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Abstract: Automated object identification has seen significant progress during the last decade with
close to human-level accuracy, aided by deep learning methods. With the rapid rise of obesity and
other lifestyle-related diseases worldwide, the availability of fast, automated, and reliable image-
based food calorie estimation is becoming a necessity. With the help of a deep learning-based
automated object identification system, it is possible to introduce accurate and intelligent solutions in
the form of a mobile app. However, for these kind of applications, processing speed is an important
concern as the images should be processed in real time. Although plenty of studies have been
conducted that focus on food image detection-based calorie estimation, there is still a lack of an
image-driven, lightweight, fast, and reliable food calorie estimation system. In this paper, we propose
a method based on the parameter-optimized Convolution Neural Networks (CNN) for detecting food
images of regular meals using a handheld camera. Once identification process of the food items are
complete, the corresponding calories and nutritional facts can be calculated using prior knowledge
about the food class. Through our findings, we demonstrate that our proposed approach ensures
high accuracy and can significantly simplify the existing manual calorie estimation procedures by
converting them into a real-time automated process.

Keywords: food image classification; calorie estimation; image recognition; convolution neural
networks

1. Introduction

In the last few decades, obesity has become a major health issue. Obesity increases
the risk of many fatal diseases such a diabetes, heart attack, high cholesterol, some form of
cancers (breast and colon cancer), and respiratory problems [1]. One of the main reasons for
the increase in obesity is unhealthy dietary habits. Unhealthy dietary habits can be eating
unhealthy foods, eating foods that contain a large amount of sugar, or just overeating. A
person is considered obese when the Body Mass Index (BMI) of that person is greater than
30 kg/m2 [2]. In order to maintain a healthy BMI, daily food intake should be within a
prescribed limit. In other words, tacking obesity requires consumption of nutritious meals
with a proper calorie intake. Therefore, it is very important to have effective means of
estimating and tracking one’s daily calorie consumption. Measuring approximate calories
directly from the food can be a great abetment in this regard. However, to the best of our
knowledge, there is no medical technology that can calculate in real time the amount of
calories contained in any food. The conventional practice followed in food industry labels
the calorie count of each ingredient that is used to prepare a food item. For instance, one of
the largest fast food restaurant chains, McDonald’s, labels the amount of calories against
each ingredient within a food item [3]. This labeling is performed manually based on a
calorie table suggested by the health care experts [4]. The process, however, is expensive,
laborious, error-prone, time-consuming, and most importantly, it has a small impact on
controlling the calorie intake of an individual.
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A much pragmatic solutions to this problem would be to design and develop a real-
time image recognition based food calorie estimation system. This system would offer a fast
and inexpensive way of calorie measurement with sublimer accuracy. For the reference, a
food image recognition system is a kind of computer vision that can automatically recognize
the food images based on a supervised data set. However, developing a food image based
classification system is challenging due to the advent variations of images resulting from
heterogeneous conditions, e.g., changing in light conditions, food shapes, and occlusions,
among others [5]. Therefore, considering a suitable set of parameters is necessary when
designing pattern recognition systems within the parameters of supervised learning [6].

Research on this track mainly emphasizes on recognizing the food images [7,8], with
a very little focus on estimating the food calories through image recognition [9,10]. An
assessment on the reported results reveals that the methods are mostly expensive in terms
of time and computational complexity [11]. Moreover, the majority of the image recognition
methods are inconvenient for a meal with multiple food items, and are not designed for
estimating the food calories [12]. Therefore, it is important to have a food calorie estimation
method that is both lightweight and optimized in relation to space and time complexity for
recognizing multiple items simultaneously at a time. In this connection, computer vision-
based approaches, such as Convolution Neural Networks (CNN), are proven effective as
a lightweight real-time image classification method for estimating the calories from food
images [13].

Taking advantage of the CNN method, this study involves the design of an automated
calorie estimation system with the help of neural networks to ensure better accuracy
compared with the existing methods. This system can be run on a smart device equipped
with a built-in camera, making it easy to recognize food items in estimating the constituent
calories by leveraging a predefined data set of daily food intake. The developed image
recognition method is a soft real-time system. The user request can be processed in
milliseconds to offer real-time response to the user. This system uses image processing
and segmentation to identify food items of any shape and size (e.g., apples, bananas,
mango, donuts, etc.) from the food image, measures each food item’s volume, and matches
that information with the current nutritional fact table. Additionally, the segmentation
characteristics are enhanced by the texture, color, shape, and object size, as these parameters
play a pivotal role in recognition. The core contribution of this work is summarized bellow:

• Developing a parameter-optimized lightweight CNN model to instinctively analyze
food images, and estimate constituent calorie by detecting distinct items in it;

• Training and optimizing the model performance to achieve an accuracy of 85%;
• Undertake a comparative assessment among different configurations of the CNN-based

approach in relation to accuracy, speed, and complexity.

2. Literature Review

The literature survey explores extensively the research results that concentrate on
the image classification and calorie estimation. Consequently, a comparative performance
analysis of the proposed models is conducted in five distinct categories, e.g., real time,
optimized time complexity, optimized space complexity, and the satisfactory score. A satisfactory
score can be comprehended as a performance indicator for a system with accuracy above
80%. The executive summary of this assessment is documented in Table 1 which also
presents the distinctive contribution of this study in comparison with the existing ones on
this track.

In [14], Hoashi et al. propose an automated food image recognition system for 85
categories of foods by combining different image features, such as the Gabor features,
the color histogram, the bag of features (BoF), and the gradient histogram with Multiple
Kernel Learning (MKL). However, this work only focuses on the image classification, and
not on calorie estimation. In [15], Pouladzadeh et al. present a food calorie and nutrition
measurement system based on support vector machine (SVM). Their approach employs
food image processing and utilizes nutritional information from the nutrition table. The
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system is deployed in smartphones, and it scores issues. In [16], Liang and Li focus on a
unique food image data set including mass and volume records for the foods. They exploit a
deep learning technique (Faster R-CNN) for food identification and comprehensive calorie
estimation. Their data set comprises of 2978 pictures. However, the approach does not
consider the real-time characteristics for the calorie estimation. In [17], Raikwar et al. focus
on estimating the calorie count of the food using images as input. The food image is
processed through several image processing techniques before being applied to the SVM.
However, the author does not cover the real-time characteristic for the estimation.

In [18], Menezes et al. discuss the latest object identification methods, such as you only
look once, faster region convolutional neural network, and single-shot multibox detector.
The authors, however, do not focus on the real-time food calorie estimation. In [13,19–21],
the authors employs a deep learning (DL)-based model for food calorie estimation based
on various food images. Even so, these models are time-consuming and do not support
real-time estimation. Other studies also explore the application of DL models for food
calorie measurement. For instance, in [22], Kasyap et al. uses a DL model for food calorie
measurement with an error reduction of 20%. In [23], Ayon et al. deploy a novel DL model
on the webpage images to predict food calorie content in real time. In [24], Okamoto et al.
utilize a similar approach by crawling the web for food images and preprocessing them to
train a DL model for food calorie estimation.

Similar work in progress estimates the calorie content of a meal directly from recipe
images [25], but suffers from scalability and real-time performance issues. In [26], Naomi
et al. use HoloLens to estimate the actual size of the food and associated calories with high
recognition time.

In [27], Jelodar and Sun develop a pipeline for calorie estimation and meal reproduc-
tion for different servings of the meal. However, the focus is on the accuracy only, leaving
their method highly expensive in terms of computation and scalability. In [28], Naritomi
and Yanai introduce the concept of hungry networks in which they reconstructs the 3D
shape of the dish and plate from a single image. This method increases the processing
time as 3D images require a substantial amount of processing time. In [29], Subaran et al.
aim to improve the accuracy of the segmentation processes and calorie calculation using a
combination of Mask R-CNN and GrabCut algorithms, which requires approximately three
minutes to compute. In [30], Siemon et al. targets the same with a hierarchical clustering-
based transfer learning method for greater accuracy. However, their method requires prior
clustering information of the food and adds overhead to the calculation. Finally, in [31],
Zaman et al. uses the 3D volume estimation of the food images and corresponding nutrition
volume estimation, which requires a special setup to run and thus make it unfit to use for
real application.

The accumulation of the above arguments leads to the conclusion that the contem-
porary methods fail to fulfill all five characteristics cited in Table 1. This study takes this
opportunity to fill this research gap through the development of a lightweight CNN-based
real-time food calorie estimation system. This system can also be deployed in smart devices
for everyday use.
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Table 1. Comparative analysis of food calorie systems a.

Studies Year Food Calorie
Estimation Real Time Optimize Time

Complexity
Optimize Space

Complexity
Satisfactory

Score

Hoashi et al. [14] 2010 − − − − X

Pouladzade et al. [15] 2014 X − X X −

Liang & Li [16] 2017 X − − − X

Raikwar et al. [17] 2018 X − X X −

Meneze et al. [18] 2019 − − − − X

Zaman et al. [31] 2019 − X X X −

Poply et al. [13] 2020 X − − − X

Latif et al. [19] 2020 X − − − X

Shen et al. [20] 2020 X − − − X

Ruede et al. [25] 2020 X − − − X

Kasyap et al. [22] 2021 X − − − −

Ayon et al. [23] 2021 X − − − −

Darapaneni et al. [21] 2021 X − − − X

Okamoto et al. [24] 2021 X − − − −

Naritomi et al. [26] 2021 X − − − −

Jelodar & Sun [27] 2021 X − − − −

Naritomi & Yanai [28] 2021 X X − − X

Siemon et al. [30] 2021 − − − − X

Subaran [29] 2022 X − − − X

Proposed system 2022 X X X X X
a Here, ’X’ means covered and ’−’ means not covered.

3. Preliminaries
3.1. Real-Time System

A real-time system is bound to provide response within pre-specified time bounds.
Real-time systems can be classified along two axes, namely, hard real-time system, and soft
real-time system. For the earlier system, the specified time constrains must be met with
no exception, whereas, for the later, the time bound might occasionally fail with very low
probability [32]. The real-time system proposed in this study is of the soft type.

3.2. Deep Learning and CNN

Convolutional neural networks (CNN or ConvNet) are a type of deep learning-based
artificial neural network (ANN) that is most commonly applied on the visual image clas-
sification in the multiclass data set [33]. The CNN is not a fully connected network, and,
therefore, it reduces the computational intensity [34]. This characteristic makes CNN a
better choice for image classification problems [35]. A classical model of CNN consists of
the following layers.

• Convolution Layer: The computer stores image data as a matrix where every indi-
vidual pixel value of the image is preserved. In this layer, different filters play active
roles. A filter is also a matrix, but smaller than the input matrix of any image. In a
convolution layer, every filter dimension is the same, but values may differ. When an
image is fed into one of these filters, the filter scans the matrix of the image, performs
a dot product between the matrix value of the image and filter, adds all the values and
a new matrix is generated as an output of this layer.
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• Max Pooling Layer: The max-pooling layer is commonly used after every convolution
layer. The main task of this max-pooling layer is the feature extraction. It finds and
extracts the dominant feature from the matrix generated in the convolution layer,
ignoring the less important ones. This makes the deep learning model much more
efficient.

• Dense Layer: The dense layer is a fully connected layer. Every neuron or filter of the
dense layer is connected to every output node of the previous layer. It is actually a small
traditional neural network inside the CNN [36]. It feeds all outputs from the previous
layer to all its neurons where each neuron provides one output to the next layer.

• ReLu (Rectified Linear unit) Activation: This activation function improves the decision
and nonlinear features of the network without changing the receptive fields of the
convolution layer. ReLU is often preferred over other nonlinear functions used in
CNNs (such as hyperbolic tangent, absolute of hyperbolic tangent, and sigmoid)
because it trains the neural network several times faster without a significant penalty
to generalization accuracy.

• ADAM Optimizer: Adam is a stochastic gradient descent optimization method that
may be used in place of the conventional stochastic gradient descent technique to
update network weights which are iterative based on training data [37]. It holds the
decreased average of the past squared gradients v(t) such as AdaDelta and RMSprop;
it furthermore holds a decreased average of past gradients m(t), i.e.,

m(t) = β1m(t− 1) + (1− β1)δw(t) (1)

v(t) = β2v(t− 1) + (1− β2)δw(t) (2)

• SoftMax Function: This function transforms a vector of K real values and converts it
to a vector of K absolute values that sum to one. Although the input values may be
positive, negative, zero, or more than one, SoftMax converts them to values between 0
and 1 that can be interpreted as probabilities.

σ(−→z )i =
ezi

∑K
j=1 ezj

(3)

Here, zi values are input vector elements and may take any real value. The normalizing
factor at the bottom of the formula guarantees that the summation of all the function’s
output values equals one.

4. Methodology

This research work is realized by the following tasks: data set selection, data set
pre-processing, data augmentation, and model construction. The below Figure 1 illustrates
the different tasks of our methodology.

Category

Food 101
Fruit 360

Data selection Data pre-processing

CNN based pre-processing 


i1

h1

h2

o1

Input
Layer

Hidden
Layer

Output
Layer

Apple

Banana

Donut

Mango

Output of CNN

CNN

Model Construction

-image normalization

-grayscale conversion

-histogram feature extraction


Data  Augmentation


width shift range 10%
height shift range 10%

zoom range 20%
shear range 10%

rotation range 10 deg

-epoch: 80
-activation: ReLu & SoftMax
-optimizar: Adam
-......................

CNN based classification

Calorie estimation from
calorie table based on

detected food.


Calorie Estimation

Calorie Table

Food Weight
(gm) Energy

Cake 100 250

Banana 100 105

Figure 1. System model for image-based food calorie estimation.
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4.1. Data Set Selection

This study uses a qualitative data set with the aim of performing classification. The
data set contains images of five types of food. The data set is symmetric which means that
the instance of each type of food item in the dataset is equal. Two data sets were chosen
from Kaggle with the intention of achieving a result with greater accuracy. The two data
sets are Food-101 [38] and Fruit-360 [39]. These data sets contain RGB images of food items.
Each category contains 1000 images. Each category of food images was preserved along
with the top and side view of the food items. An implicit food calorie list along with food
volume is also associated with each data set for the purpose of estimating calories. Table 2
illustrates the data set with different parameters.

Table 2. Data selection from two different data set with a typical nutrition table [4].

Source Data Set
Name Types Number of

Instances
Volume
(gram)

Energy
(kilocalorie)

Apple 1000 133 72

FOOD-101 Banana 1000 118 105

Kaggle and Donut 1000 64 269

Fruit-360 Cupcake 1000 72 262

Mango 1000 133 68

4.2. Data Set Preprocessing

This step is mainly applied to facilitate the resizing of the image in the data set, and the
final size of the images is 32 × 32 pixels. After that, the image normalization process was
applied to the data set based on the RGB values of the images. Image normalization ensures
optimal assessment across data-gaining methods and texture instances. Subsequently, this
study divides the RGB color channel into 255 values to convert the images of the data set to
grayscale. This ultimately normalizes the range of the RGB values of the corresponding
images. Following the image conversion to grayscale, the histogram feature extraction
method has been applied. An image histogram is a grayscale value distribution that shows
the frequency of occurrence with which a gray level value appears. The histogram analysis
assumes that the grayscale values of foreground (anatomical structures) and background
(outside the patient boundary) are distinguishable. It also adjusts the global contrast of an
image by updating the pixel intensity distribution.

4.3. Data Augmentation

Data augmentation refers to a technique for increasing data quantity by inserting
slightly modified copies of existing data or creating new synthetic data from existing
data. While performing the training of an ML model, this process serves as a regularizer
and helps to minimize the overfitting problem. Overfitting has been described as the
unintentional extraction of some residual variance (i.e., noise) reflected in the underlying
model structure [40]. This study uses data augmentation for the same purpose. We used
the image data generator function from the TensorFlow library to augment the data set. The
function belongs to the Keras subclass of TensorFlow and falls under the image subclass [41].
Table 3 illustrates the augmented parameters. This study divides the training, validation,
and testing into 80%, 10%, and 10%, respectively.

4.4. Model Construction

Finding the best model configuration for a custom data set is a demanding task. This
study has developed a general model using some fine-tuned parameters to find the best
model for the custom data set. Subsequently, this study was able to generate 81 different
custom models for the developed CNN method. Figure 2 illustrates the architecture of the
CNN model.



Appl. Sci. 2022, 12, 9733 7 of 13

Table 3. Augmentation parameters.

Parameters Values

Width shift range (%) 10

Height shift range (%) 10

Zoom range (%) 20

Shear range (%) 10

Rotation range (deg) 10

32, (5 × 5)

Conv


32, (2 × 2)

MaxPool


 (32 × 32) 

Input


32, (5 × 5)

Conv


32, (2 × 2)

MaxPool


64, (5 × 5)

Conv


64, (2 × 2)

MaxPool


512
Dense


5
Dense


Figure 2. Architecture of the proposed CNN.

This study uses several fine tuned parameters such as filter size, filter number, pool
size, and dense node to generate the CNN model. Conv2D layer, relu, and other activation
functions are also used in this process. Among 81 CNN models, model 44 has achieved the
most accuracy which has been discussed in the following section.

The execution time along with various parameters of the best 10 models is illustrated
in Section 5. It is important to note that there is no machine to measure the exact amount of
calories contained within any food item and no pre-labeled food calorie image dataset is
available that can train any model.

5. Results and Findings

This section defines the performance evaluation matrix (such as inference time and
model space complexity) and also describes the performance of the model. The inference
time of a model is the time required to complete all the model operations.

inference time =
FLOPs
FLOPS

(4)

• FLOPs: To measure the inference time of a model, we have calculated the total
number of computations performed by the model. This is where we mention the term
Floating Point Operation (FLOP). This could be an addition, subtraction, division,
multiplication, or any other operation that involves a floating point value. The FLOPs
provide the complexity of the model.

Convolutions− FLOPs = 2×Number of Kernel×Kernel Shape×Output Shape (5)

Fully Connected Layers − FLOPs = 2 × InputSize × Output Size (6)

• FLOPS: The next term is the Floating Point Operations per Second (FLOPS). This
term provides information on the efficiency of the hardware system. For this study, 1
FLOPS is considered as 1,000,000,000 operations per second.

For a real-time food calorie estimation system, calculating space complexity is very
important. The space complexity of a CNN model is realized by the following equation.

CNN model space complexity = (cwhk + k) × p (7)
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where c, w, h, and k stand for the number of kernels, wide, height, and the number of
output channels, respectively. p stands for the number of bytes per element. For this study,
4 bytes (floating point) per element are considered.

The model with higher accuracy, and a lesser disparity between the training and
validation accuracy ensures the higher performance of the model. On the other hand,
the loss function is evaluated by discovering the most suitable hyperparameter for the
particular model. All models have been trained applying 80 epochs. Fine tuning of models
and model-oriented parameters are used to improve the performance of the models. For
model tuning, the filter numbers are set to [16, 32, 64], and the filter sizes are set to [(3,3),
(5,5), (7,7)]. Filtering is usually applied to remove noise and undesirable artifacts from
the image data set. Model-oriented parameters such as pool size (2,2) are used for feature
extraction, dense node (512) is used for the comparison of the images, and the drop (0.5)
function is used to prevent overfitting problem. Activation functions such as ReLu and
SoftMax are used to prevent the interrupted probabilities of the feature map. Adam
optimizer is used to optimize the data. A total of 81 models were generated and these are
divided into four groups, which are shown in Table 4. Most of the models were unable to
perform as expected. The accuracy is almost 79–80%. However, models with filter size (5,5)
provide better validation accuracy than models with filter sizes (3,3). The finest 10 models
are shown in Table 5 with detail comparison.

The table illustrates that model 44 reveals the best result where the filter size is (5,5),
pool size is (2,2), and the filter number is set to (32,32,64). Model 44 gives the highest
training and test accuracy along with the highest validation. Model 44 is able to accomplish
86% validation accuracy and 84.9% test accuracy. The graph shows that model 44 reveals
25% validation loss and 26% test loss, which is lower than the other illustrated models. The
training accuracy is 84%, and the training loss is 31%. Figure 3 shows the confusion matrix
of model 44. Figure 4 shows the predicted and actual class of food images. Figure 5 shows
the line chart between accuracy and time for the top 10 models where model 44 is the most
efficient.

Table 4. General CNN model structure.

Groups Layers

Group 1 (tunable) Conv2D, Conv2D, and MaxPooling2D

Group 2 (tunable) Conv2D, Conv2D, and MaxPooling2D

Group 3 (tunable) Conv2D, Conv2D, and MaxPooling2D

Group 4 (tunable) DropOut, Flatten, Dense Layer, and DropOut

Apple Banana Cupcake Donut Mango

197 0 0 0 0

0 215 0 0 0

1 0 148 58 0

1 0 95 103 0

0 0 0 0 182

Apple

Banana

Cupcake

Donut

Mango

Figure 3. Confusion Matrix of model 44.
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Table 5. Top 10 models performance comparison for the Accuracy (A), Loss (L), Space (in bytes), and
Time (in seconds).

Model
Name

Group-1
Filter Num

Group-2
Filter Num

Group-3
Filter Num

Filter
Size Training Validation Test Space Time (s)

model 16 16 32 64 (3,3) A: 0.795 A: 0.847 A: 0.836 30,500 0.0005
L: 0.38 L: 0.29 L: 0.3

model 17 16 32 64 (5,5) A: 0.809 A: 0.847 A: 0.829 66,340 0.0008
L: 0.34 L: 0.27 L: 0.28

model 23 16 64 32 (5,5) A: 0.80 A: 0.86 A: 0.85 66,340 0.0008
L: 0.37 L: 0.27 L: 0.27

model 26 16 64 64 (5,5) A: 0.818 A: 0.85 A: 0.84 82,340 0.0013
L: 0.34 L: 0.26 L: 0.27

model 44 32 32 64 (5,5) A: 0.84 A: 0.86 A: 0.848 74,340 0.0008
L: 0.31 L: 0.25 L: 0.26

model 50 32 64 32 (5,5) A: 0.81 A: 0.85 A: 0.829 74,340 0.0010
L: 0.36 L: 0.26 L: 0.28

model 52 32 64 64 (3,3) A: 0.82 A: 0.82 A: 0.79 39,140 0.0007
L: 0.32 L: 0.31 L: 0.34

model 62 64 16 64 (5,5) A: 0.80 A: 0.84 A: 0.836 82,340 0.0014
L: 0.35 L: 0.27 L: 0.28

model 68 64 32 32 (5,5) A: 0.81 A: 0.84 A: 0.836 74,340 0.0010
L: 0.35 L: 0.28 L: 0.29

model 70 64 32 64 (3,3) A: 0.83 A: 0.836 A: 0.837 39,140 0.0007
L: 0.34 L: 0.32 L: 0.31

Figure 4. Real-time food image recognition using model 44.
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Figure 5. Line graph for top 10 models performance based on accuracy and time.

Further analysis was performed based on three parameters such as accuracy, light
weightiness, and speed to identify the best model in real time. The scenario is shown in
Figure 6 as a ternary diagram. Min–max scaling was performed on the accuracy, space, and
time at first. All values are rounded up to two decimal places. Lightweightiness and speed
were calculated by subtracting scaled space and time from 1, respectively. Considering the
Ternary diagrams, it is clear that model 17 outperforms all other models based on three
parameters. In the ternary graph, the value which is closer to the center of the triangle is
considered to be the best one. Model 17 lays close to the center of the ternary diagrams
while comparing with other models which reveals it as the most suitable model for the
food calorie estimation.

Figure 6. Ternary diagrams for top 10 models performance based on accuracy, lightweightness, and
speed.
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6. Discussion

The research work proposed an efficient CNN model to achieve the authors’ research
goals. The model has worked well because of the proper distribution of internal neurons in
the dense layers. It also has a decent number of drops in neuron connections that prevents
the overfitting problem. In the CNN, we have used custom models for our data set where
different filter numbers and filter sizes were used. Moreover, it shows that the best model
varies depending on the perspective—based on which the observation is performed. Here,
if the study considers accuracy and time, then model 44 is the best choice. Model 44
requires a processing time of 0.008 s, which means it can process 125 frames per second.
Even with additional overheads, our model processes 60 frames per second and it can
easily be deployed as mobile-based real-time applications. Again, if the study considers
accuracy, time, and space, then model 17 is the best choice.

The system is intended to assist dietitians in treating both obese and overweight
individuals. Individuals will benefited from using the system that will allow for better
control over their regular eating habits. However, there is always a room for improvement.
The same applies to the proposed model. However, for better understanding, it is important
to train the model with various food images that will enable the model to identify all sorts
of food items. This study is limited to achieving this feature due to the lack of a high-quality
image data set according to the required criteria. A real-time data analysis with the present
system was achieved using a laptop camera. However, in future, this research will aim to
make the system compatible with various smart handheld devices. Currently, the calorie
estimation of the food images uses custom data sets. Additionally, feature extraction is
crucial for increasing the accuracy of an image recognition system’s training and validation.
However, the proposed models were unable to achieve an accuracy of more than 90%.
In future, an attempt will be made to enhance the process of the food image recognition
system for feature extraction, thus increasing the training and validation accuracy. Apart
from that, there is a plan to work with the various food volumes to obtain the most accurate
food calorie estimation.

7. Conclusions

Automated food image identification and corresponding nutrition content estima-
tion with maximum accuracy are essential in food habit moderation. In this research, a
lightweight, optimum CNN model is developed, experimenting with varied configurations
and scoring around 85% in accuracy. The method can easily be trained and applied to
customized data sets with higher accuracy using simple linear operations. The system
can contribute to resolving a societal issue by allowing both obese and normal weight
individuals to maintain a diet plan depending on their daily calorie intake. Nevertheless,
more precise work is planned to be conducted in this area of food image recognition and
calorie estimation with better accuracy.
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