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Abstract: Short and medium-span bridges account for more than 90% of the bridges in China, and
it is not suitable to use conventional health monitoring technology to monitor them. Based on an
analysis of the proportion of live load, displacement under load, the action time of live load and
other factors affecting short and medium-span bridges, this paper determines a feasible technical
solution using mid-span deflection to monitor bridges with requirements including measuring range,
resolution and accuracy. A set of wireless laser displacement monitoring technologies and equipment
is studied by using the phase laser ranging method and the principle of pulsed laser ranging, and the
reliability of the data is verified by experimental tests. Using both practical application cases and
economic analysis, this paper proves that the technology has significant application advantages for
short and medium-span bridges.

Keywords: girder bridge; mid-span deflection; load-displacement relationship; laser ranging; health
monitoring system

1. Introduction

In normal operation and traffic processes, various external loads such as traffic, pedes-
trians, and temperature act on a bridge, and these loads will have different effects on the
safety and reliability of the bridge structure. To track the performance and assess the safety
of a bridge, researchers typically use field tests and numerical simulation to obtain its health
status [1,2]. Bridge deflection refers to the vertical displacement changes of bridges under
the action of loads, and these changes have a great impact on the safety characteristics of
bridges [3,4]. Therefore, the monitoring of bridge displacement is an important part of the
health monitoring system, which is of great significance to the safe operation of bridges. It
is known that deflection is one key factor used to evaluate structural performance since
bridge deflection under the same level load is mainly caused by stiffness change, in other
words, under the same level of load, if structure stiffness is reduced and the deformation
will increase. Miyamoto used characteristic deflection as a factor in developing a long-term
health monitoring system for short and medium-span bridges, which is relatively free from
the influence of dynamic disturbances due to such factors as the roughness of the road
surface, and a structural anomaly parameter [5]. Although there is not a linear relation
between damage and deflection for many factors’ impacts, at least there is a relationship in
some degree. In view of long-term use, overload, impact and other factors, the cracks in
concrete beam structures continue increasing in China’s bridges with heavy traffic flow; an
increase in deflections has also been shown in these bridges.

There is a huge amount of short and medium-span bridges in the world [6]. For
example, by the end of 2019, the total number of highway bridges in Zhejiang Province,
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China, had reached 51,106, including 46,000 short and medium-span bridges, accounting
for 90% of the total [7]. Among them, hollow slab girder bridges, T-beam bridges and
arch bridges accounted for the vast majority of short and medium-span bridges. Short and
medium-span bridges have relatively short spans and small deflections compared with
long-span bridges such as cross-sea and river-crossing bridges because the monitoring of
dynamic deflection for long-span bridges has higher requirements on the hardware and
software of the system [8]. At present, the prices of the existing products on the market are
relatively expensive. On the other hand, the installation always takes a long time [9–11].
As a result, these health monitoring systems for short and medium-span bridges have not
been widely promoted and applied [12].

Due to the great differences in material, span, environment, etc., a variety of detection
principles, measurement methods and instruments for bridge deflection detection have been
researched and developed at home and abroad. Bridge deflection measurement methods
mainly include the dial indicator method, level gauge measurement method, theodolite
measurement method, total station measurement method, inclinometer measurement method,
digital imaging or photoelectric imaging measurement method, connecting pipe measurement
method, radar interferometry and GPS measurement method, etc. [8,10,13–15].

The application range and measurement accuracy of the above displacement sensors
are shown in Table 1.

Table 1. Comparison of different displacement sensors.

ID Method Accuracy Scope of
Application Number of Points Benchmark Results

Representation Application

1 dial indicator um SD single or multiple
points/each time GD changes relative

to the earth commonly

2 level mm SD single point/
each time GD changes from

horizontal line of sight commonly

3 theodolite cm SD single point/
each time GD changes from

horizontal line of sight commonly

4 total station mm SD single point/
each time IP changes from the initial

line of sight commonly

5 inclinometer cm SD/DD single or multiple
points/each time IR change from

initial state not much

6 photo-electric imaging mm~cm SD/DD single point/
each time OA change from

initial position commonly

7 connecting pipe mm SD single or multiple
points/each time HP change from

initial state commonly

8 differential GPS
method cm SD/DD single or multiple

points/each time GD variation with respect
to geodetic coordinates commonly

9 laser method mm SD/DD single point/
each time CL variation relative to

collimated laser beam not much

Note: scope of application: SD—static deflection, DD-low frequency dynamic; benchmark: GD—geodetic datum,
IP—initial position line of sight reference, IR—inertial reference, OA—optical axis reference of imaging system,
HP—horizontal plane. CL—collimated laser beam reference.

The commonly used deflection monitoring equipment for bridge health monitor-
ing mainly includes connecting pipes, satellite positioning systems and inclinometers.
Judging from the existing bridge deflection measurement equipment, there are mainly
the following deficiencies in the application of short and medium-span bridge structure
monitoring [3,9,13,16]. First, monitoring is a long-term, real-time, and uninterrupted
process, and some measurement equipment cannot work under all weather and in real
time. Second, there are a large number of hollow slabs and some T-shape beam structures
in short-span or medium-span bridges, and measurement equipment is not easy to install
and arrange, especially for bridges across rivers and lines. Third, the general span of
short and medium-span bridges and the deformation is small, and the measurement
accuracy and sampling frequency of deflection are relatively small. Fourth, the cost of
some sensors is relatively high, which is not suitable for short and medium-span bridge



Appl. Sci. 2022, 12, 9663 3 of 16

monitoring. Therefore, it is necessary to upgrade the existing deflection monitoring
products to reduce costs and simplify on-site installation.

2. Analysis of the Requirements for Displacement Monitoring Indicators of Short and
Medium Span Bridges

In this paper, some short and medium-span, simply supported, girder bridges in
practical engineering were selected to establish a finite element calculation model to study
the constant live load ratio [11,16]. Using Midas Civil software, the finite element model
of the traditional beam element was analyzed according to the Chinese highway bridge
design code and the general load code. The software automatically loaded the influence
line according to the layout lane based on the Pingli Highway project in Jiashan Town,
Zhejiang Province, which is a first-class highway with two lanes. The design load grade is
autoload-20 and trailer-load-100. The upper structure of the bridge is mainly composed of
reinforced concrete and post-tensioned, prestressed, concrete hollow slabs [17]. The key
parameters of the simply supported, hollow slab bridge on Pingli Highway are shown
in Table 2.

Table 2. Key parameters of the simply supported hollow slab bridge on the Pingli Highway.

Structure
Type Sectional Form Span

(m)
Beam Height

(m)
Board Width

(m)
Number of Single

Bridge Pieces

rebar
concrete
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We extracted the constant and live load bending moment values at the mid-span posi-
tions of the abovementioned sample bridges (prestressed hollow slab girder bridges do not
temporarily consider the effect of prestressing) and considered the normal use in structural
design and the load combination in bearing capacity calculation [18,19], respectively. The
proportion of the live load effect to the total effect of the constant live load under the
standard action combination and the bearing capacity limit combination is recorded as η1
and η2. The specific calculation is shown in the following Formulas (1) and (2):

η1 =
ϕ11MQ1

ϕ11MQ1 + ϕ12MG
× 100% (1)

η2 =
ϕ21MQ1(1 + µ)

ϕ21MQ1(1 + µ) + ϕ22MG
× 100% (2)

In the formula, ϕ11 and ϕ12 are the corresponding coefficients of the live and dead
load effects of the standard combination, (ϕ11 = ϕ12 = 1.0 respectively) ϕ21 and ϕ22 are
the corresponding coefficients of the live and dead load effects of the ultimate combination
of bearing capacity (ϕ21 = 1.4, ϕ22 = 1.2 respectively). MQ1 is the bending moment value
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generated by the living load; MG is the bending moment value generated by the dead load;
and µ is the load impact system of the vehicle [18].

The results of calculating the live load proportion of the sample bridges are shown
in Table 3.

Table 3. The constant live load ratio of common short and medium bridges on Pingli Highway.

Structural Properties Maximum Mid-Span Bending Moment of Main Beam
(kN·m)

η1
(%)

η2
(%)

Structure Type Span
(m)

Beam Plate
Quantity
(pieces)

Dead Load Live Load Standard
Combination

Bearing
Capacity Limit

State
Combination

Middle
Beam

Middle
Beam Middle Beam Middle Beam

ordinary
reinforced

concrete bridge
8

9 72.3 240.3 312.6 423.2 76.9 79.5

10 72.3 240.2 312.5 423.0 76.9 79.5

prestressed
concrete bridge

13

9 181.2 263.0 443.1 584.4 59.4 62.8

11 181.2 256.0 436.2 574.6 58.7 62.2

13 181.3 253.2 433.3 570.6 58.4 61.9

16

9 344.3 353.0 695.8 905.3 50.7 54.4

11 344.4 339.3 683.3 887.7 49.7 53.5

13 344.4 333.9 678.3 880.8 49.2 53.1

20

9 617.2 456.3 1066.8 1371.4 42.8 46.0

11 617.5 450.5 1066.8 1370.0 42.2 45.9

13 617.7 437.7 1054.6 1352.9 41.5 45.2

25

9 1117.5 646.4 1762.1 2243.8 36.7 40.2

11 1118.1 597.5 1713.6 2175.8 34.9 38.3

13 1118.5 573.9 1690.4 2143.2 34.0 37.4

30

9 1728.8 611.8 2340.6 2931.1 26.1 29.2

11 1730.0 738.0 2467.5 3108.5 29.9 33.2

13 pieces 1730.8 686.1 2416.9 3037.5 28.4 31.6

From Table 3 it can be seen that the proportion of the live load effect of common
short and medium-span bridges on highways is large. The shorter the span is, the larger
the proportion of live load. As the bridge width increases, the proportion of live load
also decreases slightly. Therefore, in the structural monitoring of short and medium-
span bridges, the live load effect will occupy a very important position [20,21]. It is
necessary to adopt a dynamic monitoring system with the right sampling frequency and
supporting sensors to ensure the integrity of the actual monitoring data and to capture
various deflection effects caused by live loads, which is conducive to the evaluation of
the operating state of the bridge. Therefore, for the deflection of short and medium-span
bridges, it is of great significance to use dynamic monitoring for displacement monitoring.

For short and medium-span bridges, if the vehicle speed is 60 km/h, the time required
for vehicles to pass over bridges with different spans is shown in Table 4.
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Table 4. The time it takes for vehicles to pass over bridges of different spans (unit: seconds).

Span Vehicle Passing Time Span Vehicle Passing Time

8 m 0.48 s 20 m 1.2 s
10 m 0.6 s 25 m 1.5 s
13 m 0.78 s 30 m 1.8 s
16 m 0.96 s / /

It can be observed from Table 4 that when vehicles pass over bridges with short and
medium spans, the time is short. To completely record the maximum deflection of vehicles
when vehicles pass over bridges and comprehensively consider economy, the sampling
frequency of dynamic deflection and displacement monitoring of short and medium-span
bridges is recommended to be no less than 10 Hz.

The deformation of common short and medium-span bridges on Pingli Highway
under live load is shown in Table 5.

Table 5. Deformation of bridges under live loads on Pingli Highway.

Structure Type Span (m) Beam Plate Quantity
(pieces) Mid-Span Deformation of Side Beam (mm)

ordinary reinforced concrete bridge 8
9 5.74

10 5.69

prestressed concrete bridge

13
9 7.25

11 6.85
13 6.29

16
9 5.80

11 5.64
13 4.94

20
9 9.30

11 9.21
13 8.17

25
9 11.90

11 11.62
13 10.22

30
9 12.60

11 16.36
13 14.27

In Table 5, the deformation of the main beam under the action of the vehicle on the
mid-span is 5.74 mm (minimum) and 14.27 mm (maximum). Considering the margin of
deformation, the range of the laser displacement monitoring equipment is designed to be
±30 mm, the resolution is 0.1 mm, and the accuracy is ±0.3 mm.

In summary, the basic performance parameters of the laser displacement monitoring
equipment are shown in Table 6.

Table 6. Basic performance requirements parameters of laser displacement monitoring equipment.

Precision Resolution
(mm)

Range
(mm) Protection Class Sampling Frequency

(Hz)

±0.3 mm 0.1 ±30 IP67 10 Hz
Note: IP—Ingress Protection Rating, IP67—waterproof standard should be 67 Grade.
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3. Development of Wireless Laser Displacement Monitoring Equipment
3.1. The Principle of Laser Ranging Measurement

At present, there are two main types of laser ranging methods: time-of-flight (TOF)
ranging and non-time-of-flight (NTOF) ranging. Two methods are mainly used for TOF,
including phase laser ranging and pulse laser ranging, while triangular laser ranging is
mainly used for NTOF. This paper mainly uses the principle of TOF ranging to develop
wireless laser displacement monitoring equipment [20,22–25].

3.1.1. Phase Laser Ranging

Figure 1 shows that the phase ranging method continuously modulates the amplitude
of the emitted laser, usually using sine wave modulation. Since the delay between the
laser round-trip ranging system and the target will produce a phase change, the phase of
the delay between the receiving and transmitting optical signals is measured. Since the
frequency of the modulating signal is known, the laser beam can calculate flight time and
finally calculate the distance to the target according to the formula [26].
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The distance D satisfies Formula (3):

D =
ct
2

(3)

t =
ϕ

ω
=

2πN + ∆ϕ

2π f
(N +

∆ϕ

2π
)

1
f

(4)

Put Formula (4) into Formula (3) to obtain Formula (5):

D =
λc
2
(N +

∆ϕ

2π
) (5)

where c is the speed of light in the air; f and λ are the frequency and wavelength of the
modulated signal, respectively; ∆ϕ and N are the phase differences caused by the marking-
modulated optical signal flying back and forth between the ranging system and the target
to be measured, respectively; N is the integer part of one phase difference; and ∆ϕ is the
mantissa of the unsatisfied integer period.

The half wavelength of the modulation signal is λ
2 defined as the measuring ruler;

then, the phase laser ranging can be expressed as using a measuring range as the λ
2 ruler to

measure the distance. Formulas (4) and (5) can be obtained by a certain method, but N is
difficult to obtain by a simple method, so the distance D obtained by Formula (5) actually
has multiple results.

A phase laser ranging system D with a modulated ruler measures λ
2 the distance

of length. If the distance D is between N times λ
2 and N + 1 times λ

2 the ruler measures
N times, and then there is an unsatisfactory part d of λ

2 the distance to be measured
D = Nλ

2 + d. However, due to continuous laser modulation, the system can only distin-
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guish the unsatisfactory part of λ
2 , and it is difficult to distinguish the integer times of

the measurement. Therefore, only when the measurement distance does not exceed the
length of the measuring ruler, that is, N = 0, does the distance measurement result have a
unique solution.

Phase laser ranging is usually suitable for the measurement of short and medium
distances, and the measurement accuracy can reach the millimeter and micron levels. It is
also one of the methods with the highest ranging accuracy at present.

3.1.2. Pulsed Laser Ranging

Pulsed ranging is a measurement method that was first used in the field of surveying
and mapping by laser technology. Due to the small laser divergence angle, the short
duration of the laser pulse, and the maximum instantaneous power of more than megawatts,
pulsed laser ranging has good directionality and a strong anti-interference ability. In
ranging with cooperative targets, extremely long-distance measurements can be carried out,
and when short-range measurements are carried out, cooperative targets are not needed
and the target to be measured can also be measured by receiving the light signal of diffuse
reflection. Pulse laser ranging has the characteristics of a simple system with long range,
and a single measurement time that is faster than continuous laser ranging, but it also has
the disadvantage of low single measurement accuracy [25].

The pulsed laser emitted by the laser is reflected after hitting the target to be measured,
and the reflected light is received and amplified by the photodetector of the ranging system.
Taking the transmitted optical pulse signal as the timing start time and the received optical
pulse signal as the timing end time and by measuring the time between the two, the time
required for the laser to travel back and forth between the ranging system and the target
can be obtained. The distance to the target to be measured can be converted from the
general formula of distance measurement (S = ct

2 ) by using the TOF method.
The pulsed laser ranging system is usually composed of several modules: the control

module, laser emission module, laser connection module, receiving module, time identifi-
cation module, and time interval measurement module. Figure 2 is a schematic diagram of
the pulsed laser ranging system.
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Figure 2. Schematic diagram of the pulsed laser ranging system.

Figure 3 is the waveform and timing diagram of the pulsed laser ranging system,
where the rising edge of the signal is discriminated. The round-trip time can be detected
from the number of pulses digitally measured from the recording of the time between the
reference signal and the echo signal.

In the timing diagram of the pulsed laser ranging system, it can be clearly seen that
the working process of the system is as follows: the pulsed laser emits laser pulses, and the
laser pulses are used as emission signals. The signal reflects a small amount of energy to
the receiving system as a reference signal through a half mirror and a half mirror, and most
of the energy is emitted to the target through the half mirrors. The reflected light signal is
received by the receiving system as an echo signal, and both the reference signal and the
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echo signal are received by the photodetector and converted into electrical signals. The
obtained electrical signal is shaped and amplified, the reference signal is shaped as a start
signal, and the echo signal is shaped as a stop signal. The two signals are discriminated
to obtain the start and end time information, and this is the time when the laser is in
the ranging system. The flight time between the targets is then monitored by the time
measurement method to obtain the required data.
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3.2. Measurement Principle of Wireless Laser Displacement Monitoring Equipment

Based on wireless transmission architecture, the principles of laser pulse ranging
and phase ranging were combined for different application situations. Through the im-
provement of the algorithm principle, monitoring equipment that meets the needs of the
deflection monitoring of short and medium-span bridges was developed.

A schematic diagram of the laser displacement measurement is shown in Figure 4. The
laser displacement monitoring equipment is installed at the position of the bridge pier or
abutment, and the reflector with enhanced radiation is installed at the measurement point.
The displacement of the beam at the measuring point is calculated through the conversion
of laser ranging, sensor installation angle and reflector installation angle.
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The model of this algorithm is shown in Figure 5. The reflective device is arranged at
the position where the deflection of the measured bridge is large, and the three-dimensional
coordinates (x0, y0, z0) of the laser emission point O are read by the total station. The
three-dimensional coordinates of point A (the laser reflection) are (a0, b0, c0), and the other
three noncollinear points A0 (x1, y1, z1), B0 (x2, y2, z2), and C0 (x3, y3, z3) (on the reflective
device) are read as well. The laser monitoring device reads the initial distance l0 from
the laser monitoring device to the reflective device, and after the reflective device settles
d, the device reads the distance between the laser monitoring device and the reflective
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device l1. In the model used, α is the initial inclination angle between the laser monitoring
equipment and the horizontal plane, β is the initial inclination angle between the reflective
device and the horizontal plane, point A is the initial reflection point position of the laser
monitoring equipment on the reflective device, A’ is the corresponding position of the
reflection point after the reflective device moved, and B is the reflection point position of
the reflective device.
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By the law of sine, we can obtain Formulas (6) and (7):

d
sin (α + β)

=
l0 − l
cos β

(6)

d =
(l0 − l) sin(α + β)

cos β
(7)

The inclination angle (α) (Formula (8)) between the laser monitoring equipment and
the horizontal plane is:

α = arctan

 |z0 − c0|√
(x0 − a0)

2 + (y0 − b0)
2

 (8)

According to the coordinates of the three noncollinear points (A0(x1, y1, z1), B0(x2, y2, z2),
C0(x3, y3, z3)) initially read by the laser monitoring device (see Figure 6), the normal vector
of the plane can be expressed as Formulas (9) and (10):

n = A0B0 × A0C0 = (a, b, c) (9)

a = (y2 − y1)(z3 − z1)− (y3 − y1)(z2 − z1)

b = (z2 − z1)(x3 − x1)− (z3 − z1)(x2 − x1)

c = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

(10)

The angle (β) between the reflective device and the horizontal plane is Formula (11):

β = arctan(

√
a2 + b2

|c| ) (11)
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Let the error coefficient k be Formula (12):

k =
sin(α + β)

cos β
(12)

Assuming that the accuracy of laser ranging is ∆l and the accuracy of displacement
measurement is ∆d, the displacement conversion accuracy is expressed in Formula (13):

∆d = k∆l (13)

It can be seen from the above formula that the smaller the value of k is, the higher the
displacement accuracy of the conversion. Therefore, the smaller α and β are, the smaller k
and ∆d are. When β approaches 0◦, cos β approaches 1. At this time when ∆l is certain, ∆d
is only related to α. The smaller α it is, the smaller ∆d it is, and the correlation relationship
is shown in Table 7. When sin α = 0.1 if the distance change measured by the laser was
1 mm, it could be converted into a displacement change of 0.1 mm; when sin α = 1 (that
is, vertical incidence), if the distance measured by the laser changed by 1 mm, it could be
converted into a displacement change of 1 mm. Therefore, theoretically, the measurement
accuracy of bridge deflection can be improved by using a small-angle launch method.

Table 7. Relationship between the theoretical deflection conversion accuracy and the laser emission
angle α.

Serial Number Laser Ranging Accuracy ∆l (mm) Displacement Measurement Accuracy ∆d (mm) α (◦C)

1 1.0 0.10 5.7
2 1.0 0.16 9
3 1.0 0.20 11.5
4 1.0 0.21 12
5 1.0 0.26 15
6 1.0 0.30 17.5
7 1.0 0.40 23.6
8 1.0 0.50 30
9 1.0 0.71 45
10 1.0 0.87 60
11 1.0 1.0 90

3.3. Indoor Static Loading Test for Verification
3.3.1. Experimental Setup

To test the feasibility and accuracy of the above algorithm model, experiments were
carried out in the laboratory for verification. Since the laser monitoring equipment is
only a simple data acquisition, to realize the real-time upload of data, a networking
equipment—gateway was needed, so the experimental equipment included: laser moni-
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toring equipment, total station, gateway, loading equipment, microprism reflective film,
etc. Among them, the basic performance parameters of the laser monitoring equipment
wee the initially determined requirements (shown in Tables 4–6), which meet the proposed
displacement monitoring requirements for short and medium-span bridges. The incident
angle range of the microprism reflective sheet was 5◦~40◦.

The indoor verification process adopted static loading. The loading test beam was a
hollow plate beam with a length of 20 m and 2 tons of concentrated load on the mid-span.
The measurement and comparison equipment used was a dial indicator with an accuracy
of 0.001 mm. The installation of the test equipment is shown in Figure 7.
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3.3.2. Analysis of Experimental Data

Before the test started, the distance measurement error of the laser displacement
monitoring equipment was measured. The error calculation can be obtained through the
static distance measurement test. When no load is applied, the distance measurement
data can be collected for a period of time. Figure 8 shows the time–history curve of the
measurement distance. The range is between 8.2946 m and 8.2966 m, and the fluctuation
range is approximately 2.0 mm. Generally, the random error of measurement conforms to a
Gaussian distribution. The greater the number of measurements, the closer the average
value of the measurement is to the true value. The average distance value in the test period
is subtracted from the measured distance value, and the probability distribution of the
distance measurement error can be further obtained, as shown in Figure 9. It can be seen
from the figure that the error distribution is in a certain interval near 0 (−1.2 mm~0.8 mm),
∆lmax ≈ 2.0 mm, and the long-term ranging error probability of the laser displacement
monitoring equipment conforms to the Gaussian distribution, which can be obtained by
fitting (µ = 0.0592, σ = 0.6052).
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After the static load test equipment was installed, the installation angle of the mea-
surement sensor was approximately 5.2◦, and the static average measurement distance was
8.2957 m. The deformation time–history curve of the test equipment (laser displacement
monitoring equipment, red curve) and the comparison equipment (dial indicator, blue curve)
taken during the test are shown in Figure 10. It can be seen from the figure that, compared
with the basically flat curve of the dial indicator, the fluctuation range of the deformation
measurement of the laser displacement monitoring equipment was within 0.2 mm.
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Theoretical error ∆dmax is calculated by the following formula:

∆dmax = ∆lmax· sin α (14)

The maximum theoretical error obtained by calculation is 0.18 mm, and the maximum
error of the measured value is relatively close to the maximum error of the theoretical value.
Although this method was validated in the laboratory, on site, it may be limited by light or
installation conditions and the relevant data may be uncertain, which means it requires
further validation in the future.

In view of the stability of laser intensity and laser spot, the current test results show
that the stable measurement results can be acquired in 25 m, and the corresponding bridge
span is about 50 m.

4. Economic and Application Discussion
4.1. Economic Analysis

Research on health monitoring sensors for short and medium-span bridges and the
installation of a wireless sensor network can effectively reduce the hardware cost of the
health monitoring system for these types of bridges in the road network and promote
the application of the health monitoring system for these bridges. Based on the bridge
monitoring data center, the monitoring data can be integrated on a platform for unified
analysis and processing. It can provide better data support for transportation industry
authorities, bridge owners, traffic management departments, the public and bridge design
researchers.

The authors have studied the displacement monitoring scheme of short and medium-
span bridges and compared it to the common schemes on the market, such as the use of
connecting pipes, inclinometers, satellite positioning systems, laser image methods, etc., to
measure bridge displacement. Through the analysis of the hardware cost, construction cost,
later maintenance cost, the reliability and performance of monitoring results, and market
research a comparison of monitoring schemes was carried out.

Comparative analysis of the hardware cost showed that the displacement monitoring
scheme of the laser displacement monitoring equipment developed in this paper has a
lower comprehensive cost than other common schemes on the market. Because of the
intelligent data acquisition method with variable frequency, the monitoring results of the
laser ranging scheme studied in this paper also have strong applicability and are suitable for
large-scale promotion in the displacement monitoring of short and medium-span bridges.

4.2. Typical Case Analysis

A three-span hollow slab girder bridge was selected. The bridge consists of eight
hollow slab girders. Two of the spans are planned to be monitored. Two sets of health
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monitoring programs were compared by selecting different monitoring items for their
costs. Option 1 adopts only the displacement response to establish a plan for bridge health
monitoring; option 2 adopts the common plan for the health monitoring of large-span
bridges.

Option 1: Referring to the arrangement of deformation sensors of conventional hollow
slab girder bridges, the bridge needs to be arranged with eight displacement monitors.

Option 2: The bridge needs to be equipped with eight displacement gauges and eight
strain gauges, and according to the current state of the bridge, eight crack gauges should be
placed, one thermometer in the middle of each lane of the two spans with one acceleration
sensor and a weighing system on one side of the bridge are required, and for a total of eight
displacement gauges, eight strain gauges, eight crack gauges, four acceleration sensors,
four thermometers and a weighing system are needed.

(1) The use of the plan developed in this paper for short and medium-span bridge health
monitoring systems saves 43,500 Yuan RMB compared to the plan configured by
commercial products, which has certain economic advantages.

(2) Commercial sensor manufacturers in the current market generally only provide sensor
equipment, installation and data receiving software, while the design of the bridge
health monitoring system, the selection of measuring points, and the further analysis
and structural evaluation of the data all need to be carried out by bridge professionals.
Completed by a technical unit, only the cost of data analysis software is included
in the commercialized system, and the cost incurred in actual operation may not be
limited to this. The whole system independently developed by the research group has
fully been integrated into the health monitoring system from the initial system design
to the final structural state analysis with other methods. The bridge management unit
no longer needs the participation of a third party, which can save communication
costs and labor costs.

(3) Since the whole system adopts the method of independent research and development,
if there is any problem during the operation period of the system, it can be solved
by a set of system maintenance controls. Therefore, in actual operation, it is possible
to avoid the complicated problems of communication and coordination between
the owner, the system design and executing company, and the hardware equipment
manufacturer in the current bridge health monitoring system, and it is possible to
reduce three-party communication to two-party communication, which significantly
improves work efficiency.

(4) The corresponding data receiving and analysis software can be shared by multiple
bridges; if the displacement monitor and data acquisition instrument in the monitoring
system can be mass-produced, the cost can be further reduced.

5. Conclusions

(1) Short and medium-span bridges, which account for 90% of all bridges, need specific
equipment to promote their long-term monitoring. The specific and economical
monitoring system based on mid-span displacement developed here is a feasible
method to help improve the monitoring system for these bridges.

(2) For concrete, simply supported, girder bridges whose span is within 30 m, the propor-
tion of vehicle live load in all loads decreases as the span increases, the vehicle passing
time is approximately 1 s, and the mid-span deflection is approximately 15 mm.

(3) For a span within 30 m, cheap sensors including the displacement is ± 30 mm, the
accuracy is ± 0.3 mm, the resolution is 0.1 mm, and the sampling frequency is 10 Hz,
with specific specifications to monitor mid-span, which can enrich the monitoring
system data and improve the evaluation efficiency.

(4) For the laser displacement sensor that integrates the principles of laser pulse ranging
and phase ranging, the maximum theoretical error is calculated to be 0.18 mm, and
the maximum error of the measured value is relatively close to the maximum error of
the theoretical value.
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(5) Because of the intelligent data acquisition method with variable frequency, these
monitoring results have strong applicability and are suitable for promotion in the
displacement monitoring of short and medium-span bridges as one factor with other
methods for health monitoring.

(6) The self-developed data receiving and analysis software can be shared by multiple
bridges; if the displacement monitor and data acquisition instrument in the monitoring
system can be mass-produced, the cost can be further reduced.
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