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Abstract: It is an essential measure for workers to wear safety helmets when entering the construction
site to prevent head injuries caused by object collision and falling. This paper proposes a lightweight
algorithm for helmet-wearing detection based on YOLOV5, which is faster and more robust for
helmet detection in natural construction scenarios. In this paper, the MCA attention mechanism is
embedded in the backbone network to help the network extract more productive information, reduce
the missed detection rate of small helmet objects and improve detection accuracy. In order to ensure
the safety of workers in construction, it is necessary to detect whether the construction workers are
wearing safety helmets in real-time to achieve monitoring on-site. A channel pruning strategy is
proposed on the MCA-YOLOv5 algorithm to compress it, realizing the optimal large-scale model into
ultrasmall models for real-time detection on embedded or mobile devices. The experimental results
on the public data set show that the model parameter volume is reduced by 87.2%, and the detection
speed is increased by 53.5%, even though the MCA-YOLOv5-light reduces the mAP slightly.

Keywords: helmet-wearing detection; YOLOv5; attention mechanism; model pruning

1. Introduction

The construction industry is one of the most dangerous industries, and tragedies of not
wearing the corresponding safety protective equipment (safety helmet, etc.) occur every year.
According to the statistics from Eurostat and IBS in 2020, the number of non-fatal and fatal
accidents in the construction industry always exceeds that in the manufacturing industry,
especially head injury accidents at construction sites. Even though the number of head injuries
is only about 7% of non-fatal accidents, they account for over 30% of fatal accidents, making it
a significant issue and critical to the safety of construction workers [1]. The most common
head injury on construction sites is traumatic brain injury (TBI), which can be fatal and which
occurs mainly by the rapid acceleration or deceleration of the brain moving and colliding with
the skull. According to the relevant investigation and research [2], the most common cause of
TBI on construction sites is falling or being hit by objects.

In China, workers must wear safety helmets before entering each construction site.
Therefore, workers must check that they are wearing their safety helmets. At present, the
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daily helmet checking mainly relies on people, and the construction leaders stay at the
construction site the whole day, which no doubt wastes a lot of human resources. Mean-
while, the proportion of construction site workers is severely imbalanced. Only relying
on human supervision to ensure the safety of the construction personnel is impossible. In
2019, according to Sharma et al. [3], a survey showed that 80 percent of workers believed
work-related traumatic brain injury (TBI) can be prevented and that 50 percent said they did
not receive safety training, while more than half had no safety care at work. Brolin et al. [4]
show that construction workers wearing safety helmets at work can reduce the impact of
falling accidents and relieve traumatic brain injuries. Recognizing that head injury is an
important factor affecting the safety of construction sites, legal regulations on the use of
personal protective equipment (PPE) require employers to provide personal protection
to employees. However, the workers themselves have a limited understanding of the
importance of personal protective equipment and lack safety awareness, obviously, so it is
essential to strengthen the care of the construction personnel.

At the present stage, the target detection algorithm can be divided into two mainstream
directions: one is the one-stage detection algorithm based on the regression strategy, such
as the RetinaNet algorithm [5], YOLO series algorithm [6–10] and the SSD algorithm [11]
class. The core theory of such algorithms is to input the image into the model and directly
return to the target’s boundary target anchor box, position, and category information.
The other is to generate regional recommendations, mainly in the R-CNN series [12–14],
Libra R-CNN algorithm [15] and the Grid R-CNN algorithm [16] class. Such algorithms
mainly generate a region of the candidate region from the image at the first stage and then
generate the final target boundary anchor box from the candidate region at the second
stage. At present, the research of algorithms in the field of deep learning is progressing
rapidly, and more and more researchers want to combine deep learning algorithms with
practical applications. For instance, Rao [17] combined the SAS module of the channel
attention mechanism with the lightweight algorithm YOLOv3-tiny to obtain more helmet
information features, improve the algorithm detection performance, and reduce the number
of parameters and computation in the model. Yan et al. [18] replaced the traditional
convolution algorithm in Darknet-53 with deep separable convolution to reduce feature loss
and adjust model parameters, and, secondly, add the multiscale feature- fusion structure to
obtain more shallow information, thus improving the accuracy of helmet-wearing detection.
Fan et al. [19] added a convolutional layer to the Faster R-CNN network to detect targets
with smaller pixel values. Mozaffari [20] proposed IrisNet, used to segment and detect
objects. More and more researchers focus on object detection in small object detection.
Y. Lee et al. [21] proposed a VoVNet based on improved DenseNet to improve the efficiency
of object detection while retaining the benefits of cascaded aggregation of object detection
tasks, improving the accuracy of object detection at smaller FLOPS. Stojnić V et al. [22]
proposed using synthetic video to train CNN, effectively and accurately detect flying
bees and improve the F1 score to 86%. Guimei Cao et al. [23] introduced contextual
information into SSD to detect a small object. In addition, there are also some olfactory
neural networks [24,25], etc. for detection.

Although the optimizations of the algorithm are helpful to improve the average
accuracy of algorithm detection, there are still a series of disadvantages: the works of
literature above lack the consideration of complexity, so the robustness of the improved
algorithms is poor, especially in [17]. Even though the original ordinary convolution
is replaced by a deep-separation convolution and an SAS module of channel attention
mechanism, the algorithm structure is slightly redundant, and the required hardware
configuration is higher, which is not useful to the real-time supervision and the application
of construction scenarios. Meanwhile, considering the requirements of monitoring real-time
performance, ref. [18] adds a multiscale feature fusion structure and [19] adds a convolution
layer. There is a redundant structure in the algorithm, so there is still room for improvement
in the real-time detection rate of the above algorithms.
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General object detection cannot fit a specific scene well, so the corresponding detection
task cannot be completed well. Common methods of adding attention mechanisms, in
addition to adding additional computational overhead, cannot better connect contextual
information. Due to the limited computational overhead, we adopt the multispectral
channel attention (MCA) strategy, use the discrete cosine transform (DCT) in the channel
attention mechanism to compress the channel and use the model-pruning method for
sparse training to achieve higher detection accuracy with smaller models in the hat-wearing
detection task. The reasons are as follows: (1) The global average pooling operation cannot
express rich feature information [26]. GAP is a special case of DCT, and it is embedded
in the MCA framework, adding more frequency component information obtained from
redundant channels, which can extract more useful information; (2) The CNN model has the
problems of model size, running time occupying memory and large amount of calculation.
After the model introduces the scaling factor regular term, many scaling factor regular
terms of the obtained model will tend to 0. After sorting the absolute value of the scaling
factor, subtracting the channel corresponding to the pruning percentage, then finetuning
and repeating the network thinning, we get a compact small network.

In summary, to solve the problems existing in the current safety helmet-wearing
detection algorithm, the main contributions of this article are as follows: (1) Aiming for the
problem that the YOLOV5 cannot better detect the shielding safety helmet and the smaller
safety helmet in the task, the MCA-YOLOV5 model of multispectral channel attention
(MCA) module in feature extraction network is proposed; (2) For the large model unable
to embed the mobile terminal problems, first, the model introduces L1 regularization
constraints associated to the scaling factor in the BN layer of the model and performs the
sparsity training. The channels are then sorted by importance, and the less important
channels will then perform pruning operations. Finally, the trimmed model is fine-tuned
and trained again. Through model pruning, the MCA-YOLOV5-Light safety helmet-
wearing detection algorithm can not only reduce the hardware cost and model parameter
scale but also perform rapid detection.

2. Related Work
2.1. Attention Machine

In the field of deep learning, methods to shift attention to the most important areas of
the image and ignore irrelevant parts are called the attention mechanism [27]. In essence,
using the human visual system can explain the intuition behind attention well. The attention
mechanism mimics the unique brain-signal-processing system in the human visual system,
just as the human eye usually turns its attention to the target area of their interest and tries
its best to capture the detailed characteristics of the target in the area, thus ignoring much
irrelevant information. It is the survival mode formed by long-term natural selection of
human beings, which enables humans to quickly obtain useful information resources from
massive information with limited attention. The human attention mechanism effectively
improves the accuracy and efficiency of information resource processing and acquisition to
a large extent.

The human visual system uses attention to analyze and recognize complex real-life
situations more effectively. With the development of technology, more researchers use
attention mechanisms to optimize deep learning techniques and improve the character-
istics of deep learning patterns. In computer vision systems, attention mechanisms are
implemented by adaptive weighted features based on the importance of their respective
inputs and provide benefits in many visual tasks, such as pose estimation, super-resolution
and 3D vision, as well as multimodal tasks.

Hu et al. [28] propose the SENet, in which attention is used to collect global informa-
tion, capture channel relationships and improve representation. It adopts weight-calibrated
feature fusion and cannot fully utilize the global context. Yang et al. [29] proposed the
Ggated channel conversion (GCT) to collect information effectively and explicitly model
channel relationships. Wang et al. [30] proposed the Efficient Channel Attention Module
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(ECA), which used a one-dimensional convolution to determine the interactions between
the channels rather than the dimensionality reduction. Qin et al. [31] rethought the global
information captured from a compression perspective and analyzed the global averaging
pool in the frequency domain. They showed that the global mean pool was a special case
of a discrete cosine transform (DCT) and used this observation to propose multispectral
attention channel attention. Guo [32] proposed a small-memory external attention based on
two externals that was easy to imitate and share and could be easily realized with the help
of only two bridged normalization layers and linear layers. The algorithm subverted the
existing self-attention mechanism very quickly. Yang et al. [33] proposed SimAM (a simple,
parametric-free attention module that directly estimated 3D weights rather than extending
1D or 2D weights), which also emphasized the importance of learning changing attention
weights in learning channels and spatial domains. Misra et al. [34] were motivated by the
spatial attention mechanism and proposed a triple attention mechanism, a lightweight but
effective attention mechanism, which was mainly used to capture cross-domain interac-
tions. Hou et al. [35] proposed a coordinate attention mechanism incorporating positional
features in the channel attention mechanism, thus enabling the network to focus on large
important regions at less computational cost.

2.2. Model Puring

Model pruning is cutting the pretrained network model to delete the “unimportant”
neurons or connections in the network model according to a series of parameter evaluation
criteria to reduce as much as possible the model’s parameter size of the model without los-
ing the model accuracy. According to the different model pruning objects, model pruning
can be further refined into structured pruning and non-structured pruning [36]. Structured
pruning removes entire neurons, filters or channels and tradeoff tailoring grouping param-
eters to facilitate better use of hardware and software optimized for intensive computation.
Unstructured pruning is mainly about pruning a single parameter, producing a relatively
sparse neural network. Although the parameters are small, the arrangement may not
be conducive to accelerating the use of modern libraries and hardware. Model pruning
includes structured pruning and unstructured pruning.

2.2.1. Structured Pruning

Structured pruning achieves simultaneous neural network compression and acceler-
ation by directly deleting the structured convolutional neural network part and is well
supported by various off-the-shelf deep learning libraries. At present, the main mainstream
methods of structured pruning are the following four [37]: channel pruning, filter-level
pruning, layer pruning, and connection pruning. A schematic representation of the model
pruning section is shown in Figure 1. Channel pruning mainly reduces the number of
redundant channels in the middle layer of the deep neural network model, aiming to
optimize the computing and storage requirements of the model; filter-level pruning mainly
removes the unimportant filters in the deep neural network model; layer pruning refers
to the removal of some selected layers from the network model to reduce the volume of
the deep neural network model. In addition, existing research attempts to delete the deep
neural network model to reduce the parameter size of the network model.

Unlike unstructured pruning, structured pruning is more of a remodeling process,
intending to prune the whole block completely. To avoid zero input, only blocks with
residual connections can be trimmed. Despite the limitations, block pruning can effectively
eliminate deep redundancy in some architectures. Furthermore, it can be achieved in
combination with filter pruning, resulting in higher pruning rates. In structured pruning,
filter-level pruning outperforms unstructured pruning; however, unstructured pruning can
achieve the optimal training speed.
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2.2.2. Unstructured Pruning

Since the number of model parameters was not very large in earlier times, deep neural
network model pruning work focused on convolution weights with zero unnecessary
connections occupying most of the computations needed during execution. To ensure the
consistency of the model structure, the weights can only go to zero and cannot be pruned.
Therefore, weight pruning requires assigning specific coordinates for each weight, which is
difficult to satisfy in today’s trillion-level models. In addition, special hardware equipment
is needed to speed up the training process. Early work on weight pruning [38] proposed
a significant measure to remove redundant weights determined by the second derivative
matrix of the loss function. Many methods are also proposed to determine weight-zero
criteria, such as iterative threshold selection [39] and Hoffman code [40]. Kwon et al. [41]
proposed a sparsely quantized neural network weight representation scheme, specifically
implemented by fine-grained and unstructured pruning methods.

3. Method
3.1. MCA-YOLOv5
3.1.1. MCA-YOLOv5 Safety Helmet Wearing Detection Algorithm

YOLOv5 is a single-stage target detection algorithm proposed in 2020 by Jocher et al. Due
to the differences in model depth and width, YOLOv5 can be divided into four different ver-
sions: YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. Moreover, the YOLOv5s network has
the fastest computation speed but the lowest mean average accuracy, whereas the YOLOv5x
network has the opposite characteristics.

The YOLOv5 network structure is divided into four parts: input end, backbone
network, neck, and prediction part. YOLOv5 adds new mosaic data enhancement in the
data input part; the Focus architecture and CSP architecture is mainly used in the backbone
network; FPN + PAN architecture is added in the neck; replacing CIoU loss function with
GIoU loss function, the loss function of boundary target anchor box is improved and
in object detection, YOLOv5 detects multiple object anchor boxes by a weighted NMS
algorithm. Therefore, YOLOV5 is suitable for multiscale object detection, and this paper
optimizes the algorithm based on YOLOV5, making it suitable for safety helmet detection
in construction site scenarios.

In the task of site scene helmet detection, due to the complex environment of the
site scene, the situation of a worker wearing the helmet while it is not entirely blocked
and the helmet being small relative to the background and therefore not easily detected
occurs frequently. Based on the characteristics of the site scene, the MCA-YOLOV5 model
is designed to improve the accuracy of the site helmet-wearing detection.

In the small object detection task, the collected small target feature information is
also gradually weakened as the number of network layers increases gradually, so it is
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easy to cause the algorithm to err and miss the detection of small targets. However, the
MCA module uses the global average pooling and the remaining frequency components to
enhance the features in the feature map so that the network strengthens the overlooked
point learning of the target features during the training process. In this paper, the MCA
module is embedded in the backbone network to enrich the network acquisition of features.
Figure 2 shows the YOLOV5 structure diagram of the MCA module added.
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3.1.2. MCA Attention Mechanism

Due to the limited computational overhead, the weight function requires a scalar for
each channel, and the Global Average Pooling (GAP) becomes a standard choice in the
deep learning field due to its simplicity and efficiency. Although this choice is simple
and efficient, the GAP cannot capture the diverse pattern information very well, so the
feature generalization is missing in response to different inputs. Qin et al. [31] proposed
the Multispectral Channel Attention (MCA) module to solve the above problems.

GAP is the lowest frequency of Discrete Cosine Transform (DCT), and only taking
GAP is equivalent to not using the remaining frequency components containing much
available information in the feature channel. 2DDCT is shown in Equation (1):

f 2d
h,w = 2DDCT(xi) = ∑H−1

i=0 cos
(
(2i+1)πh

2H

){
∑W−1

j=0 x2d
i,j cos

(
(2j+1)πw

2W

)}
i, h ∈ {0, 1, . . . , H − 1}, j, w ∈ {0, 1, . . . , W − 1}

(1)

in which x ∈ RH×W is the input and H and W represent the height and width of the
input components.

Although the multispectral channel attention module has the same starting point as
other attention modules, the multispectral channel attention module not only retains the
global average pool but also uses the frequency component besides the global average
pooling, which can solve the problem of missing information caused by only a single
frequency, make the network model pay more attention to important features and filter
redundant features. The multispectral channel attention module is improved based on the
SE (Squeeze and Excitation) module. The specific structure diagram is shown in Figure 3.
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In order to integrate more frequency component information, including the lowest fre-
quency component GAP, the multispectral channel attention module uses two-dimensional
discrete cosine variables to operate. As can be seen from Figure 3, the specific execution
steps are as follows: First, the input X is divided into n parts according to the channel
dimension, which should be able to be divided by the number of channels. For each part, its
corresponding two-dimensional discrete cosine variable frequency component is uniformly
assigned, and its final output can be used as a preprocessing result of channel attention
(e.g., GAP), as shown in Equation (2):

Freqi = 2DDCTu,v
(

Xi
)
=

H−1

∑
h=0

W−1

∑
w=0

Xi
:,h,wBu,v

h,w (2)

FreqεRC is the preprocessed multispectral vector, 2DDCT expressed as the 2-DDCT
frequency component, [u, v] is corresponding to the frequency component 2D index, H is
the height of input X, W is the width of input X, X1, X2, . . . , Xn−1 represents the divided
parts, Xi ∈ RC′×H×W , C′ = C

n′ , C can be divisible by n and Bu,v
h,w is the basis function of the

2D discrete cosine transformation.
Then, the frequency components of each part are combined, which is the multispectral

vector, as shown in Equation (3): Freq ∈ RC

Freq = cat
([

Freq0, Freq1, . . . , Freqn−1
])

(3)

Among them: Freq ∈ RC is the preprocessed multispectral vector.

att = sigmoid( f c(Freq)) (4)

sigmoid representing the sigmoid function, f c representing the mapping function,
such as a fully connected layer or a one-dimensional convolution. att represents the entire
MCA attention mechanism.

3.2. MCA-YOLOv5-Light Safety Hat Wearing Detection Model

Although the MCA-YOLOv5 algorithm can better test whether the construction work-
ers in natural construction sites wear safety helmets, it has many detection model parame-
ters and a large model volume, so it is difficult to apply in order to detect the construction
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workers in mobile scenarios directly. In view of the detection problems of the above
algorithm, we pruned the MCA-YOLOV5 algorithm and reduced the volume size and
calculation amount of the above algorithm as much as possible without reducing the al-
gorithm detection performance. That is, while ensuring the detection rate, the pruning
algorithm should be able to receive higher-definition images for detection, which is also
conducive to the application of mobile scenarios.

3.2.1. Sparsity Training of the Safety-Helmet-Wearing Detection Model

The training granularity of the sparse model training is divided into weight level,
channel level and network level, as shown in Figure 4. The sparse training of the fine-grain
level (e. g., weight level) has the highest compression rate and model flexibility, but it
usually requires specialized hardware or underlying library to accelerate the inference
model; the sparse network level does not require special hardware or underlying library
for model acceleration but has significantly poor compressibility and flexibility for the
model itself. Moreover, the sparse training of the network layer is fully effective only when
the depth of the network model exceeds 50 layers [42]. In contrast, sparse training at the
channel level achieves a good balance between flexibility and ease of implementation,
which can be applied to any convolutional neural network or a fully connected network.
For the above reasons, the pruning algorithm in this paper will sparsely train the model at
the channel level.
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This paper performs channel-level sparsity on the MCA-YOLOv5 helmet-wearing de-
tection algorithm obtained from regular training. During sparsification, a simple L1 regu-
larization term applied to the channel scaling factor of the BN is chosen to be sparse on the
channel granularity of the model, resulting in good compression ratios without requiring
specialized hardware or the underlying library. For the sparsity training, the scaling factor
and the algorithm weights are trained simultaneously in this paper, and then the scaling factor
is applied to the sparse regularization. When the sparse training is completed, the convolution
channel with a slightly lower scale factor in the algorithm will be deleted, and the deleted
model will be fine-tuned and trained to restore the accuracy of the model in the end. The
objective function of the sparse training is specifically shown in Equation (5):

L = ∑
(x,y)

l( f (x, W), y) + λ ∑
Y∈r

g(Y) (5)
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Formula: W is the weight of the trainable model, (x, y) is the input and output of the
model training. The first addition is the loss of the CNN network during normal training,
λ is the adjustment coefficient, and g(γ) is the sparse penalty on the scaling factor. This
chapter selects the L1 parametric as the penalty term, as shown in Equation (6):

g(Y) = |Y| (6)

Batch normalization is a typical improvement measure in CNN networks and is usually
placed before the activation layer can not only strengthen the network generalization
performance but also accelerate the rate of network convergence. The formula is shown
in Equation (7):

ẑ =
zinµB√
σ2

B + ε
; zout = γẑ + β (7)

where: B represents the current minimum number of batches and µB and δB are the mean
and standard deviation of B, and γ and β are the trainable affine transformation parameters
(scale and displacement) and zin and zout are the input and output of the BN layer.

3.2.2. Channel Pruning and Fine-Tuning of the Safety-Helmet-Wearing Detection Model

At the 2017 ICCV Conference in the Field of Computer Vision, Liu et al. [21] presented
a paper proposing a pruning algorithm for pruning convolutional neural networks in
a simple but rather efficient manner. For the VGGNet network model, the network-
slimming and pruning algorithm reduced its model size by 20 times and the computational
operation by 5 times, whereas the pruned network model did not significantly reduce the
accuracy. Drawing on the idea of this network-slimming pruning algorithm, this paper
designs a pruning algorithm for a lightweight object detection network, which has pruned
the convolutional channels in the detection network and can be directly used for object
detection networks based on the convolutional neural network. At the same time, the
pruned resulting model does not require the use of specialized hardware or the underlying
library and can be directly used for rapid detection tasks.

The detailed process of the pruning algorithm proposed in this paper is shown in
Algorithm 1 and Figure 5. It uses the scaling factor of the BN layer as the measure of model
pruning and the convolution channel below the preset threshold to reduce the volume size
of the algorithm by the pruning operation, then train the trimming algorithm to recover the
accuracy and finally obtain a lightweight detection network. Figure 5 shows the specific
process of the channel pruning algorithm. After the model is sparsely trained, the lower
convolution channel (yellow in the figure) will be pruned. Because the network structure of
the pruning model changes compared with the original model, whereas the neural network
parameters learned by the original network structure do not change, the target detection
power of the pruning model is reduced, and the mapping power of the pruning model
is low. The pruned model is trained with fine-tuning when the model can relearn the
neural network parameters according to the current network structure, thus recovering the
model’s detection accuracy and improving the mapping.

In conclusion, the MCA-YOLOv5-Light safety-helmet-wearing detection model mainly
includes three stages: sparse training, model pruning, and model recovery. The entire
pruning process is shown in Figure 6. In this paper, the MCA-YOLO v5 model is first
sparsely trained, then the channel pruning operation is performed on the network model
according to the pruning strategy and finally fine-tuning training is performed to obtain
the final lightweight compression model.
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Algorithm 1 A channel pruning algorithm based on the scaling factor

Input: Original model
Output: Lightweight compression model
1 bn_weights = γ1, γ2, γ3, . . . . . . γn, Initialize Epochs = 200
2//Turn on the sparse training session
3 while epoch ≤ Epochs
4 g(Y)← |Y|
5 objective function L← ∑

(x,y)
l( f (x, W), y) + λ ∑

Y∈r
g(Y)

6 Output of the BN zout ← Yẑ + β

7 Update γ1, γ2, γ3, . . . . . . γn
8 bn_weights←γ1, γ2, γ3, . . . . . . γn
9 end
10 Initialize prune_ratio = 0.9
11 To γ1, γ2, γ3, . . . . . . γn Sort by channel number
12 if c1, c2, c3, . . . . . . , cn channel_id < len(channels) prune_ratio×
13 Trim the channel c1, c2, c3, . . . . . . , ci
14 end
15 Fine-tuning of the pruning network
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4. Experimental Analysis and Analysis
4.1. Experimental Environment, as well as the Dataset

This experiment requires outstanding hardware configuration and a GPU acceleration
operation. The construction, result test and training of the algorithm are all carried out
under PyTorch architecture, and the CUDA parallel computing structure is adopted. Then,
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the CU-DNN acceleration library is integrated, and the computer computing power is
further increased under PyTorch architecture. The operating environment required for
the experiment is shown in Table 1. The dataset used in this experiment is the HHD [43]
safety-helmet-wearing detection dataset, which is an open-source data set proposed in
2022, including 7076 images, which are divided into training set and test set in a 9:1 ratio.
The positive samples in this data set are mainly construction workers wearing helmets
on the construction site; most of the negative samples are construction workers without
helmets on the construction site and a few construction workers wearing other interference
hats on the construction site, which has the characteristics of real construction scenes.

Table 1. Experiment Operating Environment (List of equipment and versions required for the experiment).

Class Itemize Edition

Hardware configuration system Ubuntu 18.04
Graphics card GeForce RTX 2080 Ti

Software configuration

CPU AMD Ryzen 7 3800X 8-Core
Python Version 3.8

Deep learning framework Pytorch
CUDA 10.0

4.2. Experimental Results and Analysis
4.2.1. MCA-YOLOV5s Fusion Analysis

In order to further fairly verify that the application of the MCA attention module to
the backbone network location of the YOLOV5 model can extract more abundant features,
this paper integrates the MCA attention module to different positions of the network model
and studies the detection results. According to the YOLOv5s network model structure, the
MCA attention module is separately fused in three regions of YOLOv5s backbone network,
neck and prediction module. Since MCA modules are enhanced in important channels
and spatial locations, this paper integrates the MCA attention module into each of the
above three parts to produce three new network models based on the YOLOv5s algorithm:
MCA-YOLOv5-BackBone, MCA-YOLOv5-Neck and MCA-YOLOv5-Prediction. Figure 7
shows the specific location of the MCA attention module fusion network.

In Figure 7a, in the backbone network of YOLOv5s, the MCA attention module is
fused to CSP1_3 (i.e., feature fusion); in Figure 7b, the MCA attention module is fused to
the neck Concat layer of YOLOv5s and in Figure 7c, one MCA attention module is fused
before the convolution of each prediction module of YOLOv5s.

The results of the experimental comparison between the fused MCA attention modules
in three different positions and the unfused MCA attention modules in three different
locations are specifically shown in Table 2. Secondly, the outputs of the same channels
of the three fusion design networks are compared. Subsequently, in order to observe the
detection capability of the network integrating the MCA attention module relatively clearly
on the targets of various sizes, in this paper the instances are classified into the following
three proportional types according to the target size: small target (target area 322), medium
target (322 < Target area of 962) and large target (target area > 962). Among them, the IoU
threshold of 0.5 is used for both the large and medium targets and the mAP evaluation
index. Precision (P) is the correct ratio of the true values in the data predicted to be correct,
and Recall (R) presents how much of the data with correct true values can be predicted
correctly. Means Average Precision (mAP) refers to calculating the area under the PR curve
enclosed by Precision and Recall and then averaging the categories to evaluate the detection
accuracy of multiple categories.
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Figure 7. The YOLOv5s model of the three fused MCA modules (This is a visual representation of
the MCA module placed in three different positions on the YOLOV5 model. (a) put the MCA module
in the backbone network; (b) means put the MCA in the neck network and the MCA in (c) is in the
prediction part).

Table 2. Comparison of the MCA module fusion results (The results of large, medium and small
object detection when the MCA module located at backbone network, neck and prediction parts in
the YOLOv5s.).

Network Model Small
Object

Medium
Object

Large
Object P/% R/% mAP/%

YOLOv5 83.0 97.9 99.3 76.4 92.5 92.7
MCA-YOLOv5-BackBone 90.4 98.6 99.6 82.2 95.4 96.0

MCA-YOLOv5-Neck 78.3 96.4 99.1 70.9 93.7 91.6
MCA-YOLOv5-Prediction 82.7 97.1 99.2 72.5 92.8 92.4

We analyzed the different effects of different positions of the MCA embedded model
in the experimental results. Compared with the deep network, the backbone network has
less semantic information but still contains the texture information and contour information
that are easily ignored in the middle and low layers of the target. Moreover, the shallow
information of the backbone network contains rich location information. The fusion of the
MCA module in the backbone network can better fuse the easily ignored spatial features,
rich location information and channel features of small objects in the feature map, thereby
enhancing the feature information. By contrast, in the deeper neck of the network and
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the prediction module, the feature maps have richer semantic features, smaller-sized
feature maps and large receptive fields, but it is difficult for the MCA attention module to
distinguish important spatial and channel features.

4.2.2. Sparse Training Process

The MCA-YOLOv5 algorithm was first sparsely trained; then, all the scaling factors
in the BN layer were acquired simultaneously and used as a measure of the network and
convolutional channels pruning. In the sparse training, if the sparsity rate is too large,
the thinning rate of the model will be accelerated, but the average accuracy of the model
detection method decreases significantly; on the contrary, if the sparse process is slow, the
average accuracy of the model after sparse training decreases less. The sparsity algorithm
is similar to a game process, often pursuing a high compression ratio but, at the same time,
hoping that the sparse model can restore the original mean average accuracy and set a
different sparsity rate; the results are often different, so finding the appropriate sparsity
usually requires a large time cost. After repeated experiments and testing, this chapter
finally set the sparse rate to 0.005. During sparse training, the change of mAP of the model
on the test set during the test training is shown in Figure 8, and the change of BN layer scale
factor during normal training and sparse training is shown in Figures 9 and 10, respectively.
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According to Figure 9, with the increasing training rounds during the model’s normal
training period, the BN layer’s scaling factor converges from a scattered irregular distri-
bution to a Gaussian distribution centered on 1. Figures 9 and 10 show that the mean
average accuracy of the network continuously decreases, and the values are continuously
compressed in the first 20 rounds after the start of sparse training. Until the 20th epoch
of sparse training, most of the values were compressed to near zero, at which point the
mAP of the test set model drops to around 87%. After the 20th epoch, the mAP value
of the network on the validation set gradually begins to slowly recover. Until the sparse
training reaches the 110th epoch, the mAP converges to 95.8%, and the sparse training
is completed when the compressed model mean average accuracy returns to the normal
level. In sparse training, the weight distribution changes and mAP decreases, but after
retraining, mAP will show an upward trend. After the model is fine-tuned, mAP will reach
the optimal value. The scaling factor values are close to 0, meaning that the neural network



Appl. Sci. 2022, 12, 9697 14 of 19

convolutional channel has low importance to the entire model, so the channel can be cut
off directly during pruning and does not have much impact on the mean average accuracy
of the model.
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4.2.3. Analysis of the Model Pruning Results
Model Pruning Comparison

After determining the scaling factor for sparse training γ = 0.005, to verify the effective-
ness of model pruning, this chapter prunes the sparse trained model at rates of 0.5, 0.6, 0.7 and
0.8. Table 3 shows the parameter comparison of the detection model under different channel
pruning rates and finally selects the best pruning ratio by the parameter performance.
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Table 3. Parameter comparison of the detection models under different channel pruning rates (This
table mainly compared the model running speed, size and mAP under different pruning rates).

Cut Branch Ratio mAP/% Parameters/106 Reference Time/ms Model Size/MB

base (0.00) 96.0 7.30 37 15.2
0.80 89.5 0.93 17.2 2.1
0.70 93.2 1.67 18.5 3.6
0.60 93.9 2.39 19.3 5.0
0.50 94.6 2.96 20.3 6.1

Model parameters with different pruning rates were compared. According to Table 3,
the number of parameters, algorithm volume and inference time of the four algorithms are
reduced at different channel pruning rates. After performing fine-tuning training of the four
pruning algorithms, mAP was recovered to 95.1%, 95.3%, 95.8% and 96.1%, respectively.
Because the mean average accuracy after fine-tuning is not very different, and there are
significant differences in the number of parameters, algorithm volume and inference time,
the 80% channel pruning rate is finally selected to obtain a better model compression effect
with a small loss of mean average accuracy.

Model Comparison Experiment

To verify the reliability of the algorithms proposed in this chapter, the current more
popular target detection algorithms were compared with the algorithms presented in this
paper, including Faster R-CNN, SSD, YOLOv3, YOLOv3 + SPP, and YOLOv5s, and the
results are shown in Table 4.

Table 4. Comparison of the test results for the different models (Our algorithm compared with other
algorithms in terms of computational speed, model size, and mAP).

Detection Model Hat Person mAP/% FLOPS Parameters/106 Reference Time/ms Model Size/MB

Faster R-CNN 80.8 42.2 61.5 181.12 186 291 182.1
SSD 78.8 68.2 73.5 31.75 23.75 126 188

YOLOv3 89.12 80.7 84.9 65.86 61.9 69 236
YOLOv3+SPP 90.5 86.3 88.41 141.45 63.0 70 237.4

YOLOv5s 93.3 91.7 92.7 17.0 7.26 36 14.8
MCA-YOLOv5 96.7 95.2 96.0 21.75 7.30 37 15.2

MCA-YOLOv5-Light 95.7 94.6 95.1 2.74 0.93 17.2 2.1

The partial detection results of the MCA-YOLOv5-Light safety helmet detection algo-
rithm on the test sample set are shown in Figure 11. The red rectangular boxes represent
the helmet-wearing situation detected by the model, and the blue boxes represent the head
without a helmet. As can be seen from Figure 11, our detector can still more accurately
detect whether a worker is wearing a helmet in a crowded situation.

Compared with the data in Table 4, it is clear that the MCA-YOLOv5-Light helmet-
wearing detection algorithm is more effective than several popular target detection al-
gorithms at present. Secondly, although the average mean detection accuracy of the
MCA-YOLOv5-Light model was slightly lower compared with the MCA-YOLOv5 model,
its model size, number of parameters and inference time were 7.2 times, 7.8 times and
2.1 times that of the MCA-YOLOv5 model, respectively. By comparing the above main
evaluation indexes, the overall performance of the helmet-wearing detection algorithm
presented in this paper is effective and feasible, especially in terms of the detection speed,
which can meet the needs of real-time detection to a greater extent.
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Figure 11. Test Results. (The figure is a real construction scene map, Chinese represents the project
name. The first picture on the left in the first row is the groundbreaking ceremony of the Guangzhou
Traffic Technician College, and the first picture on the right has a white title: Dare to be the first in
the world, always strive to be the first. The second row from left to right are the capping ceremony
of West China Xiamen Hospital of Sichuan University, China Construction, and the completion
ceremony of the expansion project of China National Academy of Painting. The first picture and the
second picture from the right in the third row represent the groundbreaking ceremony of the Tencent
Beijing Headquarters Building and the China Construction Third Engineering Bureau.).

5. Conclusions

In this paper, the MCA-YOLOV5 model is proposed, embedding the MCA module in
YOLOV5 to obtain more abundant feature map information. Secondly, the main strategies
of sparse training and channel pruning used in this chapter are introduced. Then, the
proposed strategy is adopted to implement the pruning operation on the MCA-YOLOv5
helmet-wearing detection algorithm and finally tested on the test set, and it achieved good
results. Although the average accuracy of the mean detection of the MCA-YOLOv5-Light
helmet wearing detection algorithm is reduced, the number of model parameters, model
reasoning time, and model size of the algorithm are significantly improved compared with
the MCA-YOLOv5 helmet-wearing detection algorithm, which can be used for real-time
detection under the construction site.
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6. Discussion

In this paper, we completed the task of detecting helmet wearing in the construction
site scene. Although we achieved high-accuracy detection with a small model, there are
some problems. The data set collected in this paper comes from web crawling, and has three
sizes of helmet object: large, medium and small. If applied to real construction scenarios, it
is possible that smaller helmet detection tasks are more common and important. In the next
work, we will further improve the small object detection scenario and extend the algorithm
to more application levels.
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