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Abstract: This paper proposes a ray-model-based straight-line extraction method for the grid map of
a mobile robot, call RM-Line. First, the edge map is obtained, with the help of the connectivity of
the blank grid. Then, points containing complete line information, called active points, are obtained
using a screening model. Lastly, a ray model is designed to extraction line segments. We evaluate the
algorithm using the number of lines, the average distance from grids to the lines, and the running
time. Experiments show that the proposed algorithm has better performance on grid maps compared
to the state-of-the-art algorithms.
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1. Introduction

The mobile robot maintains a grid map with the help of multi-sensor information. The
grid map describes the distribution of obstacles and supports the mobile robot to achieve
basic functions, such as obstacle avoidance, navigation, and positioning [1,2]. However,
some more complex tasks, such as map compression [3] and map optimization [4,5], rely on
deep information in grid maps, such as straight lines. Many studies in the field of mobile
robots treated grid maps as images [6–8]; therefore, image-based methods are used to obtain
straight lines from grid maps of mobile robots. As an important research direction in the
field of robot vision, researchers have proposed numerous straight-line extraction methods,
which are mainly divided into two categories: methods based on Hough transform and
methods based on perceptual grouping [9].

1.1. The Hough Transform Approach

The Hough transform (HT) approach accumulate edges over the entire image into
a histogram of potential line positions and orientations [10]. Accuracy can be improved
by modeling uncertainty in local edges and propagating that uncertainty to the Hough
map [11].

HT uses global information, allowing it to get a more comprehensive line, but it has
some problems in identifying the endpoints of the line segment. Some methods look for
the largest chain connecting or near connecting edges by analyzing the obtained straight
lines [12,13]. There has also been some work to detect endpoints by analyzing features near
peaks in the Hough map [14–18]. The main disadvantage of these methods is that, when
there are multiple line segments on the line, only one segment will be detected.

On the other hand, the HT method is computationally intensive and prone to false
positives in complex regions with dense edge responses [19]. To overcome the problem of
false positives, the progressive probabilistic Hough transform (PPHT) [20] maps pixels to a
parameter space with greater probability, which reduces false positives to a certain extent.
Yang et al. introduced orthogonal image scanning to reduce the computational complexity
of HT [21]. Almazan proposed the Markov chain marginal line segment detector. In the
first stage, straight lines are detected using the global probabilistic Hough method. In the
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second stage, the points on the line segments are modeled as Markov chains, and then
the optimal probabilities are calculated using standard dynamic programming algorithms.
This method improves the accuracy and completeness of line segments [22]. However,
these methods have not yet completely solved the problem of HT’s large computational
load and easy false positives in complex regions.

1.2. Perceptual Grouping Approach

The perceptual grouping approach groups roughly collinear local features into initial
line segments by analyzing pixel information, such as gradient, proximity, and connectivity,
and then evaluates the initial line segments using appropriate criteria.

Boldt et al. proposed a hierarchical heuristic framework [23], on this basis, Nieto
et al. proposed the slice sampling weighted mean shift (SSWMS) algorithm [24], which
iteratively selects and grows pixels according to the gradient structure. The biologically
inspired method [25] first uses “simple units” to detect local structures, then integrates
these responses with “complex units”, and finally detects endpoints with “hyper-complex”
mechanisms.

Gioi et al. proposed a fast line segment detector (LSD) with a false detection con-
trol [26], which sorts the pixels according to the gradient, then extracts line segments
according to the gradient direction of the pixels in the local area. They used the Helmholtz
principle to judge the extraction results, which transfers the threshold to a quantity that
is much easier to set rationally. They improved the algorithm in a subsequent article [27],
aiming to process any digital image without parameter tuning. Compared with HT, LSD
has certain advantages in operation speed and precision. However, LSD cannot guarantee
the accuracy of the results when the local region consists of pixels with similar gradient
magnitudes. To this end, Akinlar et al. proposed edge drawing line segments detection
(EDLines) [28], which first performs edge detection and constructs pixel chains, and then
obtains initial line segment through the least-squares method in a local range. EDLine
improves the extraction effect in local regions with similar gradient magnitudes; however,
in edge detection, the threshold of the operator is difficult to select and needs to be corrected
according to the specific image [29]. Lu et al. proposed CannyLines [30]. They designed
a parameter-free Canny operator named CannyPF to robustly extract edge maps from
input images by adaptively setting the low and high thresholds of the Canny operator.
Then, clusters of collinear points are collected from edges using edge linking and splitting
techniques. Finally, the method based on least squares is used to fit the initial line segment.
CannyLines improves edge detection. Although simpler, these methods are not robust to
gaps or intersections in edge maps [31].

1.3. Our Approach

Our work targets grid maps for indoor mobile robots. The grid in the map has
three possible values: OBSTACLE = 0, which means that there are obstacles in the grid;
BLANK = 1, which means that there are no obstacles in this grid; UNKNOWN = 2, which
means that the grid is not detected.

When the existing HT methods are used to extract straight lines from grid maps, the
computational load is large. When the existing perceptual grouping methods are used
to extract straight lines from grid maps, there is a certain distance between the obtained
straight line and the real obstacle contour due to less local information (the value of the
pixel has only three discrete values).

This paper proposes an algorithm for extracting straight lines from grid maps, called
RM-Line. The following terms are used in the algorithm:

1. Connected domain. The connected blank grids in the grid map are clustered, and the
area formed by the grids in the cluster is called the connected domain;

2. Edge point. The obstacle grids located at the edge of the connected domains;
3. Active points. The obstacle grids that belong to a line.
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RM-Line first uses the connected domain of the grid map to obtain edge points, and
then uses the screening model to obtain active points. Lastly, a ray model is used to derive
line segments.

1.4. Organization

The remainder of the article is organized as follows:
Section 2 presents the materials and methods. Section 2.1 describes the acquisition of

the edge map. Section 2.2 describes the acquisition of active points, i.e., points containing
complete line information. Section 2.3 introduces the ray model and the acquisition of line
segments. Section 2.4 introduces the flow of the algorithm.

Section 3 presents the experiments and results. Section 3.1 introduces the evaluation
criteria. Section 3.2 presents Experiment 1, which is in a single room. Section 3.3 intro-
duces Experiment 2, where the environment consists of two rooms. Section 3.4 describes
Experiment 3, which was performed in a corridor.

Section 4 provides the conclusions and future work.

2. Materials and Methods
2.1. Edge Point Extraction Method Based on Connected Domain

The line information in the grid map of the mobile robot is hidden in the contour of the
obstacles, and the pixels inside the contour increase the search range of the line extraction
algorithm and may cause interference. Therefore, this paper proposes a method based on
connected domains to extract edge points from the grid map, thereby narrowing the search
range of the line extraction algorithm.

Figure 1 shows the extraction process of the edge points.
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Figure 1. The extraction process of the edge points: (a) four neighbor grids of the BLANK grid pi;
(b) grid map of the mobile robot; (c) the connected domain; (d) the edge map.

(1) Figure 1b shows a grid map of the mobile robot used as input, where the yellow dot
is the robot, the turquoise points are the BLANK grids, the cyan points are the OBSTACLE
grids, and the steel-blue points are the UNKNOWN grids.

(2) Create an auxiliary map, denoted as AuxMap, whose initial value is 0. Create
a cache array, denoted as OpenArray; let Array[0] = prob, where prob is the position of
the robot.

(3) Figure 1a shows the grid pi(xi, yi) in the OpenArray; search for its neighbor point
pik, where pik ∈ {pi0(xi + 1, yi), pi1(xi − 1, yi), pi2(xi, yi + 1), pi3(xi, yi − 1)}. If pik is a
BLANK grid, and AuxMap(pik) == 0, then add pik to OpenArray and let AuxMap(pik) = 1.
If pik is an OBSTACLE grid, let AuxMap(pik) = 2, but do not add it to OpenArray.

(4) Repeat (3) until all points in the OpenArray are processed.
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(5) Grids with AuxMap(p) = 1 form a connected domain, as shown in the blue part
in Figure 1c. Grids with AuxMap(p) = 2 are the edge points, as shown in the cyan part
in Figure 1d.

It can be seen from Figure 1 that the edge point extraction process filters out the points
inside the contour or outside the map, to reduce the search range of the line extraction
algorithm.

2.2. Active Point Extraction Method Based on Screening Model

Edge points describe the contour of the obstacle; however, there are some edge points,
such as isolated points, that do not contain line information. Moreover. there are other
edge points, such as the point at the end of the contour, which only contain part of the
line information. Taking these points as the starting point of the extraction line may
yield unsatisfactory results; hence, this paper proposes a screening model based on the
distribution of local pixels and uses the screening model to extract active points from the
edge map, to provide a better starting point for the line extraction algorithm.

The screening model is shown in Figure 2. Figure 3 shows the active point extraction
process based on the screening model.
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(1) Figure 3a shows the edge map used as input.
(2) For the edge point pt, if one of its neighbor points pi is an OBSTACLE grid, and at

least one of the three tail points of pi is an OBSTACLE grid, then pt will be marked as an
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active point. Taking Figure 3b as an example, the neighbor point p2 of the target point pt is
an OBSTACLE grid, and the tail point p21 is also an OBSTACLE grid; thus, pt is determined
as an active point.

(3) Repeat (2) until all edge points are processed.
(4) The final result is shown in Figure 3d.
It can be seen from Figure 3 that points at the end of the contour (indicated by black

circles in Figure 3d) and isolated points (indicated by yellow circles in Figure 3d) are
regarded as inactive points, which do not contain complete line information. On the
contrary, the extracted active points contain complete line information, which is beneficial
to the line extraction algorithm to obtain better results.

2.3. The Ray Model

In the above sections, edge points were extracted, and active points were marked.
Next, we propose a ray model, combined with active points, to extract straight lines from
the edge map.

The ray model is shown in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 13 
 

 

 

 

(b) 

 

(a) (c) (d) 

Figure 3. (a) Edge map; (b) a grid in the top of the edge map; (c) a grid in the center of the edge 
map; (d) active grids. 

2.3. The Ray Model 
In the above sections, edge points were extracted, and active points were marked. 

Next, we propose a ray model, combined with active points, to extract straight lines 
from the edge map. 

The ray model is shown in Figure 4. 
As shown in Figure 4a, 𝑝 (𝑥 , 𝑦 ) is taken as the starting point and n × ∆θ is taken 

as the direction to get the ray 𝑟𝑎𝑦  and the reverse ray 𝑟𝑎𝑦 , where Δθ is the set an-
gle interval, and 0 ≤ 𝑛 ≤ ∆ . As shown in Figure 4b, a series of scoring points are set at 
intervals of Δs on 𝑟𝑎𝑦 , denoted as {𝑝 , … , 𝑝 }. Similarly, scoring points are set on 𝑟𝑎𝑦 , denoted as {𝑝 , … , 𝑝 }, where Δs is the set distance interval, k ≥ 0, and m ≥ 0. 

 
   

(a) (b) (c) (d) 

Figure 4. (a) The ray model; (b) scoring points; edge map; (c) the best ray; (d) line segment. 

As shown in Figure 4b, the target grid 𝑝  is used as the center of the ray model. For 𝑟𝑎𝑦 , its score is calculated starting from the scoring point 𝑝 . If the grid correspond-
ing to the scoring point 𝑝  is an OBSTACLE grid, the score of 𝑟𝑎𝑦  is increased by 
1, and the calculation continues. If it is not an OBSTACLE grid, the calculation is 
stopped, and the current scoring point 𝑝  is noded as the stop-point of 𝑟𝑎𝑦 . Simi-
larly, the score of 𝑟𝑎𝑦  is calculated starting from the scoring point 𝑝 . The score 
function of the ray is shown in Equation (1). 𝑠𝑐𝑜𝑟𝑒 = 𝑆(𝑝 ) + 𝑆(𝑝 ), (1)

Figure 4. (a) The ray model; (b) scoring points; edge map; (c) the best ray; (d) line segment.

As shown in Figure 4a, p0(x0, y0) is taken as the starting point and n× ∆θ is taken
as the direction to get the ray rayn0 and the reverse ray rayn1, where ∆θ is the set angle
interval, and 0 ≤ n ≤ 180

∆θ . As shown in Figure 4b, a series of scoring points are set at
intervals of ∆s on rayn0, denoted as {pn00, . . . , pn0k}. Similarly, scoring points are set on
rayn1, denoted as {pn11, . . . , pn1m}, where ∆s is the set distance interval, k ≥ 0, and m ≥ 0.

As shown in Figure 4b, the target grid pt is used as the center of the ray model. For
rayn0, its score is calculated starting from the scoring point pn00. If the grid corresponding
to the scoring point pn0k is an OBSTACLE grid, the score of rayn0 is increased by 1, and the
calculation continues. If it is not an OBSTACLE grid, the calculation is stopped, and the
current scoring point pn0k is noded as the stop-point of rayn0. Similarly, the score of rayn1
is calculated starting from the scoring point pn10. The score function of the ray is shown in
Equation (1).

scoren = ∑e0
k=0 S(pn0k) + ∑e1

m=0 S(pn1m), (1)

where 0 ≤ n ≤ 180
∆θ ; e0 is the label of the stop-point of rayn0, and e1 is the label of the

stop-point of rayn1; S(pn0k) is the score of rayn0 and S(pn1m) is the score of rayn1. S(p) can
be obtained using Equation (2).

s(p) =

{
1 map(p) == OBSTACLE
0 others

. (2)

For the target grid pt, the scores of all rays are calculated, and rayk0 and rayk1 with
the highest scores are selected as the output results, as shown by the red line in Figure 4c.
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These grids that are traversed by rayk0 and rayk1 form a cluster, as shown by the orange
grids in Figure 4d.

The clustered grids are fitted to a straight line using a least squares-based method, as
shown by the red line in Figure 4d. {p0(x0, y0), p0(x0, y0), . . . , pN(xN , yN)} are fitted into
a straight line using Equations (3) and (4), with the straight-line form ax + by + c = 0.

µx = 1
N ∑N

i=1 xi µy = 1
N ∑N

i=1 yi

µxx = 1
N ∑N

i=1(xi − µx)
2

µyy = 1
N ∑N

i=1(yi − µy
)2

µxy = 1
N ∑N

i=1(xi − µx)(yi − µy
) , (3)


a =

µxy√
µ2

xx+µ2
yy

b = −µxx√
µ2

xx+µ2
xy

c = −aµx − bµy

, (4)

where µx is the average of the x-coordinates of all points, µy is the average of the y-
coordinates, and N is the number of grids. µxx is the mean squared error of the x-axis, µyy
is the mean squared error of the y-axis, and µxy is the covariance. (a,b,c) are the parameters
of the line, which has the form ax + by + c = 0.

2.4. The Algorithm Flow of RM-Line

Figure 5 shows the process of RM-Line. We use a simulated map here to demonstrate
the computational process of the algorithm.

(1) As shown in Figure 5a, the grid map is used as input.
(2) As shown in Figure 5b, edge points are obtained using the method based on the

connected domain.
(3) As shown in Figure 5c, active points are obtained using an approach based on a

screening model.
(4) Start searching for all edge points. Let x = 0, y = 0, and mark all active points as free.
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(5) As shown in Figure 5d, if p(x,y) is an active point and marked as free, then go to (6);
otherwise, go to (8).

(6) Grid cluster {p0, p1, . . . , pN} is obtained using a method based on the ray model,
and then fitted to a straight line using the method based on the least-squares, as shown in
Figure 5e.

(7) Mark the active points {p0, p1, . . . , pN} as locks.
(8) If x < xsize, then x++; otherwise, x = 0, y++.
(9) Repeat (4)–(8) until all edge points are processed. The straight-line extraction result

is shown in Figure 5f.

3. Results

This paper implemented the proposed RM-Line on an indoor mobile robot, as shown
in Figure 6. The robot collects environmental information and builds a grid map with the
help of gyroscopes, odometers, laser scanners, collision sensors, etc. The radius of the robot
is 17 cm, and the moving speed is about 25 cm/s. The measurement error of the gyroscope
is ±10

◦
@60 min. The scanning frequency of the laser scanner is 2 Hz, the measurement

range is 15–300 cm, and the measurement accuracy is 5 cm@200 cm. The robot has an
embedded controller installed, with a 128 MByte DDR and 300 MHz running frequency.
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Figure 6. The mobile robot.

We tested RM-Line in several different environments to verify the effectiveness of the
algorithm in different environments. Meanwhile, RM-Line was compared with Canny-
Line. To the best of our knowledge, CannyLine is a state-of-the-art and well-known line
extraction algorithm.
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3.1. Evaluation Standard

We quantitatively evaluate the performance of the algorithm using three parameters:
the number of lines, the average distance from grids to the lines, and the running time.

(1) Number of lines
One of the reasons why the number of lines is used as an evaluation parameter is

because the robot needs to compress the map and reload it.
As shown in Figure 7a, the first time a robot works in an environment, a grid map is

built. As shown in Figure 7b, after the first job, the robot extracts line segments from the grid
map and stores them. As shown in Figure 7c, when the robot works in this environment
again, the stored line segments are reloaded, and a grid map is generated accordingly.
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It can be known from the storage and reloading process of the grid map that the
number of line segments affects the storage space and efficiency.

(2) Average distance from grids to lines
From the storage and reloading process of the grid map, it can be known that the closer

the extracted line segment is to the outline of the obstacle, the more accurate the reloaded
map is. Therefore, the distance from grids to lines is used as an evaluation parameter.

The distance from grids to lines is shown in Figure 8, where L0–L5 are the straight
lines obtained using the algorithm, the grass green grids are the obstacle grids in the edge
map, and the black dots are their center. The black lines are the distance from the center of
the grid to the nearest straight line. For example, the closest lint to grid Pi is L5, and the
distance is di. The average point-to-line distance refers to the average of the distances from
all grid points to the nearest line, as shown in Equation (5).

DisPLave =
∑N

n=0 dn

N
, (5)

where N is the number of obstacle grids, and dn is the distance from grid Pn to the nearest line.
The smaller the DisPLave, the closer the obtained straight line is to the real contour,

i.e., the higher the accuracy.
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3.2. Comparison Results in a Single-Room Environment

The first experiment was carried out in a separate room. Figure 9 shows the experi-
mental results.
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Figure 9. The experiment in a single room: (a) the environment; (b) grid map; (c) line segments
obtained using RM-Line; (d) Canny-Line using grayscale image as input; (e) edge map obtained
using Canny-Line; (f) line segments obtained using Canny-Line.

Figure 9a shows the experimental environment, which was a 5 m × 7 m office with
some tables and chairs.

Figure 9b shows the grid map of the mobile robot. The size of each grid was
20 cm× 20 cm. The turquoise points are the BLANK grids, the cyan points are the OBSTA-
CLE grids, and the blue points are the UNKNOWN grids.

Figure 9c shows the line segments obtained using the proposed RM-Line.
As shown in Figure 9d, before running CannyLine, the grid map was converted to

a grayscale image, where the OBSTACLE grids had a gray value of 100 (white pixels in
Figure 9d), and the BLANK grids and UNKNOWN grids had a gray value of 0 (black
background in Figure 9d). Figure 9e shows the edge points obtained using CannyLine.
Figure 9f shows the line segment obtained using CannyLine.

Table 1 shows the comparison of the two algorithms.
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Table 1. Comparison of two algorithms in Experiment 1.

Average Dis (cm) Number of Lines Time (ms)

CannyLine 21.2 79 93
RM-Line 2.3 37 22

As shown in Table 1, RM-Line consumed less time than Canny, thanks to the use of
ray models. Furthermore, RM-Line extracted 37 lines from the grid map, and CannyLine
extracted 79 lines. When these lines were used for map compression, the proposed RM-
Line saved 53% more storage space than CannyLine. More importantly, the straight lines
obtained using CannyLine were distributed on both sides of the obstacle grid, which
could not accurately describe the obstacle information in the map. Using them for map
compression or map optimization would produce unexpectedly bad results. In contrast,
the straight line obtained using RM-Line could accurately describe the obstacle information
in the grid map, thereby meeting the needs of tasks such as map compression and map
optimization of mobile robots.

3.3. Comparison Results in Two-Room Environments

Experiment 2 was performed in two rooms. Figure 10 shows the experimental results.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 13 
 

Figure 9b shows the grid map of the mobile robot. The size of each grid was 20 cm × 20 cm. The turquoise points are the BLANK grids, the cyan points are the OB-
STACLE grids, and the blue points are the UNKNOWN grids. 

Figure 9c shows the line segments obtained using the proposed RM-Line. 
As shown in Figure 9d, before running CannyLine, the grid map was converted to a 

grayscale image, where the OBSTACLE grids had a gray value of 100 (white pixels in 
Figure 9d), and the BLANK grids and UNKNOWN grids had a gray value of 0 (black 
background in Figure 9d). Figure 9e shows the edge points obtained using CannyLine. 
Figure 9f shows the line segment obtained using CannyLine. 

Table 1 shows the comparison of the two algorithms. 

Table 1. Comparison of two algorithms in Experiment 1. 

 Average Dis (cm) Number of Lines Time (ms) 
CannyLine 21.2 79 93 
RM-Line 2.3 37 22 

As shown in Table 1, RM-Line consumed less time than Canny, thanks to the use of 
ray models. Furthermore, RM-Line extracted 37 lines from the grid map, and CannyLine 
extracted 79 lines. When these lines were used for map compression, the proposed 
RM-Line saved 53% more storage space than CannyLine. More importantly, the straight 
lines obtained using CannyLine were distributed on both sides of the obstacle grid, 
which could not accurately describe the obstacle information in the map. Using them for 
map compression or map optimization would produce unexpectedly bad results. In 
contrast, the straight line obtained using RM-Line could accurately describe the obstacle 
information in the grid map, thereby meeting the needs of tasks such as map compres-
sion and map optimization of mobile robots. 

3.3. Comparison Results in Two-Room Environments 
Experiment 2 was performed in two rooms. Figure 10 shows the experimental re-

sults. 

    

(a) (b) (c) (d) 

Figure 10. The experiment in two rooms: (a) the environment; (b) grid map; (c) line segments ob-
tained using RM-Line; (d) line segments obtained using Canny-Line. 

Figure 10a shows the experimental environment. It consisted of two rooms con-
nected by a door. The environmental area was 5 m × 11 m. Compared with Experiment 
1, the environment area of Experiment 2 was larger and had more obstacles. 
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obtained using RM-Line; (d) line segments obtained using Canny-Line.

Figure 10a shows the experimental environment. It consisted of two rooms connected
by a door. The environmental area was 5 m × 11 m. Compared with Experiment 1, the
environment area of Experiment 2 was larger and had more obstacles.

Figure 10b shows the grid map of the robot, which had a larger extent than Figure 9b
and contained more contours. The size of each grid was 20 cm× 20 cm.

Figure 10c shows the line segments obtained using RM-Line. It can be seen from the
figure that, in a more complex grid map, RM-Line could also obtain an ideal straight line
extraction effect.

Figure 10d shows the line segments obtained using CannyLine.
Table 2 shows the comparison of two algorithms.

Table 2. Comparison of two algorithms in experiment 2.

Average Dis (cm) Number of Lines Time (ms)

CannyLine 20.5 101 121
RM-Line 2.6 53 36
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Table 2 shows that RM-Line saved 70% of the time compared to CannyLine, and
the average point-to-line distance was reduced by 87%. RM-Line extracted 53 lines from
the grid map, and CannyLine extracted 101 lines. When these lines were used for map
compression, the proposed RM-Line saved 47.5% more storage space than CannyLine.
Similar to the results in Section 3.2, the straight line obtained using CannyLine was quite
different from the real obstacle grid, while the straight line obtained using the proposed
RM-Line accurately described the obstacle information in the map.

3.4. Comparison Results in a Corridor Environment

Experiment 3 was performed in a corridor.
Figure 11a shows the experimental environment. It was a relatively regular rectangle,

where the length was much larger than the width. There were doors at the end and sides
of the corridor, but they all had a higher floor than the corridor; therefore, they were
not represented in the robot’s map. Compared with Experiment 2, the environment of
Experiment 3 had fewer obstacles and the map structure was simpler. However, the long
and narrow shape made most of the grids in the map contain straight lines, which brought
different challenges for straight-line extraction.
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Figure 11. The experiment in a corridor: (a) the environment; (b) grid map; (c) line segments obtained
using RM-Line; (d) line segments obtained using Canny-Line.

Figure 11b shows the grid map of the mobile robot. The size of each grid was 20 cm×20 cm.
Figure 11c shows the line segments obtained using RM-Line, and Figure 11d shows

the line segments obtained using CannyLine.
Table 3 shows the comparison of two algorithms.

Table 3. Comparison of two algorithms in experiment 3.

Average Dis (cm) Number of Lines Time (ms)

CannyLine 20.8 17 60
RM-Line 1.6 8 12

As shown in Figure 11, in a map containing long straight lines, RM-Line extracted
accurate line segments, adequately reflecting the straight-line information in the map.
CannyLine also obtained regular line segments, but they were distributed on both sides
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of the real contours, which were not conducive for further data processing by the robot.
RM-Line extracted eight straight lines from the grid map, while CannyLine extracted
17 straight lines. When these lines were used for map compression, the proposed RM-Line
saved 52.9% more storage space than CannyLine.

4. Conclusions

This paper proposed a line segment extraction algorithm suitable for indoor mobile
robot grid maps, called RM-Line. The algorithm uses the grid map’s connected domain,
i.e., the area formed by the connected blank grids, to find the obstacle grids located at the
edge of the connected domain. On this basis, a scanning model is used to pick out active
points, i.e., obstacle points that may contain complete line information. Then, a ray model
was proposed, and the active points were used as the starting point of the ray model to
obtain line segments in the grid map.

In the experimental phase, this paper conducted comparative tests on the proposed
RM-Line and the state-of-the-art CannyLine in grid maps of three different environments.
The experimental results show that, for the grid map of mobile robots, the proposed
RM-Line could obtain more accurate line segments and consume less time.

This version of the algorithm only deals with line extraction on a 2D plane. In the next
stage, we will try to extend the algorithm to 3D maps.
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