.A. The Coral Reefs Optimization Algorithm: A

Novel Metaheuristic for Efficiently Solving Optimization Problems. Sci. World J. 2014, 2014, 739768.

https://doi.org/10.1155/2014/739768.

15. Salcedo-Sanz, S.; García-Díaz, P.; Portilla-Figueras, J.; Del Ser, J.; Gil-López, S. A Coral Reefs Optimization algorithm for optimal

mobile network deployment with electromagnetic pollution control criterion. Appl. Soft Comput. 2014, 24, 239–248.

https://doi.org/10.1016/j.asoc.2014.07.007.

16. Salcedo-Sanz, S.; Camacho-Gómez, C.; Mallol-Poyato, R.; Jiménez-Fernández, S.; Del Ser, J. A novel Coral Reefs Optimization

algorithm with substrate layers for optimal battery scheduling optimization in micro-grids. Soft Comput. 2016, 20, 4287–4300.

https://doi.org/10.1007/s00500-016-2295-7.

17. Salcedo-Sanz, S.; Gallo-Marazuela, D.; Pastor-Sánchez, A.; Carro-Calvo, L.; Portilla-Figueras, A.; Prieto, L. Offshore wind farm

design with the Coral Reefs Optimization algorithm. Renew. Energy 2014, 63, 109–115.

https://doi.org/10.1016/j.renene.2013.09.004.

18. Bedoya-Valencia, L. Exact and Heuristic Algorithms for the Job Shop Scheduling Problem with Earliness and Tardiness over a

Common Due Date. Ph.D. Thesis, Old Dominion University, Norfolk, VA, USA, 2007.

19. Brucker, P.; Jurisch, B.; Sievers, B. A branch and bound algorithm for the job-shop scheduling problem. Discret. Appl. Math. 1994,

49, 107–127. https://doi.org/10.1016/0166-218x(94)90204-6.

20. Çaliş, B.; Bulkan, . research survey: Review of AI solution strategies of job shop scheduling problem. J. Intell. Manuf. 2013,

26, 961–973. https://doi.org/10.1007/s10845-013-0837-8.

21. Muthuraman, S.; Venkatesan, V.P. A Comprehensive Study on Hybrid Meta-Heuristic Approaches Used for Solving Combina-

torial Optimization Problems. In Proceedings of the 2017 World Congress on Computing and Communication Technologies

(WCCCT), Tiruchirappalli, India, 2–4 February 2017; pp. 185–190. https://doi.org/10.1109/WCCCT.2016.53.

22. Aarts, E.; Aarts, E.H.; Lenstra, J.K. Local Search in Combinatorial Optimization. 2003. Available online: https://press.prince-

ton.edu/books/paperback/9780691115221/local-search-in-combinatorial-optimization (accessed on 3 July 2022).

23. Gendreau, M.; Potvin, J.-Y. Metaheuristics in Combinatorial Optimization. Ann. Oper. Res. 2005, 140, 189–213.

https://doi.org/10.1007/s10479-005-3971-7.

24. Yang, X.-S. (Ed.) Nature-Inspired Optimization Algorithms; Elsevier: Oxford, UK, 2014. https://doi.org/10.1016/b978-0-12-416743-

8.00016-6.

25. Davis, L. Job Shop Scheduling with Genetic Algorithms. In Proceedings of the 1st International Conference on Genetic Algo-

rithms, Pittsburgh, PA, USA, 24–26 July 1985; pp. 136–140.

26. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control,

and Artificial Intelligence. MIT Press eBooks. IEEE Xplore. Available online: https://ieeexplore.ieee.org/book/6267401 (accessed

on 3 July 2022).

27. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’ 5—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

https://doi.org/10.1109/ICNN.1995.488968.

28. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680.

https://doi.org/10.1126/science.220.4598.671.

29. Wang, S.-J.; Tsai, C.-W.; Chiang, M.-C. A High Performance Search Algorithm for Job-Shop Scheduling Problem. Procedia Com-

put. Sci. 2018, 141, 119–126. https://doi.org/10.1016/j.procs.2018.10.157.

30. Yu, H.; Gao, Y.; Wang, L.; Meng, J. A Hybrid Particle Swarm Optimization Algorithm Enhanced with Nonlinear Inertial Weight

and Gaussian Mutation for Job Shop Scheduling Problems. Mathematics 2020, 8, 1355. https://doi.org/10.3390/math8081355.

31. Kurdi, M. An effective genetic algorithm with a critical-path-guided Giffler and Thompson crossover operator for job shop

scheduling problem. Int. J. Intell. Syst. Appl. Eng. 2019, 7, 13–18. https://doi.org/10.18201/ijisae.2019751247.

Appl. Sci. 2022, 12, 9867 26 of 26

32. Jiang, T.; Zhang, C. Application of Grey Wolf Optimization for Solving Combinatorial Problems: Job Shop and Flexible Job Shop

Scheduling Cases. IEEE Access 2018, 6, 26231–26240. https://doi.org/10.1109/access.2018.2833552.

33. Wang, F.; Tian, Y.; Wang, X. A Discrete Wolf Pack Algorithm for Job Shop Scheduling Problem. In Proceedings of the 2019 5th

International Conference on Control, Automation and Robotics (ICCAR), Beijing, China, 19–22 April 2019; pp. 581–585.

https://doi.org/10.1109/iccar.2019.8813444.

34. Hamzadayı, .; Baykasoğlu, .; kpınar, Ş. ol ing combinatorial optimi ation problems with single seekers society algorithm.

Knowl.-Based Syst. 2020, 201–202, 106036. https://doi.org/10.1016/j.knosys.2020.106036.

35. Garcia-Hernandez, L.; Salas-Morera, L.; Carmona-Munoz, C.; Abraham, A.; Salcedo-Sanz, S. A Hybrid Coral Reefs Optimiza-

tion—Variable Neighborhood Search Approach for the Unequal Area Facility Layout Problem. IEEE Access 2020, 8, 134042–

134050. https://doi.org/10.1109/access.2020.3010577.

36. Tsai, C.-W.; Chang, H.-C.; Hu, K.-C.; Chiang, M.-C. Parallel coral reef algorithm for solving JSP on Spark. In Proceedings of the

2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp.

001872–001877. https://doi.org/10.1109/smc.2016.7844511.

37. Cheng, R.; Gen, M.; Tsujimura, Y. A tutorial survey of job-shop scheduling problems using genetic algorithms—I. Representa-

tion. Comput. Ind. Eng. 1996, 30, 983–997. https://doi.org/10.1016/0360-8352(96)00047-2.

38. Cheng, R.; Gen, M.; Tsujimura, Y. A tutorial survey of job-shop scheduling problems using genetic algorithms, Part II: Hybrid

genetic search strategies. Comput. Ind. Eng. 1999, 36, 343–364. https://doi.org/10.1016/s0360-8352(99)00136-9.

39. Lee, Y.S.; Graham, E.; Jackson, G.; Galindo, A.; Adjiman, C.S. A comparison of the performance of multi-objective optimization

methodologies for solvent design. In Computer Aided Chemical Engineering; Kiss, A.A., Zondervan, E., Lakerveld, R., Özkan, L.,

Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 37–42. https://doi.org/10.1016/b978-0-12-818634-3.50007-2.

40. Ruiz, J.; Garcia, G. Simulated Annealing Evolution; IntechOpen: London, UK, 2012. https://doi.org/10.5772/50176.

41. Mladeno ić, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. https://doi.org/10.1016/s0305-

0548(97)00031-2.

42. Hansen, P.; Mladeno ić, N.; Uroše ić, D. Variable neighborhood search for the ma imum clique. Discret. Appl. Math. 2004, 145,

117–125. https://doi.org/10.1016/j.dam.2003.09.012.

43. Lawrence, S. Resource constrained project scheduling: An experimental investigation of heuristic scheduling techniques (Sup-

plement). Master’s Thesis, Graduate School of Industrial Administration, Pittsburgh, PA, USA, 1984.

44. Qing-Dao-Er-Ji, R.; Wang, Y. A new hybrid genetic algorithm for job shop scheduling problem. Comput. Oper. Res. 2012, 39,

2291–2299. https://doi.org/10.1016/j.cor.2011.12.005.

45. Gao, L.; Zhang, G.; Zhang, L.; Li, X. An efficient memetic algorithm for solving the job shop scheduling problem. Comput. Ind.

Eng. 2011, 60, 699–705. https://doi.org/10.1016/j.cie.2011.01.003.

46. Fisher, C.; Thompson, G. Probabilistic Learning Combinations of Local Job-shop Scheduling Rules; Industrial Scheduling: Englewood

Cliffs, NJ, USA, 1963; pp. 225–251.

47. Applegate, D.; Cook, W. A Computational Study of the Job-Shop Scheduling Problem. Informs J. Comput. 1991, 3, 149–156.

https://doi.org/10.1287/ijoc.3.2.149.

48. Adams, J.; Balas, E.; Zawack, D. The Shifting Bottleneck Procedure for Job Shop Scheduling. Manag. Sci. 1988, 34, 391–401.

https://doi.org/10.1287/mnsc.34.3.391.

49. Viana, M.S.; Junior, O.M.; Contreras, R.C. An Improved Local Search Genetic Algorithm with Multi-crossover for Job Shop

Scheduling Problem. In Artificial Intelligence and Soft Computing; Springer: Cham, Swizerland, 2020; pp. 464–479.

https://doi.org/10.1007/978-3-030-61401-0_43.

