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Abstract: For fault diagnosis, convolutional neural networks (CNN) have been performing as a
data-driven method to identify mechanical fault features in forms of vibration signals. However,
because of CNN’s ineffective and inaccurate identification of unknown fault categories, we propose a
model based on transfer learning with probability confidence CNN (TPCCNN) to model the fault
features of rotating machinery for fault diagnosis. TPCCNN includes three major modules: (1) feature
engineering to perform a series of data pre-processing and feature extraction; (2) transferring learning
features of heterogeneous datasets for different datasets to have better generality in model training
and reduce the time for modeling and parameter tuning; and (3) building a PCCNN model to classify
known and unknown fault categories. In addition to solving the problem of an imbalanced sample
size, TPCCNN self-learns and retrains by iterating with unknown classes to the original model. This
model is verified with the use of the open-source datasets CWRU and Ottawa. The experimental
results showing the feature transfer of heterogeneous datasets are of average accuracy rates of 99.2%
and 93.8% respectively for known and unknown categories, and TPCCNN is then proven effectively
in training heterogeneous datasets. Likewise, similar feature sets can also be applied to reduce the
training of predicting models by 34% and 68% of the time.

Keywords: fault diagnosis; probability confidence; feature engineering; transfer learning; deep
learning; convolutional neural networks

1. Introduction

Rotating machinery plays an essential role in many industries. Bearings are among the
most common components for rotating machinery. The stability of automated machinery
and equipment is one of the crucial factors affecting factory production. For example,
mechanical vibration can cause bearing damage, spindle eccentricity of rotating machinery,
and the damage and failure of equipment. Thus, exploring the precise approaches for
fault diagnosis is of great value because unpredictable faults of machinery can lead to
severe damage and losses in production. In fault diagnosis, most defects are resulted from
equipment vibration. The vibration of bearings is often used as a means of fault diagnosis
and prediction of the equipment’s remaining life to improve the equipment’s stability and
reduce economic losses [1].

In smart manufacturing, the application of intelligent processing equipment is a trend.
This can be seen in the fact that more and more manufacturers utilize electromechanical
integration, online monitoring, and value-added software technologies to improve the
performance of machinery. Hence, the research and application of fault diagnosis are of
interdisciplinary work [2]. X. Zhou et al. [3] proposed 1D convolutional neural network
fusing frequency domain feature matching algorithm (FDFM) to learn the crucial features
directly from the frequency domain, and perform fault identification under limited samples
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and a noisy interference environment. S. Xiong et al. [4] proposed an end-to-end fault
diagnosis of rolling bearings by wavelet packet transform (WPT) and CNN methods. Gen-
erally, there are generally two approaches to fault diagnosis—data-driven methods and
fault-based modeling. The traditional data-driven models of fault diagnosis rely on experts’
domain knowledge about the corresponding mechanical parts. Besides, the work of ex-
ploring various machines and fault classification is labor-intensive and time-consuming [5].
The complexity of electromechanical systems building rotating machinery makes good
modeling for fault diagnosis a much more challenging work. Thus, a deep learning-based
data-driven model of fault diagnosis has been developed as it captures signal features
automatically and rely on no professional knowledge of humans. Standard models of
deep learning applied to fault diagnosis models include convolutional neural networks
(CNNs), autoencoders, recurrent neural networks (RNNs), and generative adversarial
networks (GANs) [6]. C. Kuo et al. [7] proposed a practical rotor failure diagnostic method
with fuzzy theory and a genetic algorithm for evaluating operational status of motors.
X. Wang et al. [8] proposed a prediction method—bearing remaining useful life (RUL)—
that took both time-domain features and time-frequency features into account on the basis
of parallel deep residual convolution neural network (P-ResNet) to raise the prediction
accuracy. J. Zhou et al. [9] proposed a residual network, which combined transfer learning
(ResNet-TL) based diagnosis methods of rolling bearings, and was able to preprocess
one-dimensional data of vibration signals into image data for the application of transfer
learning afterwards to pre-train and re-train the ResNet34 network. Z. Xu et al. [10] pro-
posed a text-driven fault diagnosis model based on Word2vec, CNN, and CSM. To extract
the text extraction using Word2vec and build the prior-knowledge CNN classifier with
Cloud Similarity Measurement (CSM) improved the accuracy of aircraft fault diagnosis. J.
Chuya-Sumba et al. [11] proposed a 1D CNN model that works on raw signals without any
need of prerequisite analysis. G. Nassajian and S. Balochian [12] proposed a multi-model
estimation and fault detection method using RBF neural network for a nonlinear system of
unknown time continuous fractional order.

Testing with different operating conditions of equipment such as speed, load, envi-
ronmental noise, and fault location, can result in uneven data distribution and unbalanced
sampling [13]. The method of generative adversarial network (GAN) generates data deriv-
ing from learning different failure characteristics to expand the training data and solve the
data imbalance problem [14]. However, most diagnostic models proposed so far are based
on supervised learning that identifies labels [15], and identifying different types of fault
data is more challenging. In the industry, it is a hard task to label fault data as it is regarded
as an “unknown category,” so simulation is usually applied to the faults of this type. A
PCCNN algorithm [16] is used in the computation of probabilistic confidence levels to
distinguish between “known classes” and “unknown classes” of failure classes. However,
the current research is still applied as a primary source in the open-source simulation
dataset for the low simulation efficacy in different cases.

Most previous studies based on the method of data-driven intelligent fault diagnosis
(DIFD) focused on the improvement of the generalization performance and fault diagnosis
with several reconfigurations. Zheng et al. proposed [17] domain adaptation from transfer
learning and other techniques to achieve cross-domain fault diagnosis. Yan et al. [18]
provided an overview of knowledge transfer for rotary machinery fault diagnosis (RMFD)
by applying different transfer learning techniques in four categories: transfer between
multiple fault classes, transfer between numerous locations, transfer between working
conditions, and transfer between various machines. Different machines have different
failure classes and data characteristics. Sun et al. [19] proposed transfer learning based on
stacked autoencoders (SAEs) algorithms combined with classification and domain-blending
to improve the accuracy of diagnostic models and the versatility of fault diagnosis data for
different machines. In preceding research, models of fault diagnosis were established with
the combination of transfer learning and deep neural networks. Based on the results, the
research carries out the solution to the imbalance of sample fault data. Fan Yang et al. [20]
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proposed two transfer strategies to analyze the probable scenarios in practical cases and
suggested transfer strategies applicable in each case.

In previous works, the fault-based modeling, and data-driven methods for known
fault diagnosis has been performed, while the authors of this paper made a preliminary
survey of fault detection in data-driven with unknown class and transfer-learning in
similar datasets. This paper proposed TPCCNN (Transfer PCCNN) focusing on monitoring
vibration frequencies which can be featured by FFT and trained and transferred in PCCNN
model for further fault diagnosis for the first time.

The rest of this paper is organized as follows:
The Section 2 presents the principle of TPCCNN, the introduction of PCCNN, and the

method of TPCCNN-based fault diagnosis including feature extraction, pre-trained model,
and fine-tuning. This is followed by a presentation about the experimental setting, datasets,
processes, and results of TPCCNN. The Section 4 gives the experimental results to demonstrate
the efficiency of the proposed method. Finally, the paper gives conclusion and future work.

2. Materials and Methods
2.1. Principle of Transfer Learning in TPCCNN

Several features, vibration frequencies, abnormal noise, etc., can be derived from the
fault of a rotary machinery. TPCCNN (Transfer PCCNN) proposed in this paper focuses on
monitoring vibration frequencies which can be featured by FFT, trained, and transferred
in PCCNN model for further fault diagnosis. Due to different operational conditions and
environments, subtle bias happens between machines with the same model and among
different machines which affect the accuracy of model evaluations. Therefore, a method
of TPCCNN combined with transfer learning and the PCCNN [16] models is developed
for fault diagnosis of rotary machinery. The architecture diagram of TPCCNN is shown in
Figure 1. The TPCCNN model derives from PCCNN that consists of four convolutional
layers, four pooling layers, and three fully connected layers. We fine-tuned the preceding
model. While adjusting, we used a learning rate that was equal to or less than the one used
in the initial training model. We rarely did adjustment on the defined weights, for we had
been highly confident in the pre-trained network.

The transfer learning model in this study adopts parameter transfer, which fixes the features
of the lower convolutional layers, pooling layers, and batch normalization before retraining the
weights and parameters of the higher fully connected layers, as shown in Table 1.

Table 1. Details of Structural Parameter of the TPCCNN Model.

Layer

TPCCNN Parameter

Parameter Size Activation
Function

Batch Normalization
(BN)

Freeze/Fine-
Tune

Input / / / /

Convl-1 32 × 64 × 1 × 1 × 4 ReLU Yes Freeze

Pooling-2 2 × 1 × 2 / No Freeze

Convl-3 64 × 3 × 1 × 32 × 1 ReLU Yes Freeze

Pooling-4 2 × 1 × 2 / No Freeze

Convl-5 96 × 3 × 1 × 61 × 1 ReLU Yes Freeze

Pooling-6 2 × 1 × 2 / No Freeze

Convl-7 128 × 3 × 1 × 96 × 1 ReLU Yes Freeze

Pooling-8 2 × 1 × 2 / No Freeze

FullContd-9 / / No Fine-tune

FullContd-10 M × 512 ReLU Yes Fine-tune

FullContd-11 512 × N / Yes Fine-tune

SoftMaxPlus-12 N / No Fine-tune

Output / / / /
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Figure 1. Architecture of the proposed TPCCNN framework.

2.2. PCCNN

A PCCNN algorithms [16], in which PC stands for Probability Confidence, are em-
ployed in CNN (Convolutional Neural Network) model to improve the accuracy. The
architecture is shown in the right side of Figure 1. PCCNN is used in the computation
of probabilistic confidence levels to distinguish between “known classes” and “unknown
classes” of failure classes. First, being initialized with a set of labeled training data, the
system calculates the confidence interval and probability of each known class to evalu-
ate the reliability probability of the statistical inference. Significance is referred to as the
probability in which the estimated parameter falls within a specific range when making
statistical inferences. Second, PCCNN has a self-learning ability. The threshold values of
each category comprise recorded in a vector C and is defined as the probability threshold
value within the normal range. The lower limit is set at the threshold value C to distinguish
the category of known faults from that of unknown faults. Therefore, given that a value
exceeds 1.5 times the range of the 1st and 3rd quartile range, i.e., 1.5× IQR, it is classified as
an outlier and placed in the unknown category. The vector C∈RN, where N is the number
of know classes, representation of probability confidence is shown in Equation (1).

Cj = Q1 − 1.5 × (Q3 − Q1) (1)

Not only the data but also the detection and recognition models need to be kept up-to-
date to improve the adaptability of the diagnostic model and to reduce diagnostic errors.
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Given the index number of unknown categories reaches a specific value, the unknown type
is identified, and the index shifts by one to the N+1th category. Substituting the known
categories into the model, training, and adjusting to identify the N+1th new category
promote model optimization and adaptation.

2.3. TPCCNN-Based Fault Diagnosis

This fault diagnostic model architecture includes data pre-processing, model pre-
training, and model fine-tuning. Time series classification is an essential field in time
series data mining. It has been widely used in different areas, such as medical science
electrocardiogram for health diagnosis, identification of human activities, and computer
science for speech recognition and machine fault detection. With the advent of deep
learning, new methods were developed, especially convolutional neural network (CNN)
models. Although it has drawn great interest in the past few decades, it is still challenging
and inefficient due to the nature of its data: high dimensionality, large data volume, and
constant updates. Lamyaa Sadouk et al. [21] have reviewed several techniques to deal with
time series classification, which can be categorized as model-based, distance-based, and
feature-based. Most deep learning architectures are unable to directly process the raw input
data of vibration for final defect classification and prediction. Further, the TPCCNN-based
model is unable to deal with the raw data. In order to enable end-to-end computation for
deep learning architectures, data preprocessing techniques play a crucial role in intelligent
fault diagnosis [22–24].

The original fault data of the source and target domain are obtained by the vibration
sensor and presented as time-domain data. First, the fast Fourier transform (FFT) is applied
to map the data into frequency domain, as shown in Equation (2). The frequency-domain
signals have higher fault recognition accuracy than time-domain signals, and the frequency
domain data is then normalized with the maximum and minimum values for normalization.
That is, the data is scaled within the interval of 0 ≤ X′ ≤ 1. The calculation method is
shown in Equation (3).

Xk = ∑N−1
n=0 Xne−i2πk n

N , k = 0, 1 . . . , N − 1. (2)

X′ = X− Xmin
Xmax − Xmin

∈ [0, 1] (3)

2.4. Pre-Trained Model

A pre-trained model is trained with a large dataset and typically applied to large-scale
image classification. Given that the original dataset is sufficiently large and general, the
spatial hierarchy of features learned by the pre-trained model is used for a general model.
Its features are equally effective for different computer visions, even for identifying classes
that are completely different from the original task. This approach is applied to time series
problems with a similar effect. Compared with traditional machine learning methods, the
key advantage of deep learning is that the learned features are transplanted to different
problems, which makes the model reusable and effective in the cases of small samples [25].

2.5. Feature Extraction and Fine-Tuning

Two ways of pre-train model are used: feature extraction and fine-tuning. Feature
extraction is a collection of representations learned by previous models to obtain useful
features from new samples, which are then fed into new classifiers for training and inference.
Fine-tuning is a variation of feature extraction. Taking a CNN model as an example, the
lower layers in the model extract local and highly general feature maps while the higher
layers extract more abstracted concepts. Therefore, when extracting features as knowledge
transfer, the convolution-based part is usually used as the reusable part of the model.
Feature exaction freezes all convolution-based layers, while fine-turning only freezes the
part of mainly retraining high-level convolution-based and dense layers. Fine-tuning
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requires training of top-level classifier for the new dataset in advance. If the classifier is
not trained in advance, the error signal propagating through the network during training
becomes too large and potentially corrupts what has been learned by previous fine-tuning
layers. Since the backpropagation algorithm calculates the gradient of the loss function for
each weight by the chain rule, the gradient of one layer is calculated one at a time and then
iterates backward from the last layer [26].

3. Results

The proposed method is validated on two open-source datasets, which include the
CWRU dataset and the Ottawa Mendeley dataset. The TPCCNN model is conducted by
using python 3.7 which runs on a computer with CPU i9-11900@2.50 GHz, RAM 32 GB, and
GTX 3070 GPU. The operating system is 64-bit Win11. Two datasets are used alternately as
the source and target for model training and testing in the experiment. CWRU includes
bearing failure data at different speeds and loads, while Ottawa contains bearing failure
data at different rates. The information for the two publicly available datasets is detailed
below as shown in Table 2.

Table 2. Comparison between CWRU with Ottawa.

Items CWRU Dataset Ottawa Dataset

Health Condition

Normal v v
Inner Race Fault v v
Outer Race Fault v v

Ball Fault v -

Sampling Frequency 12,000 Hz 200,000 Hz

Dataset Size 66.8 MB 458 MB

Data Length 10 s 10 s

Shaft Speed Avg. 1730 rpm
(1720~1797 rpm)

(a) Increasing speed
(b) Decreasing speed
(c) Increasing then decreasing speed
(d) Decrease then increasing speed

Load 0~3 hp -

3.1. Dataset

The CWRU Dataset is provided by society for machinery failure prevention technology
(MFPT) [27]. This dataset contains ball bearings test data for both normal and faulty
bearings. This dataset records the motor’s actual test conditions and the bearing’s failure
status with different experimental data, as shown in Table 2. The Ottawa Mendeley Dataset
is provided by the University of Ottawa in Canada [28]. This dataset contains vibration
signals collected by bearings of different health conditions with varying speed conditions.
There are 60 datasets in total. Each dataset has two experimental setups: bearing health
and variable speed conditions.

3.2. Pre-Processing

Data preprocessing techniques play a key role in intelligent fault diagnosis to enable
end-to-end computation for deep learning architectures. This research performs a series
of data preprocessing and feature extraction, such as signal time-frequency domain con-
version, noise reduction, and inductive bias. We use the FFT transformed vibration signal
in frequency domain as the input of the one-dimensional convolutional neural network.
The shift stride data augment trick increases the amount of processed vibration data. The
relevant parameters are explained as follows:
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1. The unit length of original data X is 4096. That is, the time-domain data of 4096 points
are sourced from the original acceleration vibration signal. FFT transformation then
obtains a frequency domain of 4096 points.

2. The unit length of frequency-domain data Y is 2048. There are 2048 points in the
first half starting from low frequency. The points are selected from X to obtain new
frequency domain data Y.

3. The original acceleration vibration signal contains more than 4096 Z data points. We
define a data interval of 512 points to group samples for processing. In other words,
the sliding step size is 512 points as the data interval to separate the samples.

Multiple X data samples are obtained by intercepting sliding sampling, so a total of
((Z-4096)/512 + 1). For example, the data interval of configuration parameter of the CWRU
is 64 × 2 and the Ottawa is 64 × 12. Since the total data volume of different data sets is
inconsistent, this parameter is for different data sets.

Figure 2 shows the signal plots in frequency-domain for normal, inner race fault, outer
race fault, and ball fault to demonstrate feature extraction. The feature can be identified.
For example, the normal has only a low frequency under 1000 Hz. It is easy to understand
and explain how the AI model classifies failure categories.

1 
 

 
Figure 2. The feature extraction plots from CWRU dataset. (a) Normal. (b) Inner Race Fault. (c) Outer
Race Fault. (d) Ball Fault.
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3.3. Pre-Trained Model

Two models are trained and evaluated as the baseline for training and evaluation
in the experiment. One uses the CWRU dataset in the constructed TPCCNN model for
training while the other uses the Ottawa dataset for model training. In both pre-trained
models, the configuration is set as follows. The learning rate is 0.001, the momentum is 0.9,
the batch size is 32, the epoch is 30, and the RMSprop optimizer is selected for optimization.

3.4. Fine-Tune

In TPCCNN models, while extracting features as knowledge transfer, the convolution-
based part is often used as a reusable part of the model because it has local and highly
general feature maps. The experimental approach takes the architecture of a pre-trained
model and then trains top layers while freezing others. The experiment contains three
settings: (1) retraining only the output classifier, (2) retraining the densely connected
classifier at the top layer, and (3) fine-tuning.

4. Discussion

The contribution of this paper to the feature reduction methods are aggregated into
two categories: data-level and algorithm-level approaches. The data-level approach consists
of encoding time series using FFT to clean and produce de-noised input signals which offer
a more efficient CNN training. In the real world, if the spectrum with heavy noise, the FFT
can efficiently clean the data and retrieve smooth results we expect.

In the algorithm level approach, one is the PCCNN algorithm which has a self-
determined and self-learned ability to distinguish between unknown and known classes.
The other is a transfer learning algorithm with adaptive convolutional layer filters and
classifiers to analyze the input time series signals, including noise fluctuation.

According to the previous description, CWRU and Ottawa are used for model training
and evaluation. The proportions of training and test sets for each dataset are 70% and 30%.
Since the sampling lengths of each data set are different, the sliding sampling method is
adopted. The sliding data interval of CWRU and Ottawa is set to 128 and 768, respectively.
Experimental results are visualized using the confusion matrix and AUC/ROC curve.

Figures 3 and 4 show the confusion matrix and test results for transferring the extracted
features from the source domain CWRU dataset to the target domain Ottawa dataset. The
dataset of the target domain Ottawa has three health states: normal, faulty with an outer
race defect (OR), and faulty with an inner race defect (IR). There are two sub-experiments
to test the accuracy: (a) hidden the labels of inner race faults (IR) and (b) hidden the labels
of outer race faults (OR). The dataset has 11,000 samples and is divided into the training
set and test set according to the ratio of 7:3. Thus, there are 7700 samples in the training set
and 3300 pieces of data in the test set.
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Figure 4. ROC/AUC of feature transferring from CWRU to Ottawa. (a) Hidden the labels of inner
race faults (IR). (b) Hidden the labels of outer race faults (OR).

As the confusion matrix shows, when the new fault classes are different, the model still
accurately recognizes the known and unknown classes. When OR is used as an unknown
category, it has an accurate judgment of the data of the known category, and the AUC value
is 1.00. When IR is used as the unknown category, the judgment of the known category
is also accurate, and the AUC value is also 1.00. By taking different types of faults as
unknown categories, the recognition degree of the model to different categories and the
robustness of the model is stable.

Figures 5 and 6 show the confusion matrix and test results for transferring extracted
features from the source domain Ottawa dataset to the target domain CWRU dataset. The
target domain CWRU dataset has four health states: normal, outer ring bearing failure
(OR), inner ring bearing failure (IR), and ball failure (BF). There are three sub-experiments
to test the accuracy: (a) hidden the labels of ball faults (BRF), (b) hidden the labels of inner
race faults (IR), and (c) hidden the labels of outer race faults (OR).
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The CWRU dataset has a length of 14,667 samples and is divided into the training
set and test with a ratio of 7:3. The number of the training and test set data is 10,267 and
4400, respectively. The confusion matrix shows that though the fault categories of the target
domain are different, the model can still accurately recognize the known and unknown
categories. The AUC values of the three different unknown categories are all 1.00, and
the AUC values of the data of the known categories are also 1.00. As CWRU has a large
number of samples and has high data identification, the overall performance of CWRU as
the target domain data test is better than the Ottawa data set as the target domain test data.

Tables 3 and 4 and Figure 7 show two datasets, the CWRU and Ottawa with their
training time measured in hours and time reduction rate in percentage. We tried four sets
of training. The first one is without transfer learning. The second one was with transfer
learning, retaining the dense layer, and the classifier. The third one was with transfer
learning and fine-tuning the dense layer only. The fourth and last one was with transfer
learning and retaining the SoftMax plus (SP) classifier only. The graph just shows the
same data in percentages. From the line chart, we use the model training time without
knowledge transfer as the basis for comparison. The experimental results show that training
the fully connected layer and the classifier is the most time-consuming but still faster than
training from scratch. Only training the classifier is the most time-efficient, training to
predict the CWRU dataset with a 34% time-saving and to predict the Ottawa dataset with a
68% time-saving.

Table 3. Training time measured in hours (Unit: Hour).

Training Time
(Hour) WO/TL W/TL

(F9, F10, F11, SP)
W/TL

(F9, F10, F11)
W/TL
(SP)

Predict CWRU 4.4 3.68 3 1.5
Predict Ottawa 2.55 2.38 1.88 1.73

Table 4. Training time reduction in percentage (Unit: %).

Training Time
(Hour) WO/TL W/TL

(F9, F10, F11, SP)
W/TL

(F9, F10, F11)
W/TL
(SP)

Predict CWRU 100% 84% 68% 34%
Predict Ottawa 100% 93% 74% 68%

The experiments have three settings. First, only the output classifier is retrained;
we reuse the pre-trained model as the feature extraction mechanism. The output layer
is first removed, and the entire network is used as a fixed feature extractor for the new
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dataset. Second, we retrain the top densely connected classifier: using the architecture of
the pre-trained model, keeping the initial weights on the convolutional base, and adding
higher dense and classification layers. Perform random initialization of all weights and
retrain the model on the new dataset. At this stage, data augmentation is optional. Last,
fine-tuning: After training the model with the new dataset, select and freeze some layers
and retrain other top layers.
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less than 1.5%. Last, using CWRU feature extraction to train and predict Ottawa’s model is
even more accurate than using Ottawa’s model trained from scratch.
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5. Conclusions

We propose a new Transfer-learning based on Probability Confidence CNN (TPCCNN)
model, which can be employed to make modeling and fault diagnosis for rotating machin-
ery. The experimental results show the ability of the proposed approach in detecting and
recognizing faults efficiently. Two public open-source datasets are used in the experiment
to verify the efficiency and robustness of the TPCCNN model.

The experimental result reveals the following: First, using CWRU to predict Ottawa
obtains the average accuracy of 99.1% and 89.4% for known and unknown classes, re-
spectively. The average accuracy of known and unknown categories of Ottawa to predict
CWRU is 99.2% and 98.2%, respectively. Second, the method inherits the advantages of the
original PCCNN in distinguishing known and unknown categories. Third, similar feature
sets can be applied to reduce the training time by 34% of CWRU and 68% of Ottawa by
means of retraining and parameter fine-tuning of fully connected layers.

It is found that the proposed approach is an efficient way to detect and recognize
faults. Based on the result, future work focuses on real-time fault diagnosis, strengthening
the transfer learning model and making the model more adaptive.

In the future, it can be used in the fourth industrial revolution’s Prognostic and Health
Management (PHM) and smart buildings’ operation and facilities management (FM),
such as managing predictive diagnostics and maintenance of equipment like generators,
pumps, etc.
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