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Featured Application: This work provides a support and decision system that can support en-
docrinologists in telemedicine, hospitals, insurance companies and analysis laboratories by be-
ing the basis for applications. In addition, it can support end users as a recommendation system
and glucose oscillation prediction. Moreover, it can be embedded in insulin pumps (devices
or software).

Abstract: The glucose–insulin regulatory system and its glucose oscillations is a recurring theme in
the literature because of its impact on human lives, mostly the ones affected by diabetes mellitus.
Several approaches have been proposed, from mathematical to data-based models, with the aim of
modeling the glucose oscillation curve. Having such a curve, it is possible to predict when to inject
insulin in type 1 diabetes (T1D) individuals. However, the literature presents prediction horizons of
no longer than 6 h, which could be a problem considering their sleeping time. This work presents
Tesseratus, a model that adopts a multi-agent approach used to combine machine learning and
mathematical modeling to predict the glucose oscillation for up to 8 h. Tesseratus can support
endocrinologists and provide personalized recommendations for T1D individuals to keep their
glucose concentration in the ideal range. It brings pioneering results in an experiment with seven real
T1D individuals. Using the Parkes error grid as an evaluation metric, it can be depicted that 93.7% of
measurements fall in zones A and B during the night period with MAE 27.77 mg/dL. It is our claim
that Tesseratus will be a reference for the classification of a glucose prediction model, supporting the
mitigation of long-term complications in the T1D individuals.

Keywords: glucose oscillation; prediction; multi-agent; type 1 diabetes; personalized; recommendation

1. Introduction

Diabetes mellitus is a syndrome characterized by hyperglycemia resulting from defects
in insulin secretion, associated or not with resistance to the action of this hormone [1]. Dia-
betes mellitus affects people all around the world, and it is an important health challenge for
the 21st century. Type 1 diabetes mellitus (T1D) is the type in which the pancreas produces
little or no insulin [1], causing glucose concentration control problems. Such problems must
be treated with insulin injection and frequently causes long-term complications. Currently,
more than 1.1 million children and teenagers have T1D around the world [2].

There are several challenges faced by researchers and health professionals, mostly
related to developing means to provide treatments that bring better results in terms of
short-term glucose control and risks reduction in developing long-term complications.
Efforts to address these challenges come from academia to the pharmaceutical industry.
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From the theoretical and technological point of view, several models were proposed to
support the avoidance of hypoglycemic or hyperglycemic conditions in T1D individuals.
Moreover, there are models that mimic the dynamic exchange of information between the
components of the human glucose–insulin regulatory system (HGIRS) [3]. Nevertheless, to
the best of our knowledge, they are still unable to predict the glucose oscillation curve for
prediction horizons greater than six hours.

This paper presents Tesseratus, a hybrid model that adopts a multi-agent system
(MAS) [4] approach to combine math and data-driven techniques to predict the glucose
oscillation for up to eight hours for individuals with T1D. As the tesseract has four dimen-
sions [5], Tesseratus has four main agents, namely (i) the Recommender; (ii) the Predictor;
(iii) the Math and (iv) the ML agents. In addition, the model also has reactive agents to receive
external data from the T1D individual and to monitor and control inputs and outputs along
the system execution.

Tesseratus predicts the behavior of the glucose oscillation by taking into account basal
and fast-acting insulin infusion; current glucose concentration; food (carbohydrate, protein
and fat) and alcohol intake; and physical activity. Having such information, the model is
able to present the predicted glucose curve for a prediction horizon (PH) for up to four
hours during the day and up to eight hours during the night.

This paper is organized as follows: Section 2 presents a brief description of the hu-
man glucose–insulin regulatory system and its associated mathematical model. Section 3
presents some related work and Section 4 presents the Tesseratus model itself, its archi-
tecture and functioning. After, we present the experimental results in Section 5 and the
associated discussion in Section 6. Finally, the paper is concluded in Section 7.

2. Human Glucose–Insulin Regulatory System

The human glucose–insulin regulatory system (HGIRS) is part of the human endocrine
system [6] and comprises two main hormones, insulin and glucagon, produced and re-
leased, respectively, by β and α-cells of the pancreatic islets. These two hormones, which
exert opposing effects, act in concert to maintain blood glucose (BG) in a narrow range.
During the fasting state, glucagon stimulates hepatic glucose production (HGP) in order to
prevent hypoglycemia, while insulin is secreted at levels sufficient to constrain HGP and
to maintain BG concentration at approximately 90 mg/dL (basal secretion). After meals,
the increase in BG concentration stimulates insulin secretion (meal-related secretion), sup-
pressing HGP and stimulating glucose uptake by insulin-sensitive tissues such as muscle
and adipose tissue, eventually restoring normoglycemia. In this research, due to modeling
limitations, we do not consider other hormones such as cortisol and growth hormones,
which exert direct and indirect effects on glucose metabolism.

Insulin secretion is complex and glucose is the most potent stimulant of insulin release.
After eight to ten minutes of food ingestion, the insulin concentration increases, reaching
a peak in 30 to 45 min, and then rapidly decreases to baseline values in 90 to 120 min [7].
Insulin is a physiological suppressor of glucagon release; thus, glucagon secretion is low in
the postprandial period. On the other hand, glucagon is released during fasting, when BG
is in the normal range and insulin concentration is low [7].

In the case of T1D, the autoimmune destruction of pancreatic β-cells prevents insulin
secretion. Thus, T1D individuals depend on exogenous insulin administration to mimic the
physiological secretion of this hormone, i.e., basal and meal bolus insulin. To maintain the
BG concentration to as close as possible to the normal range, it is also necessary to measure
BG and to count the amount of macronutrients (especially carbohydrates) before every
meal to calculate the bolus insulin dose, which must match the total carbohydrate content
of that meal and also correct occasional hyperglycemias.

Optimal glycemic control is crucial to avoid the complications associated with chronic
hyperglycemia. However, the procedures described above are relatively complex and are
influenced by numerous other factors, such as the type and intensity of physical activity, as
well as stress, among others, which impair glycemic control, contributing to the occurrence
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of episodes of hyper and hypoglycemia. The literature presents several predictive models
for glucose oscillation, such as [8–11], the last one having a night prediction of up to 6 h.
However, we could not find any model that predicts glucose oscillation in a continuous
and personalized way.

Quantitative methods used to model the metabolic physiology of T1D individuals are
usually based on ordinary differential equations (ODE), and are also called compartment
models [12]. We propose an extension to the model proposed by Kissler et al., 2014 [3]
presented in Equations (1) and (2).

G′(t) = Gin + f1(I(t− τ2))− f2(G(t)
−γ[1 + s.(m−mb)].( f3(G(t)). f4(I(t))

(1)

I′(t) = Iin + β f5(G(t− τ1))−
VMAX I(t)
KM + I(t)

(2)

In the glucose compartment G′(t), f1 describes the hepatic glucose production (HGP);
f2 describes the central nervous system glucose utilization; f3 describes the muscle/fat glu-
cose utilization; f4 describes the muscle/fat insulin uptake; and f5 describes the pancreatic
insulin production. The parameters semantics are given in Table 1.

Table 1. Parameters of the glucose and insulin compartment models.

Symbol Description

Iin Insulin infusion rate

Gin Glucose intake rate

β Relative pancreatic β-cell function

γ Relative insulin sensitivity

s Rate of insulin sensitivity increase per minute of exercise

m Daily minutes of physical activity

mb Baseline minutes of physical activity

Vmax Maximum insulin clearance rate

KM Enzyme’s half-saturation value

Our extension considers the approach proposed by Schindelboeck et al., 2016 [13] for
describing f1 in compartment G′(t), in order to consider alcohol ingestion and replace γ
proportionally by eGDR—the estimated glucose disposal rate—following the approach of
Epstein et al., 2013 [14]. Nevertheless, we completely exchanged compartment I′(t) by
building piecewise polynomial equations from the pharmacokinetics data of four types
of insulin. This mathematical modeling is the core of our Math agent and is described in
the following.

2.1. A Mathematical Model for HGIRS

The glucose equation G′(t) (glycemic value as a function of time) should be calculated
and is directly related to the amount and type of macronutrients ingested, as well as
the time (∆tex–measured in minutes) and intensity (VO2—maximum volume of oxygen
consumed) of physical exercise [15,16] in accordance with [17].

Gin and Iin values refer to the rate of glucose intake and insulin infusion, respectively.
Gin is measured in mg/dL.min, varying in the interval [0, 1.08]. The insulin equation I′(t)
(insulin concentration value as a function of time) and the value of I0 (insulin concentration
at t(0)) come from the pharmacokinetics equations of each type of insulin (Section 2.1.2)
selected by each individual.

Thus, having these two equations modeled, we fed our Math agent with them in
order to start the labeling of our dataset, as well as to support the continuous learning
in Tesseratus.
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2.1.1. The Glucose Compartment Equation

The description of how the glucose compartment is modeled by using a similar
approach of Equation (1), extending f1 and reusing f2, f3 and f4. In addition, we rename
the physical exercise contribution to the model ( fex = [1 + s(∆tex − ∆tex)]). Therefore, it is
represented by

G′(t) =

glucose production︷ ︸︸ ︷
(Gin + f1(I(t− τ1)))− (3)

( f2(G(t)) + γ fex.( f3(G(t)). f4(I(t)))︸ ︷︷ ︸
glucose consumption

Our extension in f1 considers the fact that there are two sources of glucose production:
the hepatic glucose production (HGP) [3] and the glucose yielded from the metabolism of
ingested macronutrients. In this case, glucagon exerts control over the liver and causes
it to dispense glucose, with a slight delay (given by τ1) of between 15 and 20 min [18].
In order to allow for personalization, we defined f1 considering or not considering al-
cohol ingestion, following the understanding of Schinfelboeck et al., 2016 [13]. Both
Equations (4) and (5) use the reference values proposed by [19–21]. Then, HGPmax is 180
mg/min, α is 0.29 L/mU, Vpla is 3 L and C5 is 26 µ U/L. Here, HGPmax stands for hepatic
glucose production, α for hepatic sensitivity to changes in insulin, Vpla for the volume of
plasma in the body, C5 for the insulin concentration at which the liver is most efficient and
Ag(t) for alcohol ingestion.

f1(I(t− τ1)) =
HGPmax.(1− Ag(t))

(1 + exp(α( I(t)
Vpla

)− C5))
(4)

or
f1(I(t− τ1)) =

HGPmax

(1 + exp (α( I(t)
Vpla

)− C5))
(5)

2.1.2. The Exogenous Insulin Equation

Our approach adopted the pharmacokinetics data of four types of insulin (glargine [22],
degludec [23], lispro [24] and aspart [25]) to support this modeling based on the approxi-
mation of polynomial functions. Since industry information is not enough for producing a
viable approximation, we combined them with information from a dataset of seven real
Brazilian volunteers that use such insulins to derive the polinomyal functions related to
each of them. The dataset is described in Section 5.

For instance, for glargine, an insulin of slow action, we obtained values from [26–30],
as well as the FDA report [22] and the industry representative information [31]. On the
other hand, for lispro, an insulin of fast action, we obtained values from [32–34]. The
insulin lispro report produced by FDA [35] was used to confirm the time-of-action and
pharmacokinetic information. Having such values, we were able to build a polynomial
function p(t) that provides an approximation for the exogenous insulin compartment.
Each point of p(t) represents the concentration of insulin prescribed at a given time (t),
considering the parameters of the T1D individual.

Figure 1 presents an example of a polynomial curve p(t) for glargine to cover a 24 h
period of time. It can be observed that p(t) is a piecewise combination of polynomials of
degrees four, two and three, as described in Equation (6).
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p(t) =



−0.0259t4 + 0.4255t3 − 2.5787t2 + 7.213t + 9.5966, 0 ≤ t ≤ 6
0.105t2 − 2t + 26.655, 6 < t ≤ 8
−0.0996t4 + 3.8587t3 − 57.701t2 + 379.78t− 910.29, 8 < t ≤ 12
−0.0808t3 + 3.5536t2 − 52.254t + 269.54, 12 < t ≤ 16
−0.011t3 + 0.6492t2 − 13.24t + 102.98, 16 < t ≤ 24

(6)

Figure 1. The piecewise polynomial for Glargine insulin (slow-acting) considering
0.36 U/kg concentration.

Figure 2 presents an example of a polynomial curve p(t) for lispro that covers a period
of time of 300 min. It can be observed that p(t) is a piecewise combination of polynomials
of degrees three and two, as described in Equation (7).

p(t) =



−0.0015t3 + 0.0752t2 + 0.0473t + 0.082, 0 ≤ t ≤ 35
−0.0022t2 + 0.2445t + 23.638, 35 < t ≤ 45
−0.0097t2 + 0.9403t + 7.5778, 45 < t ≤ 60
0.00002t3 − 0.0059t2 + 0.3791t + 23.134, 60 < t ≤ 120
0.0004t2 − 0.2612t + 42.8774, 120 < t ≤ 220
0.000006t2 − 0.0822t + 22.163, 220 < t ≤ 300

(7)
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Figure 2. The piecewise polynomial for Lispro insulin (fast-acting) considering 0.16 U/kg concentration.

3. Related Work

This section presents some models that provide hybrid solutions for the predictive
modeling of glucose oscillation for T1D. Hybrid solutions usually combine mathematical
modeling with data-driven techniques. In a literature search, Refs. [8–10,36] presented
hybrid predictive models with PHs from 90 to 120 min. Nevertheless, for [16,37–46], the
prediction horizon (PH) varies from 30 to 60 min.

In fact, Refs. [37,41,42] adopt neural network approaches that yield a PH of 60 min
when dealing with nine, six and ten real patients, respectively; Ref. [38] adopts a combina-
tion of a compartment model and self-organizing map with twelve real patients, achieving
a PH of 60 min; Refs. [39,40] adopt a support vector machine approach tested with six and
five real patients, respectively, both achieving a PH of 60 min. Moreover, Refs. [43–46]
achieved a PH of 30 min by adopting Bayesian inference, fuzzy logic, neural networks and
a Kalman filter, respectively.

For long-term PH, we can state that Georga and colleagues et al., 2013 [8] adopted a
multivariate regression approach to derive a predictive model for subcutaneous glucose
concentration prediction in T1D individuals. The method was evaluated with a dataset
composed of twenty-seven real T1D individuals and presented average prediction mean
square errors of 5.21 mg/dL for 15 min, 6.03 mg/dL for 30 min, 7.14 mg/dL for 60 min
and 7.62 mg/dL for 120 min PHs. Liu and colleagues et al., 2019 [9] presented a glucose
forecasting algorithm suited for long-term PHs. The algorithm is based on compartmental
models for the HGIRS. It was evaluated with clinical data of ten real T1D individuals. For a
120 min PH, there was an improvement of 18.8% in the prediction accuracy measured with
the root mean square error (RMSE), 17.9% in the A-region of error grid analysis (EGA) and
80.9% in the hypoglycaemia prediction calculated by the Matthews correlation coefficient.
Cescon, Johansson and Renard et al., 2015 [10] presented a subspace-based linear multi-step
predictor as a predictive model for short-term glucose oscillation. The model was evaluated
with seven real T1D individuals and obtained a prediction error standard deviation of
58.06 mg/dL at 120 min. Contreras and colleagues et al., 2018 [36] combined physiological
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models for HGIRS with grammatical evolution as a search-based technique to design a
predictive model for short-term glucose oscillation. Considering the CEG, they achieved
more than 96% of results falling inside regions A and B for 90 min.

Since there are T1D individuals that feed at intervals greater than two hours, their
results are not helpful for them. The proposal of the Tesseratus model is to extract the best
features of each approach (physiology, data and multi-agent) in order to reach a longer
PH at personalized intervals of four hours in the full daytime period and eight hours in
the night period, keeping the MAE below 28 mg/dL in both periods and for all PHs. A
discussion of the results is in Section 5.

4. Tesseratus Model

Tesseratus adopts a multi-agent approach to define a hybrid model to predict the
glucose oscillation for up to four hours during daytime and for up to eight hours at the night
period. It is a hybrid model because agents are defined using both compartment models
(described in Section 2.1) and data-driven techniques, such as machine learning (ML).
Tesseratus has two types of agents: reactive agents and intelligent agents. Nevertheless,
we decomposed the problem in such a way that each agent is responsible for a portion of
the phenomenon [47], which means that there are several agents of each type. The reactive
agents are responsible for collecting data and feeding intelligent agents with the collected
data or for monitoring data, error and ODE parameters. Intelligent agents are responsible
for using data to predict the glucose oscillation. The intelligent agents are: the Recommender
agent, the Predictor agent, the ML agent and the Math agent.

The Recommender agent has a knowledge base composed of labeled glucose oscillation
prediction curves (within the range or out of range—following a semaphore metaphor)
and is responsible for finding and labeling suitable curves for received data and delivering
them to the user. The Predictor agent has a knowledge base of labeled predicted values
and actions and is responsible for asking the Math and ML agents for information to pop-
ulate its knowledge base and for providing glucose oscillation prediction curves to the
Recommender agent. The Math agent has the math modeling presented in Section 2.1 as the
core for the generation of glucose oscillation prediction curves, and the ML agent learns the
glucose oscillation prediction curves from the combination of received data provided by
reactive agents and by the Math agent. Communication is bidirectional between intelligent
agents. The Predictor agent communicates with all intelligent agents, and the ML agent
communicates with the Predictor and Math agents. Reactive agents only send messages
to intelligent agents. Having received these messages, intelligent agents act accordingly to
recommend a glucose oscillation prediction curve or to adapt the recommendation given
the monitored context (prediction error above a threshold, the need for updating ODE
parameters or non-conformance of collected data as expected).

Tesseratus innovates in the problem solution by adopting a learning policy that con-
siders both information from the individuals collected data and from the mathematical
modeling. Therefore, at the very beginning, we defined a set-up step for knowledge acquisi-
tion and data labeling. In this step, the Math agent generates glucose values and associated
labeling, providing information to accelerate the learning using the generated glucose
values and associate labeling, and the ML agent reuses knowledge from the Math agent.
All intelligent agents knowledge bases are built in a continuous reinforcement learning
cycle that begins with the Math agent knowledge combined with a reward policy based
on the semaphore metaphor. Data are labeled green, yellow or red depending on the
glucose concentration and the absolute error, both within pre-established thresholds. The
reader may observe in Table 2 that there are two rewards labeled as green and two other
rewards labeled as red because excellent and normal glucose levels associated with an
absolute error smaller than 30 mg/dL are labeled as green, depending on the PH; and
hyperglycemia and hypoglycemia levels are labeled as red, as well as an absolute error
bigger than 30 mg/dL. For the red label, the reward should be considered if at least one of
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the situations occur. An acceptable glucose concentration is labeled as yellow. By absolute
error, we mean the error between the measured and predicted glucose values.

Table 2. Tesseratus reward policy.

State Reward

Green 10

Green 8

Yellow 0

Red −5

Red −10

The architecture of Tesseratus is presented in Figure 3, where numbers are adopted to
support its explanation flow.

1. Reactive agents collect data from continuous glucose monitors (CGM), voice or manu-
ally, and send them to the Recommender agent;

2. The Recommender agent receives data, associates them with their time frame, creating
a tuple < data, time >, and checks its knowledge base (KB) if there are actions to be
taken related to them;

3. If yes, the predicted oscillation curve is labeled in the ideal range (80–120 mg/dL
during fasting, and up to 160 mg/dL in postprandial periods), stored in the KB as
< time, label, curve >, and sends it to the user;

4. If not, the Recommender agent requests information about prediction curves to the
Predictor agent;

5. The Predictor agent checks its KB to see if there is a suitable prediction curve. If
not, it propagates the request to the ML and Math agents;

6. The ML agent and Math agent, at a given time frame, store the prediction values in their
KB and return the value linked with the prediction calculation to the Predictor agent;

7. The Predictor agent analyzes the value received and, if it is a value that is in the
ideal range, sends a return message to the Recommender agent; otherwise, it requests
more options for the ML and Math agents. At this point, the Predictor agent stores
the input and output in its KB with a specific timestamp;

8. The Recommender agent could send recommendations to the environment from its
base of action , or simply send the predicted oscillation curve with an ideal glucose
label achieved;

9. The best glucose value is sent to the environment, as well as hypothetical complemen-
tary recommendations;

10. The actions and knowledge at that specific time frame are stored in the Recommender
agent’s KB.

4.1. Tesseratus Implementation

All agents were implemented in a serverless architecture based on microservices [48].
The multi-agent system (MAS) follows an event-based approach and runs on a public
cloud platform [49]. The KB of each intelligent agent uses a non-relational, non-server
management key-value database, with flexibility for unstructured data, and also for being
horizontally scalable.

A Smart Python Agent Development Environment (SPADE) [50] was used as the
multiagent platform. Communication among agents is based on instant messaging, an
interesting feature that allows for presence notification, enabling the system to know the
current state of the agents in real-time. SPADE agents are based on behaviors, and were
extended to create the hybrid agents with a Belief–Desire–Intention (BDI) [51] layer.
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Figure 3. Tesseratus architecture.

4.2. Tesseratus Set Up

In order to prepare the model to be used, there is a setting-up step for knowledge
acquisition. In this step, intelligent agents use data provided by the T1D individual during
a week to create their associated KB. As aforementioned, the Math agent accelerates the ML
agent learning by providing information regarding glucose prediction values based on the
HGIRS mathematical modeling presented in Section 2.1. In addition, the Math also uses the
pre-defined semaphore to label generated values as green, yellow and red. Nevertheless,
ML agent uses the labeled data to learn in a supervised learning process [4]. This step
adopts an approach similar to active learning. Figure 4 depicts this learning flow, which is
described next.

1. Reactive agents collect environmental information via sensors (every 5 min from
GCM), by voice or manually;

2. The Recommender agent receives data and asks the Predictor agent to calculate and
generate the glucose curve;

3. The Predictor agent asks the ML agent to create a timestamp and generate the glu-
cose curve;

4. The ML agent asks the Math agent to label the generated value based on the prede-
fined semaphore;

5. The Math agent forwards the labeling payload to the ML agent;
6. The ML agent sends to the Predictor agent the timestamp, glucose curve, predictions

and label based on the data received;
7. The Predictor agent receives the message and forwards it to the Recommender agent;
8. The Predictor agent receives the new information and classifies it in each KB accord-

ing to the received label (green, yellow and red).
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Figure 4. Tesseratus set up: acquiring knowledge.

4.3. Tesseratus Functioning

After the set up, Tesseratus starts its functioning in a continuous learning cycle based
on reinforcement learning, with receipt of new data provided by the reactive agents in
order to carry out the validation of values.

The Math and ML agents generate knowledge for the Recommender and Predictor
agents. In addition, they also take advantage of information provided by the other reactive
agents in order to update and/or correct the values of the parameters used in the ODE,
which are the core of the Math agent. Moreover, we consider the time series associated with
the green labeled data to adopt the sliding window approach [52] and achieve different
PHs, from 15 min to 8 h. For instance, since the glucose concentration dataset is measured
every five minutes, the ML agent used the last two hours of historical data on carbohydrates
and five hours on bolus insulin to predict it (see green and black dashed left-right arrows of
Figure 5). These time slots were chosen based on the duration of carbohydrate metabolism
and the average time of fast-acting insulin action in the human body, respectively. In
Figure 5, insulin values (in mU/mL) of the five-hour sliding window are represented by
the black dashed left-right arrow, whereas carbohydrate values (in grams) of the two-hour
sliding window are represented by the green dashed left-right arrow. They were used to
predict the oscillation glucose for up to eight hours (blue dashed right arrow).
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Figure 5. Sliding window approach for time series: carbohydrates and insulin.

5. Results

Tesseratus was implemented as a Python [53] prototype (version 3.8). Its setup was
conducted considering data collected from seven T1D Brazilian volunteers during a week.
The volunteers profiles are described in Table 3, where their ID, sex, age, abdominal
circumference (AC) and body mass (BM) are given. In addition, Table 4 presents the time
of data collection, the origin of glucose values and the type of insulin, with a concentration
of 100 units per mL (100U/mL). Other data collected from the T1D individuals were the
HbA1c (hemoglobin A1c) value and whether they were hypertensive (1) or not (0) in order
to calculate the eGDR (mg/(kg min)) of each individual (Table 5). The ID is only used to
identify the individual.

Table 3. Characteristics of each individual.

ID Sex (M/F) Age (years) AC (cm) BM (kg)

R-BRA01 F 36 79 57

R-BRA02 M 50 115 90

R-BRA03 M 28 91 70

R-BRA04 M 45 132 120

R-BRA05 M 39 93 83

R-BRA06 M 39 91 78

R-BRA07 F 65 90 68
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Table 4. Satellite characteristics used to collect data.

ID Days Source Insulin

R-BRA01 14 FreeStyle Libre® aspart + degludec

R-BRA02 21 Minimed 640G® lispro

R-BRA03 14 FreeStyle Libre® aspart + degludec

R-BRA04 21 Minimed 640G® lispro

R-BRA05 14 FreeStyle Libre® aspart + glargine

R-BRA06 21 Paradigm VEO 754® lispro

R-BRA07 14 FreeStyle Libre® lispro + degludec

Table 5. Information used to calculate estimated glucose disposal rate (eGDR).

ID Hypertensive HbA1c (%) eGDR

R-BRA01 0 5 11.7

R-BRA02 1 6 4.51

R-BRA03 0 6.3 9.91

R-BRA04 1 5.6 3.2

R-BRA05 0 8 8.8

R-BRA06 0 6 10

R-BRA07 0 7.5 9.34

An example of how it is possible to analyze the behavior of each individual is rep-
resented in Figure 6 for volunteer R-BRA07. Her profile is characterized in Tables 3–5:
R-BRA07 is non-hypertensive, and her hemoglobin A1c is 7.5%, yielding an eGDR of 9.34
(mg/kg min). The glucose rate of ascent and descent was collected every 30 min, between
midnight and 8am, during 14 days. These data were compared with the Tesseratus pre-
diction ones and further plotted in a Parkes error grid [54] (Section 5.1). It is possible to
notice that there is a tendency for the glucose concentration to fall in the early hours of
the morning, but, for example, there is a rise every day from five in the morning. The
glucose oscillation is quite peculiar and can be affected by the dawn phenomenon, which is
characterized by hyperglycemia during early morning [55]. Another factor that influences
the continuity of the glucose concentration increase is having breakfast almost every day at
six o’clock with a carbohydrate intake.

5.1. Testing and Validation

Through the natural competition established between the Math and ML agents, with
their respective strategies, it was possible to establish the best result between them and
practice a continuous flow of active reinforcement learning using historical data from seven
volunteers for up to 21 days. The best result is always closer to the ideal glucose range:
80–120 mg/dL in fasting and up to 160 mg/dL in the postprandial period.

Daytime and night-time windows were personalized for each individual (Table 6),
with the addition of information related to their usual sleeping hours (night-time) and
active hours (daytime). Such personalization is needed to decide whether Tesseratus must
be fed by a new external stimulus. In addition, our prediction horizon for the night-time is
eight hours at most, and individuals with night-time windows greater than that must have
their prediction horizon updated.
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Figure 6. Ascent and descent glucose rate from individual R-BRA07 during 14 days along nighttime
(from midnight to eight am) considering time intervals of 30 min.

Table 6. Volunteers’ nighttime and daytime windows.

ID Nighttime Daytime

R-BRA01 10:41 p.m.–07:59 a.m. 08:00 a.m.–10:40 p.m.

R-BRA02 10:01 p.m.–05:59 a.m. 06:00 a.m.–10:00 p.m.

R-BRA03 10:01 p.m.–07:59 a.m. 08:00 a.m.–10:00 p.m.

R-BRA04 09:16 p.m.–08:59 a.m. 09:00 a.m.–09:15 p.m.

R-BRA05 11:59 p.m.–07:34 a.m. 07:35 a.m.–11:58 p.m.

R-BRA06 09:51 p.m.–05:29 a.m. 05:30 a.m.–09:50 p.m.

R-BRA07 08:51 p.m.–05:59 a.m. 06:00 a.m.–08:50 p.m.

We used the Parkes error grid (PEG) [56] to evaluate errors in the measurement
of predicted glucose oscillation provided by Tesseratus. PEG was adopted because it
is compliant with ISO15197 [57] and separates T1D individuals from individuals with
type 2 DM. Moreover, PEG had its technical issues revised by Pfutzner et al. 2013 [54],
who established exact borders for the performance zones for glucose measurements and
supported the accuracy definition for glucose monitors. The zones are categorized as
A, B, C, D and E. The associate meaning for a measurement of being in a zone is: zone
A—clinically accurate measurements, no effect on clinical action; zone B—altered clinical
action, little or no effect on clinical outcome; zone C—altered clinical action, likely to affect
clinical outcome; zone D—altered clinical action, could have significant clinical risk; zone
E—altered clinical action, could have dangerous consequences.

PEG was used considering the predicted versus measured values, and the success
metric was simple: the more prediction points that fall within zones A and B, the better
the model. Table 7 details the PEG for the daytime window considering each prediction
horizon (PH) (from 15 min to 4 h). It can be depicted that 95.1% of measurements, on
average, fall in zones A and B. The same result is presented in Figure 7, showing a total of
3804 predictions. Zones A and B are the closest ones to the diagonal line of the plot.
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Table 7. Results of PEG for Tesseratus (3804 predictions plotted)—daytime period.

PH A (%) B (%) C (%) D (%) E (%) A + B (%)

15 min 93 6.8 0.2 0 0 99.8

30 min 76.9 22.2 0.8 0 0 99.1

60 min 56.4 41.5 2 0.1 0 97.9

90 min 50.1 44.9 4.7 0.3 0 95

120 min 50.3 41.8 7.4 0.5 0 92.1

180 min 46 44 8.9 0.9 0.2 90

240 min 49.6 40.4 9.7 0.3 0 90

Average 62.3 32.8 4.4 0.5 0 95.1

Figure 7. PEG (daytime period) for seven T1D individuals. Green dots lay at zones A and B (95.1%
on average): 3804 predictions.

For the night-time window, Table 8 details the PEG of each PH (from 15 min to 8 h).
It can be depicted that 93.7% of measurements, on average, fall in zones A and B. The
same result is presented in Figure 8, showing a total of 1400 predictions. It is important to
observe that, for a PH of 480 min (eight hours), the Tesseratus model presented a PEG of
95% falling between zones A and B.
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Table 8. Results of PEG for Tesseratus (1400 predictions plotted)—night period.

PH A (%) B (%) C (%) D (%) E (%) A + B (%)

15 min 86 12.4 1.7 0 0 98.4

30 min 72.2 26.9 0.9 0 0 99.1

60 min 57.1 41.8 1.1 0 0 98.9

90 min 50 44.4 5.6 0 0 94.4

120 min 47.7 46.7 5.6 0 0 94.4

180 min 45.3 44.7 8.6 0.7 0.6 90

240 min 48.8 42.2 8.4 0.6 0 91

300 min 46.2 44.8 8 1.2 0 91

360 min 54.2 37.8 6.5 1.5 0 92

420 min 52.3 39.7 6.7 1.3 0 92

480 min 62 33 4.5 0.5 0 95

Average 55.8 37.9 5.6 0.7 0 93.7

Figure 8. Parkes error grid (night period) for seven T1D individuals. Green dots lay at zones A and B
(93.7% on average): 1400 predictions.
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Among other well-known error evaluation metrics, such as mean absolute percentage
error (MAPE), mean absolute error (MAE) and root mean square error (RMSE), we consid-
ered MAE and MAPE the most relevant to evaluate the success of our model, because T1D
individuals need predictions as close to real measurements as possible. Thus, the lower the
MAE and MAPE values, the better the model is in relation to the prediction.

In fact, such metrics are calculated considering absolute values for the difference
(measured value minus predicted glucose concentration). Therefore, we evaluate MAE and
MAPE considering such errors for all PHs, and organized them for daytime and nightt-ime
in Tables 9 and 10, respectively. It is important to note that the daytime window runs from
15 to 240 min and night-time window from 15 to 480 min.

Table 9. Mean Absolut Error (MAE)—daytime and nighttime comparison of PH concerning seven
T1D individuals. General average MAE at daytime and nighttime for Tesseratus.

PH Daytime (avg in mg/dL) Night-Time (avg in mg/dL)

15 min 9.18 9.27

30 min 16.97 16.09

60 min 26.41 26.26

90 min 30.24 28.09

120 min 30.54 28.3

180 min 33.61 32.68

240 min 25.01 34.49

300 min – 35.16

360 min – 34.97

420 min – 33.96

480 min – 26.37

Tesseratus 24.56 27.77

Table 10. Mean Absolut Percentage Error (MAPE)—daytime and nighttime comparison of PH
concerning seven T1D individuals. General average MAPE at daytime and nighttime for Tesseratus.

PH Daytime (%) Night-Time (%)

15 min 8 7.84

30 min 13.32 14.43

60 min 20.52 22.78

90 min 24.98 28.11

120 min 30.79 28.04

180 min 33.26 31.19

240 min 37.82 30.57

300 min – 23.96

360 min – 36.49

420 min – 32

480 min – 25.33

Tesseratus 22.01 25.51

6. Discussion

Both results linked to PEG analysis and MAE are pioneers, due to the long-term
prediction horizons, e.g, seven or eight hours for night-time. To the best of our knowledge,
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there is no literature presenting these prediction horizons. However, we compared Tessera-
tus with other models that address a shorter PH. In fact, whenever we consider PEG, we
can cite [37,58] for a PH of one hour. On one hand, the study by Munoz-Organero [37]
considered nine real individuals and obtained a PEG of 87.22% falling in zones A + B, while
the study by Foss-Freitas et al. [58] considered 21 real individuals and obtained a Clarke
error grid (CEG) of 94% falling in zones A and B. It is worth noting that both PEG and CEG
are comparable error grids [59]. Tesseratus outperformed both for the same PH, achieving
a PEG of 97.9% falling in zones A and B for daytime, and 98.9% at night-time.

Whenever we consider MAE as the error, we can cite [60], who obtained an MAE
equal to 51.3 mg/dL for a PH of 60 min, whereas Tesseratus reached 26.41 mg/dL, both
at daytime. It is worth noting that the smaller the MAE, the better the values. Finally, if
the considered error is MAPE, Foss-Freitas et al., 2019 [58] presented interesting results for
a PH ranging from 30 to 360 min. A comparison with Tesseratus is presented in Table 11
considering night-time PH. Observe that Tesseratus outperforms them for a PH of 120,
180 and 360 min, the last one being the highest PH that they achieve. Nevertheless, they
outperform Tesseratus for short PHs such as 30 and 60 min. We advocate that this is not an
issue, since the need for long-term prediction is paramount for night-time.

Table 11. MAPE at nighttime comparison between Foss-Freitas et al., 2019 [58] and Tesseratus—
21 days of training.

PH Foss-Freitas et al., 2019 [58] (%) Tesseratus (%)

30 min 7 14.43

60 min 16.8 22.78

120 min 32.7 28.04

180 min 45 31.19

360 min 44.2 36.49

420 min – 32

480 min – 25.33

In addition to the results achieved, it is worth mentioning the main contributions of
the Tesseratus model in a summarized way: (1) a combination of different techniques in
the same model working in an orchestrated way, from mathematics to ML (supervised and
reinforcement learning), represented by agents; (2) continuous learning for applicability in
real individuals with T1D; (3) delegating the task of a continuous self-adjustment process
about prediction errors to the agents; (4) Tesseratus works independently of sex and age;
(5) it was tested with real individuals; (6) applicability in technology-based healthcare;
(7) prediction of glucose oscillation of up to eight hours, depending on the individual’s
lifestyle, with an acceptable absolute error; (8) support for personalized recommenda-
tions on macronutrients, insulin and physical exercise, based on ML models, and not just
fixed rules.

All of the aforementioned contributions indicate the feasibility of Tesseratus to be
embedded as the underlying model to: an open source artificial pancreas system [61]; a com-
mercial artificial pancreas (closed-loop) [62]; insulin pumps [63,64]; and a recommendation
system, to cite a few. It is our claim that it must facilitate the daily life of T1D individuals,
automating most of the individual T1D’s 180 extra daily health-related decisions [65].

7. Conclusions

The paper presented Tesseratus, a hybrid model that adopts a multi-agent approach
to address the problem of predicting glucose concentration for T1D individuals. Tesseratus
has reactive and intelligent agents, where the reactive agents act as sensors and monitors,
and intelligent agents act as an oracle or as an apprentice. The oracle knowledge is provided
by a mathematical model for the HGIRS and it transfers knowledge to the apprentice, which
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also learn from data provided by sensors and monitors. Tesseratus uses a dual continuous
learning model that can mitigate errors between the predicted and continuously measured
values, in addition to the ODE’s own input parameters. The combination of techniques
is advantageous, as it consists of models with complementary functions, resulting in a
cohesive, well-adjusted model capable of generalization.

Tesseratus was validated with seven real T1D Brazilian individuals that provided their
data collected for up to 21 days: the seven initial days were used to personalize the model
and the following days were used to validate the model capacity of predicting glucose
oscillation for a PH that ranges from 15 min to 4 h during daytime and from 15 min to
8 h at night-time. As the evaluation of the MAE indicates, Tesseratus is able to predict
glucose oscillation with an accuracy equal to or less than 30 mg/dL (1.7 mmol/L). As future
work, it is our intention to continuously improve the performance of the Tesseratus while
reducing the error of the predicted value by removing some specific restrictions found in
the literature: (a) constant values of parameters from mathematical models for prediction
calculations; (b) agent’s support for continuous learning and ODE parameter values correc-
tion; (c) barriers to combining different prediction models, using active learning, reusing,
combining and adapting knowledge from different agents [66].

Some limitations need to be addressed in future work, such as: (1) it does not support
pregnant women and type 2 individuals with diabetes mellitus; (2) for now, it only supports
four types of insulin analogues: aspart, lispro, glargine and degludec; (3) the dataset is still
small, performed with historical data for only seven real individuals; (4) few insulin sensors
or pumps were tested during the research, according to Table 4; (5) it is necessary to test
with new variables: stress, hormonal effects, blood oxygen and heart rate; (6) it is necessary
to analyze blood glucose and insulin concentration associated with comorbidities.
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HGIRS Human Glucose–Insulin Regulatory System
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MAS Multi-Agent System
ML Machine Learning
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T1D Type 1 Diabetes Mellitus
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