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Abstract: If the layer of soil surrounding a pile is not taken into account during the engineering 

detection process, the velocity-time curve might show asymptotic diameter shrinkage or diameter 

expanding features, which would alter the interpretation of the test findings. In this study, we sug-

gest combining multi-feature extraction and a convolutional neural network (CNN) to increase ac-

curacy in pile defect recognition for layered soil conditions and traditional deep learning flaws. 

First, numerical simulations are run to create velocity–time curves for foundation piles under lay-

ered soil conditions. Then, the data are extracted from three dimensions: time domain, frequency 

domain, and time-frequency domain, respectively, and fused into a set of feature vectors. Finally, a 

foundation pile defect identification model combining multi-scale features and CNN is established. 

The findings demonstrate that the CNN model has 97.8% accuracy while the PNN has 28.6% accu-

racy, demonstrating that the approach is very reliable. 

Keywords: layered soil; multi-features extraction; defect recognition; numerical simulation;  

convolutional neural network (CNN) 

 

1. Introduction 

Pile foundations, as load-bearing elements supporting superstructures, often display 

strong load-bearing capacity under various challenging engineering and geological cir-

cumstances. Pile fracture, expansion, shrinkage, segregation, and other problems are fre-

quently brought on by subpar construction technology, a complex geological environ-

ment, a limited level of construction personnel, and other factors. This makes pile foun-

dation engineering a project that is difficult to control. These issues are directly connected 

to people’s lives and property safety. Foundation pile quality checking is a crucial step in 

reducing engineering hazards. After years of development, the low strain reflection wave 

method has become an efficient tool for engineering the examination of pile integrity due 

to its straightforward equipment, lightweight, low cost, and accurate and dependable test 

findings [1]. 

The low-strain reflection approach involves detecting and analyzing stress waves us-

ing sensors. The reflection and transmission of the stress waves occur when the imped-

ance of the cross section changes during propagation. The integrity of the foundation pile 

is judged by analyzing and processing the stress reflected wave signal. Signal processing 

and signal feature extraction are essential to determine the accuracy of subsequent pile 

foundation detection classification and recognition. Wavelet analysis is very effective for 
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the local feature analysis of the signal [2], but the nature of the signal in other time and 

frequency domains is not fully considered. Moreover, the wavelet transform is very de-

pendent on the wavelet basis function and the decomposition level, and there is a great 

deal of artificiality in selecting the basis function. Many scholars have selected the wavelet 

basis function with a stroke [3–5]. The same signal uses different wavelet basis functions 

to decompose. It will have different effects, which directly affect the discriminant effect of 

the dynamic signal and result in a reduction in the method’s practicality. Several Intrinsic 

Mode Functions (IMF) are directly separated from the signal using the Empirical Mode 

Decomposition (EMD) technique [6]. The fact that each IMF is orthogonal to the others is 

essential. Nevertheless, the only drawback is that modal aliasing occurs quickly in decom-

position. Ensemble Empirical Mode Decomposition (EEMD) is an excellent solution to the 

phenomenon of mode mixing. In 2009, Zhaohua Wu et al. [7] from Florida State University 

added white noise to EMD. However, it is necessary to set the white noise amplitude and 

the number of iterations artificially, which results in significant reconstruction errors and 

poor decomposition completeness. To overcome the reconstruction inaccuracy, Torres et 

al. [8] developed an entire ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN). White noise then embraces the signal using the original EEMD approach, 

effectively reducing the model complexity. However, CEEMDAN still produces a small 

number of faulty components and residual noise in the decomposition process. Therefore, 

Colominas et al. [9] proposed an Improved CEEMDAN (ICEEMDAN) in 2014. Based on 

CEEMDAN, the signal is continually divided by adding Gaussian white noise, and the 

resulting signal is averaged. In contrast to the CEEMDAN signal decomposition tech-

nique, this method dramatically inhibits the phenomenon of faulty components in signal 

decomposition and effectively improves the efficiency of signal decomposition. 

All of the above signal processing methods could successfully capture the signal’s 

features, and some professors have researched the extraction of eigenvalues. Cai, Q.Y. [10] 

used multi-resolution analysis to capture the feature vector representing the power spec-

trum’s power composition fed into a neural network to identify the pile defect. To obtain 

the energy mean and power spectrum in the frequency range as feature vectors to input 

into the neural network, Bai, Q.L. [11] employed wavelet transform. Jiang, X.L. [12] se-

lected Daubechies4 wavelet 5-layer multi-resolution analysis to extract the characteristic 

frequency spectrum amplitude. In 2015, Kang, W.X. and Li, J.D. [13] of the Harbin Institute 

of Technology proposed for the first time that quantized information entropy could be 

used to detect stress wave signals, and the quantized information entropy was proved to 

be very comprehensive after experiments. Li, J.D. [14] built a feature vector using quan-

tized information entropy, energy, and variance utilizing the wavelet package calculation. 

The results revealed that the feature is helpful for stress wave signal singularity detection. 

From the above studies, it can be concluded that in the processing of foundation pile dy-

namic measurement signals, the feature values extracted are all from the same dimension, 

mostly variance, power spectrum means, and information entropy, which does not differ-

entiate enough between defects. However, the defect information in the foundation pile 

detection signal under layered soil conditions is very complex and rich. It is often insuffi-

cient to characterize the complex signal with only one-dimensional features, so a more in-

depth study is needed in extracted features. 

Machine learning is frequently utilized in defect recognition as science and technol-

ogy advance. Support vector machines are well suited to the learning method for small 

sample situations, cleverly solving the dimensionality problem and avoiding dimensional 

disasters. Kang, W.X. [15], Li, Z.B. [16], and Xue, Z.J. [17] used support vector machines 

to identify the type and degree of foundation pile defects based on the minor sample na-

ture of the test data, which improved the accuracy of the classification of foundation pile 

defects. Deep learning is also advancing quickly, and neural networks, with their strong 

self-learning and nonlinear mapping capabilities, are particularly suitable for recognizing 

complex signals. Good results have been achieved in recognizing foundation pile defects 

[18,19]. 
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It is challenging to show during foundation pile integrity testing when the engineer-

ing properties of the soil on the pile side change significantly whether the characteristic 

signals on the curve are brought on by pile defects or geological changes simply based on 

the reflected wave curve in the field [20]. To avoid the interference of soil formation on 

the foundation pile integrity and improve the inspectors’ efficiency, this paper analyses 

the changing pattern and characteristics of the dynamic measurement curve of the pile 

body with common defects by establishing a three-dimensional finite element model and 

verifies the numerical simulation using experiments. The article combines multi-feature 

extraction and a convolutional neural network to achieve an accuracy of 97.8% in recog-

nizing foundation pile defects, which realizes the automated detection of foundation pile 

defects. 

The quality problem of foundation pile engineering will involve various aspects. 

Consequently, the state places a high value on the quality inspection department; yet, due 

to testing expenses and project progress limitations, the quality inspection department 

usually uses random inspections to control the quality of the project. Random inspection 

results tend to miss some defective foundation piles, and the inspection results lack im-

partiality. It is essential to research and explore methods for testing foundation piles at a 

lower cost and a higher level of inspection. Therefore, this research has good theoretical 

and practical application value and is highly important in terms of both societal and eco-

nomic rewards. 

2. Materials and Methods 

2.1. Theoretical Basis of Pile Detection by Low Strain Reflection Wave Method 

When pile length L > > pile diameter D, the stress wave length λ > > D conforms to 

the setting of the one-dimensional rod, and the stress wave’s progression in the pile will 

be calculated using the one-dimensional rod fluctuation equation. When there are defects 

in the pile, the wave will produce reflection and transmission; reflected waves propagate 

reverse along the pile to the top of the pile; the transmitted wave continues to propagate 

downward. Using the characteristic line method to solve the fluctuation equation, you can 

obtain the velocity reflected wave and transmission wave at the interface of the pile body 

defects and the incident wave [21]: 

1

1
r i
V V






 


 (1) 

2

1
t i
V V


 


 (2) 

The essential physical features of the incident wave, reflecting wave, and transmit 

wave are represented by the subscript symbols i, r, and t. Pile integrity coefficient β = Z2/Z1, 

impedance Z = ρAC; ρ is the pile density; A represents the pile’s cross-sectional area; C =

�E ρ⁄  is the velocity of stress wave transmission in the pile body. 
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2.2. Numerical Simulation of Dynamic Test of Foundation Pile in Layered Soil 

In machine learning classification, a large amount of data is needed to train and learn 

the classification model. It is not easy to collect dynamic test data of defective piles in 

engineering, and it is impossible to obtain abundant data on defective piles through ex-

periments only. Abaqus enables the simulation of common problems in engineering. The 

contact problem is a smooth nonlinear problem. The display product approach in Abaqus 

is more appropriate for handling the stress wave propagation problem because there is 

no relative displacement between them [22]. Nevertheless, the actual test pile experiment 

is expensive in the actual study, and the defective pile cannot be used in the actual project 

after the test. Therefore, to minimize the experiment’s cost, this study was carried out to 

obtain the dynamic test curve data of the foundation pile under layered soil conditions 

through finite element simulation. 

2.2.1. Basic Theory and Model Establishment 

First, select the component module and set the model space, type, and essential char-

acteristics via the component manager. Reducing the impact of reflected waves on the 

numerical simulation results after the stress waves have propagated to the soil boundary. 

There are two general methods of setting up the finite element calculation; one is to set up 

absorbing boundary conditions such as viscoelastic boundaries, and the other is to set up 

a wide range of soil boundaries. In this paper, we set a wide range of soil boundaries for 

consistency and clarity of computation. The selection of the geometric model of the soil 

unit on the side of the pile is one of the vital factors affecting the calculation’s outcomes. 

The model is not as large as it should be, as the calculation time increases significantly due 

to the large model. In the foundation piles, a finite element simulation, the area of clay 

around the pile that Tanchanis utilized was 1.4 times the length and 12 times the diameter 

of the pile. The analysis showed that it was sufficient to evaluate the piling foundation’s 

carrying capability [23]. The American Petroleum Institute believes that the lateral soil 

within the range of 8D will impact the pile foundation’s bearing capacity [24]. Cooke ob-

tained from the analysis of the experimental data of London clay that when the measured 

minimum pile spacing was 12D, the two piles would not affect each other. For a single 

pile, 6D was sufficient. When the soil radius there was roughly 10D, the shear displace-

ment was essentially small [25]. 

Based on the above research, the diameter of the pile–soil model is 10 times the pile 

diameter, the depth direction is 1.5 times the pile length, and the pile is 1 m long and has 

a 0.1 m diameter. Figure 1 depicts a model of the pile and soil. 

   

Figure 1. Pile–soil model. 

The characteristics of the segment and the material. When the pile is tested under low 

strain, the deformation caused by the excitation force of the pile is minimal. The defor-

mation stage assumes that the pile is in the linear elastic deformation stage; thus, linear 

elasticity is the description of the material model. To make the model simple and effective, 

it is assumed that the soil beneath the pile and the surrounding area is also linear elastic 
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[26]. The material attribute element simulates the segregation part with a lower elastic 

modulus than the pile body, and the fractured part is simulated by the air element [27]. 

The selection of pile–soil material parameters comes from study 27 [28]. The specific num-

bers can be seen in Table 1. 

Table 1. Pile–soil material parameters. 

Part 
Elastic Modulus 

E(GPa) 

Density 

ρ(kg/m3) 

Poisson Ratio 

ν 

Friction Coeffi-

cient fs 

pile 30 2400 0.17 - 

soil layer 1 0.015 1930 0.32 0.5 

soil layer 2 10 2250 0.25 0.6 

segregation part 15 2000 0.23 - 

breakdown part 1.293 0 0 - 

Define assembly. The function of the assembly is to assemble the parts to form an 

analysis. 

We are setting the analysis step. Because the analysis step completes the simulation 

process, the analysis step is determined by the requirements. Therefore, 2 L/C = 0.0006 s 

is the analysis step length, and the analysis step time is 0.0008 s. By setting the historical 

output to replace the sensor, the output point of the signal is set at the position of 2/3 R at 

the pile top. 

Establish interaction rules. The contact with the soil around the pile is face-to-face 

contact, and the rubbing is in the form of a penalty. The friction coefficient between the 

pile and each layer of soil is fs, and the contact between the pile bottom and the soil at the 

pile bottom is set as the binding constraint [29]. 

Determining the bounds and the loading. The longitudinal transient exciting force at 

pile top can be simulated by using the rising chord pulse function (formula 3) well in line 

with the actual testing exciting force [26]: 

  d

dd

Ttt
TT

I
tp 








 0

2
cos1
π

 (3)

Td and I represent the exciting force’s pulse and sufficient time, correspondingly in 

the formula. Taking Td = 0.2 ms, t = 0.1 ms, p(t) = 1 N into the formula 3, I = 0.0001 N·s can 

be obtained. It is writable as p(t) = 0.5(1-cos10,000 πt), the 40 sections of the hammering 

times Td, and the curve of the time change of the unit hammering load is obtained as 

shown in Figure 2. Loading under the load module, inputting the unit force amplitude 

curve and magnitude input 2.0 × 107 can realize loading. 

 

Figure 2. The curve of unit hammer load versus time. 

Mesh division. The quality of mesh division directly affects the calculation efficiency 

and even the success of a simulation. If the mesh division is too fine, even though it can 
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increase calculating accuracy, it will spend many computer resources and affect efficiency. 

When the mesh size is excessive, it will not only affect the accuracy of the results but also 

lead to simulation failure [30]. The common nodes are used as far as possible in the pile 

and soil adjacent unit, and the mesh size is determined according to the estimated wave 

velocity. It uses C30 concrete, and as an illustration, the wave velocity C = �E ρ ⁄ = 3535 

m/s. The span of impact load is appropriate in 10 elements. The mesh size is first predicted 

to be 0.07 m using (Td × C) /10 = 0.07 m [31]. The specific mesh size needs to be divided 

based on a trial calculation to guarantee the calculation’s precision. The basic principle is 

that the calculated velocity–time curve does not change significantly with the expansion 

of the boundary. After trial calculation, the mesh size of soil around the pile is divided 

into 0.07 m, and the pile’s mesh size is 0.02 m. The element type is the C3D8R (3D 8-node 

reduced integral element). This type of element is often used because it is easy to converge 

in finite element simulation [32]. Figure 3 depicts the results of the mesh model pile and 

soil division. 

 

Figure 3. Mesh division of pile–soil model. 

After determining the preceding actions, they are entered into the visualization mod-

ule, and various post-processing of the calculation results can be carried out. 

2.2.2. Finite Element Model (FEM) of Pile 

Based on the FEM mentioned above method for pile foundation dynamic testing, the 

process of pile foundation dynamic testing was simulated. The size of the model pile is 

shown in Figure 4, the scenario was configured as given in Table 2 below, and Figure 5 

displays the outcomes of the numerical simulation. 

 

Figure 4. Model piles. 



Appl. Sci. 2022, 12, 9840 7 of 24 
 

Table 2. Scenario setting of the model pile. 

Pile Number 
The Scenario of the Soil around Pile 

Elastic Modulus E (Pa) Density ρ (kg/m3) Poisson Ratio ν Elastic Modulus E (Pa) 

1# 
1 × 1010 2250 0.25 0–0.3 

0.015 × 109 1930 0.32 0.3–1.5 

2# 
1 × 1010 2250 0.25 0–0.3 

0.015 × 109 1930 0.32 0.3–1.5 

3# 
1 × 1010 2250 0.25 0–0.3 

0.015 × 109 1930 0.32 0.3–1.5 

4# 
0.015 × 109 1930 0.32 0–0.7 

1 × 1010 2250 0.25 0.7–1.5 

5# 
0.015 × 109 1930 0.32 0–0.7 

1 × 1010 2250 0.25 0.7–1.5 

The radius of the pile is 0.1 m, and the length is 1 m. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5. Model dynamic test results: (a) 1 # model pile; (b) 2 # model pile; (c) 3 #model pile; (d) 4 # 

model pile; (e) 5 # model pile. 

Figure 5 shows the waveform changes of pile top reflection, Pile bottom reflection, 

soil boundary, and defects. According to the formula L = C ∙ ∆t/2( ∆t the time difference 

between the reflection signal’s first peak and the defect’s reflection peak), the pile’s height, 

soil layer placement, and defect position can be obtained as shown below in Table 3. 
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Table 3. Simulation results of pile dynamic test. 

Pile Number Length of the Piles (m) 
Soil Boundary Position 

(m) 
Defect Position (m) 

1# 1.06 0.33 - 

2# 1.05 0.30 0.45–0.57 

3# 1.07 0.33 0.46–0.58 

4# 1.02 0.74 0.47–0.58 

5# 0.99 0.70 0.48 

It can be seen from Table 3 that the numerical simulation results and the error of pile 

defect position and soil layer position are less than 0.05 m. It shows that the ABAQUS 

simulation method used in this paper has high accuracy, providing much data support 

for subsequent machine learning research. 

2.3. Experimental Verification 

Experiments are employed to validate the model in this research to confirm the de-

pendability and precision of the numerical simulations. The equipment selected for this 

paper is the DH5927N Dynamic Signal Test and Analysis System (Donghua Testing Tech-

nology Co., Ltd., China’s Jiangsu), as depicted in Figure 6. The components required in-

clude a rubber hammer, acceleration sensor (Sensitivity of 1006 mv/g), and a transmission 

data line. The center of the pile top is excited by the rubber hammer, and the signal is 

collected using the accelerometer. 

 

Figure 6. Dynamic signal analysis system and components. 

The experiment used concrete precast piles to help control the size of the defect. 

Strength grade of C30 with a ratio of (cement: sand: stone: water) 1:1.57:3.82:0.99 for the 

whole part of the pile and a strength grade of C15 with a ratio of (cement: sand: stone: 

water) 1:3.99:6.48:1.71 for the discrete part of the pile. The properties of the materials re-

quired in the tests are shown in Table 4 below. 

Table 4. Material parameter table. 

Material 
Elastic Modulus E 

(Pa) 

Density ρ 

(kg/m3) 
Poisson Ratio ν 

C30 concrete 3.0 × 1010 2400 0.17 

C15 concrete 1.5 × 106 2400 0.2 

soil layer 1 1 × 1010 2250 0.25 

soil layer 2 0.015 × 109 1930 0.32 

The low strain reflected wave method is studied based on the one-dimensional fluc-

tuation theory when L > 5 D piles are slender rods [33]. To avoid interference from re-

Acceleration sensor 

Rubber hammer 
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flected waves and shear displacements at the soil boundary, it was supposed that the di-

ameter of the dirt encircling the pile was 10 times larger [25]. As the defective pile could 

not be used in the actual project even after the test, based on the idea of environmental 

sustainability and to lower the cost of the test, the characteristics of the model pile were L 

= 1 m, D = 0.1 m. The soil size around the pile is 1 m in the horizontal direction and 1.5 

times the pile length in the vertical direction. 

A total of 5 model piles were made for this experiment, as depicted in Figure 7a: 

complete pile, diameter expanding pile, diameter shrinkage pile, segregation pile, and 

broken pile. PVC pipes were used as molds with diameters of 60 mm, 100 mm, and 140 

mm, where 60 mm and 140 mm were used for cross-sectional changes of shrinkage and 

expanding piles, respectively. After completion of pouring, 28 days of sprinkling and cov-

ering maintenance was carried out, and the mold was unmolded after completion of 

maintenance. The scenario of the model pile was set as in Table 2 and compacted every 20 

cm to ensure compaction, as in Figure 7b. 

  

(a) (b) 

Figure 7. Pile models: (a) 1# complete pile, 2# diameter expanding pile, 3# diameter shrinkage pile, 

4# segregation pile, and 5# broken pile; (b) Placement of model pile. 

The top surface of the pile was cleaned and leveled without debris before the exper-

iment. The coupling agent, such as butter or rubber cement, was used to adhere the sensor 

close to the top of the pile to ensure that the sensor was perpendicular to the top surface. 

The excitation point is the pile’s center, and the sensor acquisition point is arranged at 2/3 

R [34]. Figure 8 depicts the data capture procedure. 

  

Figure 8. Pile integrity testing field. 

The validity of the numerical simulation is shown in this work by comparing the 

simulation’s findings with those from experiments, see Figure 9. Due to the different ex-

citation methods of simulation and practical, the phase (i.e., where the wave peak occurs) 

has changed. However, it was observed that the reflection law of the stress wave is the 
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same when it passes through soil changes and defects during propagation. As shown by 

the computation outcomes in Table 5, it can be found that the error of the actual results 

and the numerical simulation results are tiny, which shows the validity of the numerical 

simulation. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 9. Comparison of finite element simulation results and experimental results: (a) 1# model 

pile; (b) 2# model pile; (c) 3# model pile; (d) 4# model pile; (e) 5# model pile. 

Table 5. Comparison table between finite element simulation results and experimental results. 

Pile Number Length of the Piles (m) 
Soil Boundary Position 

(m) 

Defect Position 

(m) 

1# 0.95 0.32 - 

2# 0.97 0.26 0.44–0.54 

3# 0.97 0.28 0.44–0.55 

4# 0.97 0.73 0.42–0.53 

5# 0.97 0.77 0.47 

2.4. Multi-Feature Extraction of Pile Dynamic Signal 

The dynamic measurement signal of a foundation pile contains much vital infor-

mation. When the stress wave encounters a change in the impedance of the section during 

propagation, the corresponding characteristic information will appear in the dynamic 

measurement signal, so it is imperative to extract the characteristic information used to 

characterize the defects in the dynamic measurement signal. Time, frequency, and time–
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frequency domain are commonly used statistical parameters. For complex signals, how-

ever, a single parameter cannot correctly characterize the signal state, and it is challenging 

to achieve an appropriate description [35]. Multi-feature extraction is widely used in me-

chanical breakdown identification [36,37], and the recognition consequence is excellent. 

In this study, feature indicators are extracted from time, frequency, and time–frequency 

domain data to comprehensively reflect the characteristics of the dynamic measurement 

signals of foundation piles under layered soil conditions. Moreover, constructs feature 

sets. 

2.4.1. Time Domain Feature Extraction 

The signal in the time domain is the original signal that has been obtained directly, 

i.e., time is taken as an independent variable that reflects the correlation between the sig-

nal in terms of amplitude and the temporal variable [38]. Time domain features often re-

flect the information more intuitively, such as the mean square value characterizing the 

energy of the signal and the variance reflecting the dispersion between data. Moreover, in 

recognizing technical failures, Xu, X. extracted variance, kurtosis, and square root ampli-

tude in the time domain feature extraction [39]. Xie, Y.F. extracted mean square and vari-

ance features [37] as part of the multi-feature extraction, which was input to the intelligent 

classification and identification method with good results. In this paper, five characteris-

tics were chosen according to the statistical aspect of periods, average value, mean square 

value, variance, skewness factor, and kurtosis factor. The time series xi(t) = {x1,x2,...,xn} of 

signal length N is denoted., xn}. Therefore the variables for each feature are calculated 

according to Table 6. 

Table 6. Time domain characteristic index. 

Characteristic Index Expression 
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


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


N

i
ix

N
x

1

21

 

variance 
2

1

)(
1

2 xx
N

x
N

i
i






 

root mean square value 



N

i
irms x

N
x

1

21

 

skewness 



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N
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k
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k
x 

 

2.4.2. Frequency Domain Feature Extraction 

Engineer examination objectives can also be satisfied by only time domain analysis; 

when there are more signal interference components, it is difficult to continue the analysis 

without filtering, and filtering can easily cause waveform distortion or even affect the 
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judgment of the inspector. The spectral signal received from the Fourier transform is the 

frequency domain data y; for the dynamic test signal for the foundation pile, the high 

amplitude resonance peak in its frequency domain signal directly corresponds to the 

foundation pile defect part [40]. When extracting features in the frequency domain, the 

frequency domain features extracted are mostly frequency centers, frequency of root 

mean squares, mean frequencies, etc. [36,41]. As a result, typical frequency domain fea-

tures are chosen for calculation in this article. Suppose that fk corresponds to the frequency 

value at which y = [y1,y2,y3,...yM] reflects the absolute amount of frequency, and N denotes 

the duration of the signal. M = N/2 denotes the length of the spectra, and Table 7 displays 

the typical frequency domain feature characteristics. 

Table 7. Frequency domain characteristic index. 

Characteristic Index Expression 

mean frequency 
1

M

mean
K

KF
M

y



  
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
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M

k k

kk
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y
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1
 

root mean square frequency 
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k

rms


 1

2

 

standard deviation frequency 
 

M

Fy

F

M

k
k

std






 1

2

mean

 

2.4.3. ICEEMDAN Decomposition Sample Entropy and Information Entropy  

Feature Extraction 

To deal with nonlinear signals, signal analysis is an imposing application for the Im-

proved Adaptive Noise Ensemble Empirical Mode Decomposition (ICEEMDAN) ap-

proach. When the foundation pile is defective, the received waveform signal is very com-

plex, and the signal reflected from the defective interface is feeble. The ICEMAN approach 

analyzes the weak signals concealed in the signal and interprets the reflective waveforms 

several times by deconstructing the signal into its various intrinsic mode operations 

(IMFS). Liu, L.L. completed quantitative detection of internal defects in anchor solids by 

processing the anchor ultrasonic guided wave reflection signals by the ICEEMDAN 

method [42]. Xing, S.L. used the ICEEMDAN method to decompose the numerical simu-

lation signals to extract damage indicators. The results showed that the extracted damage 

indicators were handy for identifying structures with or without damage after processing 

[43]. 

The ICEEMDAN method significantly inhibits the phenomenon of faulty compo-

nents in signal decomposition and effectively improves the efficiency of signal decompo-

sition. Here is the precise signal decomposition procedure. 

Step 1: Construct N signals with controllable noise based on the original signal x: 

( ) ( )

0 1
( ),( 1,2, )i ix x E w i N     (4)

where x(i) is i construction signal; β0 denotes the standard error of the noise at the first 

decomposition of the signal; w(i) is the ith added zero-mean unit-variance white noise; E1 

(·) is the first IMF operator to calculate the signal. 

Step 2:For each x(i), the local mean is calculated and averaged to obtain the first resid-

ual component: 
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 


I

i
ixM

I
r

11 ))((
1

 (5)

M1 (·) is an average local function. 

Step 3: Computing the first mode (k = 1), the original signal x minus the first residual 

r1: 

1

~
rxd   (6)

Step 4: Calculate the k-mode (k ≥ 2), subtract the residual rk-1 from the residual rk: 




 
I

i

i
kkkk wErM

I
r

1

)(
11 ))((

1
  (7)

kk rrd  11

~
 (8)

Step 5: Calculate the k = k + 1 mode and return to step 4 until the iteration termination 

condition is satisfied. 

The results of ICEEMDAN decomposition of complete pile dynamic signals in lay-

ered soils are shown in Figure 10. 

  
(a) (b) 

Figure 10. ICEEMDAN decomposition of reflective wave signal of complete pile: (a) Soil boundary 

position near pile tip; (b) Soil boundary position near pile base. 

The likelihood of a signal eventually containing faulty components increases with 

signal complexity. Spurious components increase the computational effort and affect the 

subsequent feature extraction. The level of correlation among the decomposed signal com-

ponents X and the original signal Y can be expressed using the correlation coefficient r. 

The connection of IMF components with the original signal is more robust and substan-

tially impacts the foundation pile’s recognition effect as r increases [44]. It is this way: 

)()(

),(
),(

YVarXVar

YXCov
YXr   (9)

Var (X) is the variance of X, while Var (Y) is the variance of Y. Cov (X, Y) is the covariance 

of X and Y. 

Calculate the correlation coefficient between each IMF component and the original 

signal. The results are displayed in Figure 11. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 11. Correlation analysis variation tendency: (a) Complete pile dynamic signal ICEEMDAN 

decomposition; (b) Diameter expanding piles dynamic signal ICEEMDAN decomposition; (c) Di-

ameter shrinkage piles dynamic signal ICEEMDAN decomposition; (d) Segregation pile dynamic 

signal ICEEMDAN decomposition; (e) Pile breaking dynamic signal ICEEMDAN decomposition. 

The above analysis shows that the correlation coefficients for the IMF3-IMF6 compo-

nents vary greatly, and the correlation coefficients of IMF1 and IMF2 are close to zero. 

Therefore, IMF3–IMF6 components are selected to continue to extract sample entropy and 

information entropy for research. 

Time series complexity is measured using sample entropy [45]. The calculation for 

the original time series X = {x1,x2,...,xN} see below for details: 

Stage 1: Construct the original signal into an m-dimensional vector: 

m-N,……1,2,=k)},1-m+(…),1+(),({=)( kxkxkxkXm ，  (10)

Stage 2: The Distance among the vectors Xm(k) and Xm(s) is defined as, i.e., the maxi-

mum absolute value of the two corresponding elements’ differences. The expression is: 
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      



 

sxkxsXkXd
m

mm

1,,0
max)(),(  (11)

Stage 3: The number of distances d less than the similar tolerance r is denoted as num 
(d＜r), and Cm(r) can be defined as: 

)1/(=)( )( mNnumrC rdm ＜
 (12)

Stage 4: Calculate the average value of Cm (r), denoted as )(rC m

; 

Stage 5: When the dimension is m + 1, repeat the previous three steps; calculate

)(1 rCm

, and get the average value )(1 rC m

; 

Stage 6: The sample entropy equation is finally identified as follows: 

)](/)([),,,( 1 rCrCInNrmXSampEn mm   (13)

Information entropy can be used to resolve the question of quantifying how much 

data is available. Its ability to represent the internal information of the data is strong, and 

the magnitude of its value is related to the probability of an event occurring [45]. The more 

orderly a system is, its information entropy value will be lower. Conversely, the more 

chaotic a system is, its information entropy level is stronger. It is possible to implement a 

metric for a data message. Let the sequence of the sources’ discrete random variables be 

X = { x1, x2,..., xn } the probabilities of X are denoted as pi = P(xi) ( i = 1,2,..., n ), while the 

likelihood distribution fulfills Equation (14), the function is described as in Equation (15). 

1

1
n

i
i

p


  (14)

( ) ( )log ( )
x A

H X p x p x


 
 

(15)

2.4.4. Feature Set Construction 

To display convenience, 1, 2, 3, 4, and 5 denote the complete pile, diameter expanding 

pile, diameter shrinking pile, segregation pile, and broken pile, respectively. G denotes 

layered soil, H denotes layered soil boundary in the upper part of the defect, and I layered 

soil boundary is in the lower part of the defect. The multiple features extracted in the three 

dimensions were combined into a 17-dimensional feature vector after normalizing all fea-

tures, which offers the convolutional neural network input, as illustrated in Table 8. 

Table 8. Three domain features. 

Scenar-

ios 

Time Domain Frequency Domain 
Time and Frequency Do-

main- Sample Entropy 

Time and Frequency Do-

main- Information En-

tropy 

�� x xσ2 xα xk Fmean Fc Frms Fstd IMF3 IMF4 IMF5 IMF6 IMF3 IMF4 IMF5 IMF6 

1—G 
1.82 × 

10−05 

5.39 × 

10−06 

3.81 × 

10−06 

6.12 × 

10−02 
1 0 

3.16 × 

10−03 

3.96 × 

10−03 

2.39 × 

10−03 

7.18 × 

10−08 

2.57 × 

10−06 

1.19 × 

10−06 

2.51 × 

10−06 

6.96 × 

10−05 

6.95 × 

10−05 

6.95 × 

10−05 

6.94 × 

10−05 

H—2 
1.11 × 

10−05 

2.80 × 

10−06 

1.95 × 

10−06 

5.44 × 

10−02 
1 0 

2.08 × 

10−03 

2.64 × 

10−03 

1.61 × 

10−03 

4.87 × 

10−08 

8.06 × 

10−07 

4.28 × 

10−07 

1.49 × 

10−06 

4.84 × 

10−05 

4.84 × 

10−05 

4.84 × 

10−05 

4.84 × 

10−05 

2—I 
2.25 × 

10−05 

7.03 × 

10−06 

5.04 × 

10−06 

6.25 × 

10−02 
1 0 

4.16 × 

10−03 

5.92 × 

10−03 

4.21 × 

10−03 

1.65 × 

10−06 

6.10 × 

10−06 

1.45 × 

10−06 

2.31 × 

10−06 

1.19 × 

10−04 

1.19 × 

10−04 

1.19 × 

10−04 

1.19 × 

10−04 

H—3 
2.97 × 

10−05 

1.00 × 

10−05 

7.29 × 

10−06 

6.56 × 

10−02 
1 0 

4.91 × 

10−03 

6.02 × 

10−03 

3.49 × 

10−03 

4.85 × 

10−08 

1.15 × 

10−05 

9.23 × 

10−07 

2.48 × 

10−06 

1.52 × 

10−04 

1.51 × 

10−04 

1.52 × 

10−04 

1.52 × 

10−04 

3—I 
2.35 × 

10−05 

7.52 × 

10−06 

5.50 × 

10−06 

6.23 × 

10−02 
1 0 

4.29 × 

10−03 

5.60 × 

10−03 

3.60 × 

10−03 

1.27 × 

10−07 

5.11 × 

10−06 

1.67 × 

10−06 

3.30 × 

10−06 

9.82 × 

10−05 

9.80 × 

10−05 

9.77 × 

10−05 

9.74 × 

10−05 
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H—4 
3.81 × 

10−05 

1.25 × 

10−05 

8.55 × 

10−06 

6.77 × 

10−02 
1 0 

5.43 × 

10−03 

6.83 × 

10−03 

4.15 × 

10−03 

1.30 × 

10−07 

8.43 × 

10−06 

6.10 × 

10−06 

3.76 × 

10−06 

1.77 × 

10−04 

1.76 × 

10−04 

1.77 × 

10−04 

1.77 × 

10−04 

4—I 
3.19 × 

10−05 

1.15 × 

10−05 

8.56 × 

10−06 

6.36 × 

10−02 
1 0 

5.44 × 

10−03 

6.88 × 

10−03 

4.21 × 

10−03 

1.14 × 

10−07 

1.41 × 

10−05 

3.25 × 

10−06 

4.82 × 

10−07 

1.52 × 

10−04 

1.52 × 

10−04 

1.52 × 

10−04 

1.52 × 

10−04 

H—5 
2.44 × 

10−04 

9.94 × 

10−05 

6.12 × 

10−05 

9.69 × 

10−02 
1 0 

2.15 × 

10−02 

2.79 × 

10−02 

1.79 × 

10−02 

5.52 × 

10−07 

5.17 × 

10−05 

6.30 × 

10−05 

6.53 × 

10−06 

8.15 × 

10−04 

8.14 × 

10−04 

8.14 × 

10−04 

8.14 × 

10−04 

5—I 
5.56 × 

10−04 

2.27 × 

10−04 

1.20 × 

10−04 

9.43 × 

10−02 
1 

4.42 × 

10−7 

3.85 × 

10−02 

5.13 × 

10−02 

3.38 × 

10−02 
0 

1.24 × 

10−04 

1.51 × 

10−04 

1.29 × 

10−05 

8.07 × 

10−04 

8.28 × 

10−04 

8.49 × 

10−04 

8.71 × 

10−04 

2.5. Pile Defect Recognition Based on Multi-Feature Extraction and CNN 

Since there is no such thing as an unlimited number of samples in practical applica-

tions, the recognition model’s complexity and the algorithm’s difficulty rise as the sample 

count rises. Supervised algorithms divide data into class labels for recognition and classi-

fication with various applications. Fang, Y.L. [46] categorizes the frame structure into 

damage units based on the working conditions and the wavelet packet sample entropy. 

The accuracy of identifying single and many damages to the structure is 100%. After 

wavelet packet decomposition, Xue, Z.J. [17] extracted the energy of each frequency band 

from the foundation pile dynamic measurement signal and manually graded each pile’s 

degree of defects before marking the category number and categorizing the piles into four 

groups. Upon having a support vector machine in training, the recognition results were 

highly robust and matched the actual situation. Hassan Sarmadi [47] illustrates the benefit 

of utilizing supervised learning concepts and Nave Bayes classification methods for the 

validation of damage detection findings by labeling two cases of structures with or with-

out damage as 0 and 1 labels. The supervised artificial neural network developed by Gil-

bert A. Angulo-Saucedo [48] to detect damage categories in metal and composite material 

constructions has been demonstrated to be highly accurate, with accuracies of 72.5% and 

73.75% for SKN and XYF networks, respectively. Convolutional neural networks are thus 

used in this study to categorize the many forms of foundation pile defects. 

2.5.1. Convolutional Neural Network (CNN) 

Input, convolutional, pooling, fully connected, and output layers comprise convolu-

tional neural networks’ basic network structures, often cascading architectures [49]. The 

input layer is in charge of feeding the matrix to be processed into the network; the convo-

lutional and pooling layers are interconnected in pairs and are in charge of feature mining 

and extraction; the amount of connectivity between these layers can be adjusted depend-

ing on the model’s complexity. The output and fully connected layers carry out the final 

categorization. 

The convolutional layer is the core component of the CNN, which is in charge of the 

recursive convolution of the input matrix to extract the associated features. A small por-

tion of the preceding layer is used as input by the convolutional layer, which then chooses 

a convolutional kernel to be placed there and multiplies it by the value of the correspond-

ing neuron in the convolutional layer to produce the convolutional result. The convolu-

tional layer has to have the stride hyperparameter configured for improved training out-

comes. The first convolutional layer, with a kernel size of 6, several 12, and a stride of 1, 

is used in this paper. The second and third convolutional layers (kernel size is 2, the num-

ber is 12, and the stride is 1). 

The pooling layer, the downsampling layer, samples the convolutional layer’s output 

data by downsampling the features while maintaining the depth dimension. This in-

creases the generalizability of the model and curbs the overfitting phenomenon while us-

ing fewer parameters and computations in the network. Maximum pooling and average 

pooling are the two most popular pooling operations. Average pooling indicates that the 

average value within the local window data is selected for calculation, and maximum 

pooling indicates that the maximum value of the data within the local window is selected. 
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Here, the most extensive pooling layer is selected for downsampling, and the dimensions 

of pooling layers 1 and 2 are 2 × 2 with a step size of 1.  

The output layer produces the results using the same number of nodes as the input 

sample categories after connecting with the fully connected layer, reassembling the pre-

vious local features through the weight matrix, and mapping the local features to the sam-

ple token space. The output unit solution for the classification problem is the Softmax 

function. To help the neural network learn more nonlinear mappings, this research ex-

tends the use of convolutional neural networks using ReLU [50] as the network’s activa-

tion function, which can cover many nonlinear models with greatly enhanced expressive 

power.  

Re
( ) max(0, )

LU
f x x     x∈[0,＋∞] (16)

One of the main drawbacks of neural networks during training is overfitting. One 

standard method of regularisation is adding a Dropout layer to the network model, which 

prevents all neurons from being placed in one layer to optimize the weights simultane-

ously. The Dropout layer also spurs the activation of the neurons in the hidden layer, 

reducing the synergistic effect of the different features and improving the robustness of 

the network. The fully connected is followed by a Dropout layer in this network paradigm, 

with the Dropout layer parameter set to 0.5 [51]. 

2.5.2. Construction of Pile Foundation Defect Recognition Network Using Multi-Feature 

Extraction and Convolutional Neural Network (CNN) 

The construction of the CNN model in this paper consists of three convolution-pool-

ing layer pairs, two fully connected layers, and a Dropout layer. This is shown in Figure 

12.  

      

Figure 12. CNN model. 

The hyperparameters of the model include learning rate (0.001), training epochs 

(195), and minibatch size (20). 

The foundation pile defect identification model is illustrated in Figure 13. 
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Figure 13. Recognition model. 

Step 1: Select the dynamic test signals of complete piles when the soil around the pile 

is layered, and the dynamic test signals of defective piles (diameter expanding pile, diam-

eter shrinking pile, segregation pile, and the broken pile) when the location of the defect 

is above and below the soil division, and identify the types of foundation piles for these 

nine types of signals. 

Step 2: Feature extraction and feature vector construction are performed for each sig-

nal. Five time-domain features are chosen in the time domain, four in the frequency do-

main, ICEEMDAN decomposition is carried out, IMF3-IMF6 components are chosen us-

ing the correlation coefficient criterion, and sample entropy and information entropy are 

computed to produce eight features, which together make up a 17-dimensional vector. 

Step 3: Normalize the feature vectors so that they are uniformly distributed between 

0 and 1 as input to the classifier. 

Step 4: Training the classifier using the training set data. 

Step 5: Test the trained classifier using the test set data to obtain the classification 

recognition rate. 

3. Results and Discussion 

3.1. CNN Pile Defect Recognition 

The ABAQUS finite element simulation result is the source of sample data for the 

identification model. With a training set of 9 × 100 samples, a validation set of 9 × 40 sam-

ples, and a test set of 9 × 20 samples, the foundation pile dynamic measurements were 

taken as the data set by varying the defect size, defect location, and soil thickness under 

the formation soil conditions of stiffer soils above and below the pile perimeter, respec-

tively.  

We define 1, 2, 3, 4, and 5 to mean intact pile, expanded diameter pile, reduced di-

ameter pile, separated pile, and broken pile, respectively. g denotes layered soil, h denotes 

layered soil boundary in the upper part of the defect, and i layered soil boundary in the 

lower part of the defect. The labels for the classification categories are shown in Table 9. 

After that, the CNN models were used to identify the categories. In Figure 14, the training 

schedule is displayed. 

Table 9. Classification category labels. 

Label 1 2 3 4 5 6 7 8 9 

Scenarios 1-G H-2 2-I H-3 3-I H-4 4-I H-5 5-I 
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Figure 14. CNN model training schedule. 

The training results of the CNN revealed that the accuracies of the training base were 

98.67%, and the validation set was 98.33%. 

The CNN prediction findings in this research are presented using a mixed matrix. 

The pink box in the confusion matrix depicts the proportion of predictions that deviate 

from the actual values. The green diagonal line indicates that the expected results match 

the test labels. Figure 15 demonstrates that such a CNN recognition model has an accuracy 

rate of 97.8%, with lower identification rates of 90% and 95.5% for classes 4 and 6, respec-

tively. The remaining categories all received 100% recognition. To avoid the impact of soil 

formation on the dynamic testing curve of layered soil, the model can accurately identify 

the type of faults and the location of layered soil. 

 

Figure 15. CNN model classification prediction results. 
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3.2. CNN Recognition Results for Different Domain Features 

This paper uses this classifier for comparative analysis from the perspective of fea-

ture composition, respectively, with the division of the sample dataset remaining un-

changed, to further illustrate the accuracy of multi-domain features combined with CNN 

for recognizing foundation pile defects. Table 10 displays the accuracy results for CNN 

model recognition in the time, frequency, and time–frequency domains, respectively. 

Table 10. Comparison of recognition results for different domain features. 

CNN 

Accuracy (%) 

Time Domain Frequency Domain 
Time–Frequency 

Domain 
Multi-Domain 

Train 89.00 81.89 88.56 98.67 

Validation 87.50 80.28 86.67 98.33 

Test 88.89 77.22 86.11 97.80 

The analysis of Table 10 reveals that the test accuracy achieved by the suggested 

method is 97.78%, which is significantly higher than any single-domain characteristics. 

This suggests that multi-domain features offer more excellent feature information in CNN 

recognition than single-domain features. 

3.3. Probabilistic Neural Network (PNN) Pile defect identification  

A feed-forward neural network constructed from radial basis function networks, the 

Probabilistic Neural Network classifier (PNN classifier), was used in an experiment com-

parison to demonstrate the superiority of the CNN model further. It is a supervised net-

work classifier that uses Bayes classification rules and is based on the idea of probabilistic 

statistics. This study used the Parzen window function density estimation approach to 

estimate the conditional probability when performing classification pattern recognition. 

The Parzen method yields the probability density function estimation equation shown 

below. 
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(18) 

In the formula, Xai is the ith training vector of the defect pattern, m is the training 

sample quantity of the defective pattern, and the δ smoothing parameter. 

The construction process of the PNN recognition model is as follows. 

Step 1: We created a training set consisting of 9 × 120 data samples and a test set 

consisting of 9 × 140 data samples obtained from numerical simulations. 

Step 2: Defective category is the intended result, and existing defective feature data 

is used as the input to the training samples. After training, a PNN model for defect classi-

fication and recognition is obtained from the network. 

Step 3: Testing of the network’s performance was performed. Regression simulations 

were run on the training samples after the connection weights between the neurons in 

each layer were replaced in the network. The network was successfully trained and could 

be used to predict the class of unknown samples when the expected output of the training 

samples matched the simulated output of the PNN network. 

Step 4: Classification prediction of unknown defective sample data using the con-

structed PNN model. 

The category names used in this experiment adhere to the plan described in Section 

3.1. Figure 16 displays the PNN classification findings, while Table 11 displays the precise 
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classification accuracies. In Figure 16, the symbols ○ and * stand for the actual and ex-

pected labels, respectively. When they overlap, the predicted labels match the actual ones. 

This model’s recognition accuracy was only 28.6%. 

Table 11. PNN ‘s accuracy for different scenarios. 

Scenarios 
Number of Test 

Samples 

Correct Recognition 

Number 
Accuracy 

1-G 40 60 45.5% 

H-2 40 1 2.5% 

2-I 40 9 25.0% 

H-3 40 0 0 

3-I 40 0 0% 

H-4 40 0 0% 

4-I 40 0 0% 

H-5 40 33 84.6% 

5-I 40 0 0% 

Average accuracy 28.6% 

 

Figure 16. PNN model classification prediction results. 

4. Conclusions and Future Work 

To boost the effectiveness of pile recognition work, this research studies the reflected 

wave signal characteristics of foundation piles in layered soils using the traditional low-

strain reflected wave method. In order to automatically classify and identify pile flaws, 

the signal is processed to extract feature indicators from three dimensions: time domain, 

frequency domain, and time–frequency domain. This is done in conjunction with a neural 

network. The following are the primary conclusions. 

(1) When the ICEEMDAN technique is utilized to decompose reflected wave signals 

from foundation piles under paved soil conditions, it lays the foundation for the ac-

curacy of CNN identification. The correlation coefficient criterion filters the valuable 

components, removing the redundant components. 

(2) The convolutional neural network was used to classify and identify each group, and 

the feature sets extracted from the three dimensions were fed into the network with 

an accuracy of more than 90%, proving the excellent reliability of the CNN model for 

the detection of the foundation pile problem.  
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(3) When single-domain features for foundation pile recognition were fed into the CNN 

model, the results were 88.89% for time domain features, 77.22% for frequency do-

main features, and 86.11% for time–frequency domain features. The accuracy of the 

multi-feature extraction method in conjunction with CNN is 97.8%. This method has 

high accuracy and effectively distinguishes the kind of foundation pile when the soil 

surrounding the pile is stratified, increasing the inspectors’ effectiveness. 

Due to the irregular geometries of foundation pile flaws in real projects and the com-

plexity of the geological environment, practical engineering necessitates more advanced 

detecting tools and data processing approaches. The accuracy of foundation pile identifi-

cation utilizing the low-strain reflection wave method in layered soils may be significantly 

improved, and foundation pile flaws in layered soils can be automatically diagnosed in 

this study. These findings are significant for technical applications and have some theo-

retical importance. Although this paper’s pile defect identification model achieves good 

identification results based on supervised learning, the data sample cannot contain all the 

pile defect data in the project, and the pile defects are unknown. As a result, it is necessary 

to explore how to achieve high accuracy in the small sample and apply unsupervised 

learning algorithms in pile defects to improve the theoretical significance and practical 

value. 
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