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Abstract: Network flow-based cyber anomaly detection is a difficult and complex task. Although
several approaches to tackling this problem have been suggested, many research topics remain open.
One of these concerns the problem of model transferability. There is a limited number of papers
which tackle transfer learning in the context of flow-based network anomaly detection, and the
proposed approaches are mostly evaluated on outdated datasets. The majority of solutions employ
various sophisticated approaches, where different architectures of shallow and deep machine learning
are leveraged. Analysis and experimentation show that different solutions achieve remarkable
performance in a single domain, but transferring the performance to another domain is tedious and
results in serious deterioration in prediction quality. In this paper, an innovative approach is proposed
which adapts sketchy data structures to extract generic and universal features and leverages the
principles of domain adaptation to improve classification quality in zero- and few-shot scenarios.
The proposed approach achieves an F1 score of 0.99 compared to an F1 score of 0.97 achieved by the
best-performing related methods.

Keywords: transfer learning; feature extraction; anomaly detection

1. Introduction

The problem of transfer learning in the area of cyber-security is an important issue
from the point of view of artificial intelligence. Currently, researchers are struggling with
the issue of access to labelled data [1]. The labelling of new datasets is a time-consuming
and problematic process [2]. There are several public datasets that can be used to train
customized cyberattacks and anomaly detection algorithms [3]. However, experiments
show that a model trained on network traffic from another network does not achieve
satisfactory classification quality. This is to a large extent due to differences between the
analysed networks, which result from the use of other services, the number of elements
in the network, the way the network is used, and other factors [1]. To the best of the
authors’ knowledge, there is a limited number of papers which tackle flow-based network
anomaly detection in the context of transfer learning, and these are mostly used on outdated
datasets. The ambition of this paper is to fill this gap by proposing a new domain adaptation
approach for anomaly detection. The main contributions of the paper can be summarized
as follows:

• sketchy data structures are adapted for extracting generic and universal features and
are compared with approaches described in the literature,

• the principles of domain adaptation are leveraged to improve classification quality in
zero and few-shot scenarios,

• recently published and realistic datasets are used to compare the proposed approach
under different scenarios with respect to anomaly detection.
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This paper is structured as follows: In Section 2, related studies are described. Section 3
details the proposed method. Section 4 describes the experimental setup, metrics and
methodology. Section 5 describes the results. The paper ends with conclusions.

2. Related Work

The problem of transfer learning in the cyber-security domain is a difficult issue
that stems from the diversity of tools used by adversaries, privacy-related restriction (i.e.,
constraints in sharing data with the community), and the complexity of systems that face
the dynamically evolving landscape of cyber-threats.

However, despite these obstacles, significant effort has been invested by researchers to
define mechanisms that would allow system administrators to evolve detection systems
from data-driven to knowledge-driven solutions. In this regard, there is an urgent need for
a solution that would allow extraction of useful patterns that can be used in recognising
unknown cyber-attacks.

The authors of [2] enhanced transfer learning with clustering. The approach, named
CeHTL, was able to uncover how a new attack was related to already known attacks.
However, in contrast to the approach presented in this paper, the research of [2] is based
mainly on the NSL-KDD dataset, which contains traffic collected in 1999 [4], and self-
generated, synthetic datasets.

In [5], the authors introduced a transfer-learning-based method to tackle the imbal-
anced data issue in cyber-security. Although this approach achieved promisingly high
F1-scores, the authors noted that their method is impractical if the minority class samples
are rare.

Another interesting approach was presented in [6]. The authors adapted a semi-
supervized learning method utilising a recurrent variational autoencoder (RVAE). The
method aims at capturing sequential characteristics of botnet activities. Similar to the
approach presented in this paper, the method uses network flow characteristics to capture
various behavioural patterns. However, this method results in a relatively high number of
false alarms.

The authors of [7] proposed a network intrusion detection (NIDS) framework featuring
a deep neural network. The network was established on a pretrained VGG-16 architecture.
Using a transfer-learning-for-network-intrusion-detection (TL-NID) framework, in the first
step, the features were extracted with the use of the VGG-16. The network was pre-trained
on an ImageNet dataset. In the second step, a deep neural network was applied to the
extracted features for classification. The approach was tested on the dated benchmark
NSL-KDD. To enable the approach to work, the samples from the NSL-KDD dataset were
transformed to images conforming with the VGG-16 input shape.

In [8], the authors proposed a multi-source transfer learning intrusion detection
system (IDS) to work with encrypted data. The method enabled successful transfer of
knowledge from encrypted models in multiple source domains to the target domain, with
an accuracy exceeding 93%. The authors tested the use of the proposed E-XGBoost transfer
learning method on the CTU-13 dataset.

The authors of [9] pointed out that the direct utilization of classes coming from a
different network is not sufficiently accurate to detect anomalous behaviours in a new, target
network. To counter this, the authors put forward a method to transfer knowledge between
networks to eliminate the need for training samples in the target network. The method is
based on manifold alignment-leveraging domain-adaptation manifold alignment (DAMA)
from [10] to unify source and target feature spaces, along with adaptation regularization
for transfer learning using squared loss from [11]. The proposed method successfully
transferred knowledge from the NSL-KDD source dataset to the target domain based on
the Kyoto2006 dataset, with accuracy and recall exceeding 90%.

Zero-shot learning was proposed to address the issue of detecting unknown attacks
in [12]. The authors treated part of the feature vector as a semantic description of the
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attacks found in the benchmark used. Part of the benchmark was treated as a corpus to
train a Word2VEC.

A self-taught learning approach to IDS was introduced in [13]. The method relies
on feature extraction using adaptive self-taught learning. This is achieved with the use
of a sparse autoencoder. The source domain also relies on time-series data, but is not
cybersecurity-related. The features extracted from the target domain data by the sparce
autoencoder trained on the source domain data were used in conjunction with the original
feature vector to train and test a deep neural network and a deep belief network, and
applied using non-linear principal component analysis.

In [14], an entire deep learning pipeline with a set of specific improvements for better
detection results using the neural networks employed in IDS was presented.

The authors of [15] addressed the lack of historical data on intrusion detection by
introducing zero-shot learning, which can help with anomaly detection in circumstances of
insufficient data samples by replacing the necessary knowledge with semantic estimation.
The approach was tested for scenarios of insider threat where historical data were unavail-
able. The existing IDS was augmented with descriptions of user positions, roles and project
assignments, which were incorporated through graph embeddings.

In [16], the authors utilized raw packet capture (PCAP) files from the BoT-IoT dataset,
and then used the Argus tool to extract header-field-information-based features (rather
than flow-based aggregations). The authors used the embedding layers from a multi-class
classification model as feature extractors for a binary classification model. The authors
of [17] used a ResNet50 pre-trained model as a feature extractor and fine-tuned it by
training a fully connected dense layer connected to its outputs. The model was trained on
the MalImg benchmark and exceeded 99% accuracy. A similar approach was used in [18].

Network intrusion detection using deep learning employing domain adaptation was
explored in [19]. The authors addressed the problem of the scarcity of data by use of
domain adaptation techniques and transferring knowledge from a labelled NIDS dataset,
with the feature spaces remaining the same between the source domain and the target
domain. The domain adaptation was performed using generative adversarial networks
(GANs), where the generator was trained to perform domain-invariant mapping of both
the source and the target domains, which was then used as input for the classifier.

A formalized method to set the decision threshold for transfer-learning-based anomaly
detection was described in [20]. The authors noted that deep learning can often be used
for feature extraction, with the extracted features then subject to comparison with a model
of normality. The report emphasized that setting the threshold used for the comparison
properly enables the approach to outperform other approaches.

In [21], a zero-shot intrusion detection method leveraging a regression model was
introduced. The classification was performed inductively by regression fitting for each
category and calculating the decision threshold. The model was able to detect unknown
attack types.

In [22], a taxonomy of transfer learning techniques was presented, with the division
into classes depending on what kind of data are available, and whether labelled data are to
be found in the source, in the target domain, or if there is no labelled data at all. The authors
provide descriptions of the types of algorithms helpful in the circumstances described.

In [23], the authors proposed a hybrid contrastive model (HCM) to perform identity-
level, along with image-level, contrastive learning for unsupervized reidentification, which
exploits feature similarity between hard sample couples.

The main conclusion to be drawn from the above literature analysis is that there is
a limited number of papers which tackle flow-based network anomaly detection in the
context of transfer learning. The existing methods often use outdated datasets (e.g., NSL-
KDD) or formats (e.g., raw PCAP files) that are difficult to obtain at a larger scale (e.g., for
privacy reasons). Therefore, our ambition in this paper is to fill this gap by proposing a
new domain adaptation approach for anomaly detection. Existing flow-based techniques
often rely on a raw network flow format [24], which may narrow the analysis context.
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Therefore, we propose sketchy feature vectors (SFV), which enable us to capture additional
characteristics representing the behaviour of network elements.

3. Proposed Method

The key goal of the proposed solution, as shown in Figure 1, is to enable the system
operator to avoid extensive model training when (i) the network environment changes, or
(ii) there is a need to move detectors from one network to another. The proposed solution
comprises the following building blocks:

• Network probe, which captures network traffic in the form of network flows,
• Sketchy feature vectors (SFV) extraction, which calculates feature vectors over a

predefined time window,
• Anomaly detection and threat identification, which is responsible for detecting anoma-

lies in the observed traffic and categorizing them as a known threat,
• Domain adaptation module, which is intended to bring the traffic coming from a differ-

ent network onto a feature space where the anomaly detection and threat classification
were trained,

• Dashboard, which is intended to visualize various traffic characteristics for the identi-
fied anomalies and threats.

Network A

Probe

SFV

Extraction

Network

Flows

Anomaly Detection

And


Threat Identification

Domain
Adaptation


Module

Admin

Dashboard

Network B

Probe

Network

Flows

Transformation

Network Flows 

Transformed to Network A 

Figure 1. The architecture of the proposed solution.

3.1. Flow-Based Data Acquisition

In this approach, the gathered network data is of the communication flow type [25]. It
may come from a broad range of devices, e.g., switches, routers and hosts; it features the
properties and statistics pertaining to a network in an aggregated manner. As far as the
architecture of the flow-enabled devices is concerned, collectors are the elements where the
collected traffic is sent. Subsequently, it is stored and kept there for further analysis, which
is usually performed as part of auditing activities by network administrators. In a single
flow, the following characteristics are collected:

• the number of incoming and outgoing bytes
• IP addresses partaking in the communication
• utilized source and destination ports
• utilized type of protocol (e.g., transmission control protocol (TCP) or user datagram

protocol (UDP))

Network node anomalous behaviour patterns (parameter changes in network flows)
must be identifiable, and this kind of data ought to enable identification, as the patterns can
be indicative of malware infection. Thus, a network administrator is able to utilize them in
order to recognize an adversary.

3.2. SFV—Sketchy Feature Vectors Extraction

In the following approach, before the statistical properties are determined, the group
flows in question are gathered in relation to a specific IP address, in so-called time windows,
i.e., time spans which are relatively short and of fixed length.
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In a preceding study by the authors ([26]), it was highlighted that a single flow has
multiple characteristics that define the two-way communication (such as the number of
flows or destination IP). It is possible to compute different statistical properties, such as
mean, median value, and min/max values, for all the characteristics.

When determining how many flows, as well as inbound and outbound packets, there
are, the specific counting or identification of the elements that are the most frequent in
the datastreams (such as destination ports) is a demanding task. To overcome this, a
straightforward solution is the maintenance of a dynamic list. Using this approach, if an
unknown element is fetched from the flow, the whole list must be examined to confirm
if the element is present. In the event that it is not there, the element has to be added to
the list, which in turn is resized. In addition, if there are various computational processes
running simultaneously, and there is a need to merge their results, it adds a further level
of complexity.

In [27], a data structure class is discussed, called probabilistic (or sketchy). This class
of data structure is able to describe exceptionally large sets, with sub-logarithmic/constant
space complexity. In this way, it is not necessary for the data-processing system to be scaled
up, even if, for example, it has to transition from analysing thousands to billions of records.

Probabilistic data structures utilize a number of distinct data-compressing mechanisms;
these might result in the structures containing inaccurate information.

Despite these inaccuracies, the detection part should not be influenced to a significant
degree. This assumption results from the fact that, to a certain degree, the classifiers are able
to deal with this kind of change and make the correct decision. It should be recalled that, in
this instance, the changes in question are in the range of 1–2% for a feature constituting
the vector.

Probabilistic data structures offer a number of potential benefits. Firstly, their size
increases (often much) less slowly in relation to the growing amount of input data. In
addition, making the trade-off between the accuracy of prediction and the size of the data
structure also proves to be feasible.

These structures are suitable for processing network traffic streaming data, as every
element in the stream requires swift analysis and updating of the data structure, by sum-
marising a number of properties (such as the number of distinct IP addresses or the service
which is used most frequently). The ability of probabilistic data structures to be merged is
shown to be feasible. In other words, the stream can be divided into two pieces and the
calculations performed separately, and this procedure will produce the same outcome as
if performed over the whole (original) stream. Consequently, probabilistic structures are
highly parallelizable and, thus, in compliance with distributed computing platforms, such
as Hadoop, Spark, Druid, and others.

Data structures such as a hash table can be used to compute the most frequent desti-
nation port or destination host that originate from a specific IP address, or a combination
of both. When doing so, the new item goes into the hash table, with the counter being set
to 0 for the item. Where an entry in the table already exists, the counter is incremented.
However, with a vast quantity of input data, such an approach is prone to becoming
unattainable. The reason for this is that the hash table expands along with increase in the
amount of input data; eventually, there is not sufficient RAM available to proceed. The
collisions in the hash table are treated as a linked list. In other words, in cases where a
new item is hashed to an already taken bucket, it is appended/linked after the existing
one. In this way, as the list expands, it takes more and more time to access the items in
the hash table. Moreover, allocating memory for a new element in a dynamic way also
consumes time.

To overcome this problem, in this research, two types of probabilistic data structures
were used, namely Count-Min (CM) and HyperLogLog (HLL), for frequency and cardinality
estimation, respectively. The Count-Min (CM) data structure enables the counting of items
that are of a different type, e.g., how many times a specific IP address has established a TCP
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connection. On the other hand, HyperLogLog (HLL) belongs to a family of algorithms that
aim at estimating the cardinality of a dataset (e.g., the number of distinct destination ports).

3.3. Domain Adaptation

The general concept of domain adaptation is illustrated in Figure 2. First, let us denote
X as a feature space and x as a feature vector. In particular, a vector having d attributes is
denoted as x = [x(1), x(2), . . . , x(d)], and x ∈ X = X(1) × X(2) × · · · × X(d).

NETWORK-A
NETWORK-B

Merged subspace

DECISION

BOUNDARY

Learning Transformation

A'=T(B)

Figure 2. Model transfer—general overview of domain adaptation for traffic recorded for Network B
to feature space of Network A.

The idea behind the proposed domain adaptation method is to project the feature
vectors x(d)i recorded for Network B, where i ∈ [1, m], onto a feature space of Network A,
for which the original classifier has been trained. In other words, this approach resembles
the batch normalization concept widely used when training artificial neural networks. In
principle, after applying the inner-bracket part of Equation (1), we obtain a zero mean and
unit variance matrix of feature vectors. Next, we transform this matrix (using the outer part
of Equation (1)), so that the feature vectors become aligned with the source domain, where
the original classifier has been trained. These two steps are implemented by sequentially
executing transposition and scaling operations according to Equation (1), where TA,B and
SA,B indicate transposition and scaling applied for network A or B, and x represents the
collection of feature vectors.

TB→A(x) =
[
(x− TB)S−1

B

]
SA + TA (1)

In this way, the T and S can be estimated separately for different networks. Here, T
and S are considered as transformations implementing the standardization process, so that
the mean becomes zero and the standard deviation becomes one. More precisely, T{A,B}
and S{A,B} are calculated using Equations (2) and (3).

T{A,B} = 1mµT
{A,B} (2)

S{A,B} = diag(σ{A,B}) (3)
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In both formulas, µ and σ are calculated as the classical mean and standard deviation
using Formulas (4) and (5), respectively. Moreover, 1m is m× 1 vector of ones.

µ = 1
m ∑m

i=1 xi (4)

σ = 1
m ∑m

i=1(xi − µ)2 (5)

3.4. Anomaly Detection and Threat Identification

Anomaly detection and threat identification involves a two-stage cascade, which is
represented in Figure 3. The approach utilises several random forest classification models.
The first one in the cascade is responsible for binary classification, which indicates whether
a feature vector is considered normal or anomalous. The second part of the cascade is
responsible for threat identification. It is triggered only if an anomaly is detected. This
approach enables achievement of a modular architecture, where new threat detection
models can be added at anytime, without retraining the whole system from the beginning.
Moreover, it may also happen that an anomaly alert will be triggered when none of the
threat identification modules can provide an unequivocal answer.

ANOMALY
DETECTION

IS 

NORMAL? THREAT MODEL 1

THREAT MODEL 2

THREAT MODEL N

...

N

Y

TAKE NEXT
FEATURE
VECTOR

TRIGGER
ALERT ABOUT


THREAT(S)

Figure 3. The model cascade used for anomaly detection and threat identification (there are two steps
of classification in the proposed approach: anomaly detection and threat identification).

4. Experimental Setup
4.1. Experiments

The aim of the experiments was to evaluate the effectiveness of the proposed solution
with respect to anomaly detection and threat identification, as well as to assess the potential
for transferring the trained models between different networks. For this reason, two
datasets were selected, which were similar in terms of the recorded cyber threats (e.g.,
both datasets consisted of similar attacks, such as network scan or DDoS). However, both
datasets differed in terms of network size, the volume of recorded traffic, etc.

4.2. Datasets Used for Evaluation

In the experiments, two datasets were employed, namely, IoT-23 and SIMARGL2021.
IoT-23 [28] is a dataset containing network traffic sourced from the IoT (Internet of

Things) devices, containing three captures for benign IoT device traffic and twenty malware
captures. It was circulated in January 2020 for the first time; the captures come from 2018
and 2019. The particular IoT network traffic was captured in the Stratosphere Laboratory,
AIC group, FEL, CTU University, in the Czech Republic. The main objective was to provide
a comprehensive dataset of real and labelled IoT malware infections and IoT benign traffic
for researchers to develop machine learning algorithms. Both the dataset and the research
associated with it were sponsored by Avast Software, Prague.

SIMARGL2021 [29] is a dataset assembled from a real-world, academic network, from
which real-life traffic was gathered after having carried out a variety of attacks. The format
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selected for the network data schema is Netflow v9. It encompasses 44 specific features;
each frame is labelled.

4.3. Metrics Used for Evaluation

Prior to applying a number of different machine learning algorithms, the raw network
flows were handled to obtain the sketchy feature vectors, according to the procedure
described in the previous sections. The classification quality metrics were calculated
according to the following procedure:

1. communication flows were aggregated into time windows (in this case, 3-min time
windows were used).

2. for the given time windows, sketchy feature vectors were calculated.
3. within the ground-truth communication flows, labels were examined against those

predicted; subsequently the TP, TN, FP and FN errors (true and false positives and
negatives) were measured.

4. lastly, recall, precision, and F1-score metrics were calculated and reported.

4.4. Evaluation Methodology

The experiments were divided into three categories:

• First, the effectiveness of the proposed approach was evaluated separately on the
IoT-23 and SIMARGL2021 datasets. A classical random split approach was used,
where 70% of the data was used for training and the remaining 30% was used during
testing. The recall, precision, and F1-score were measured for two cases, namely,
anomaly detection and threat identification.

• Subsequently, the transferability capabilities of the proposed approach in a zero-shot
manner were measured. The models were trained on the SIMARGL2021 dataset and
evaluated on the IoT-23 dataset. The results for two cases were provided, namely, when
the domain adaptation module was turned off and on. This enabled highlighting of
the importance of domain adaptation for the proposed method.

• Finally, the transferability capabilities were tested using a varying number of sam-
ples drawn from the other domain. Specifically, the models were trained on the
SIMARGL2021 dataset with N additional samples from IoT-23, and evaluated using
the models for the remaining part of the IoT-23 dataset.

5. Results

The analyses of the results have been divided into effectiveness comparison (Section 5.1),
zero-shot scenario evaluation (Section 5.2), and few-shot scenario evaluation (Section 5.3).

5.1. Effectiveness Comparison

In this section, the evaluation results for the anomaly and threat identification ob-
tained for IoT-23 and SIMARGL2021 datasets are presented separately. It can be seen (see
Tables 1 and 2) that the proposed approach achieved very good results for both datasets
(the F1-score metric was higher than 0.9 for all classification tasks).

Table 1. Detection effectiveness of the proposed approach (IoT-23 dataset).

Class Recall Precision F1-Score

Benign 0.9980 0.9968 0.9974
Anomaly 0.9974 0.9984 0.9979

CNC 1.0000 0.9957 0.9978
DDOS 1.0000 0.8814 0.9369
Okiru 1.0000 0.9990 0.9995
Torii 1.0000 1.0000 1.0000

PortScan 0.9972 0.9954 0.9963
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In the experiments, two classification scenarios were considered. One was focused
on anomaly detection, while the other was related to thread identification. In the first
case (anomaly detection), all the samples that indicated any kind of malicious behaviour
were given the label ‘anomalous’, and genuine traffic samples were indicated as ‘normal’.
Having prepared the data, the ML-based model was trained according to the procedure
presented in the previous section. For the second case (threat identification), the ML models
were trained in a one-to-many fashion. In other words, a dedicated classifier was trained
for each threat (cyber-attack).

Table 2. Detection effectiveness of the proposed approach (SIMARGL2021 dataset).

Class Recall Precision F1-Score

Benign 1.0000 0.9999 1.0000
Anomaly 0.9716 0.9884 0.9799

RUDY 0.9941 0.9883 0.9912
Slowloris 0.9947 1.0000 0.9973
FIN Scan 0.9710 1.0000 0.9853

NULL Scan 0.9761 1.0000 0.9879
UDP Scan 0.9907 1.0000 0.9953

XMAS Scan 0.9552 1.0000 0.9771

In both experiments, there were cyber threats that were conceptually similar in terms
of techniques used by the adversaries. In particular, the malware included in the IoT-23
datasets conveyed network reconnaissance, which relied on network scanning, which, in
turn, was included in the SIMARGL2021 dataset. The RUDY and Slowloris traces from the
SIMARGL2021 dataset should resemble the samples that were indicated as DDoS.

However, both datasets were significantly different in terms of the tools used to
implement the attack, as well as the technical means to record the network traces (e.g., to
record SIMARGL dataset, nProbe was used, while IoT-23 utilized Zeek/Bro firewall).

5.2. Zero-Shot Scenario

In this section, the results obtained for the zero-shot approach scenario are presented.
The values of the evaluation metrics are presented in Table 3. Two cases were considered.
The first was a model that was trained on the SIMARGL2021 dataset and directly used
on the IoT-23 dataset during the evaluation process. The second utilized the “domain
adaption” mechanism described in the previous sections. In Table 3, significant differences
in the obtained results are marked. The data demonstrate that the mechanism is useful and
helps to improve the results obtained.

Table 3. Zero-shot scenario. Model trained on SIMARGL dataset and tested on IoT-23, (with and
without domain adaptation).

Scenario Class Recall Precision F1-Score

Without Domain Adaption Benign 0.69481 0.6295 0.66055
Anomaly 0.66133 0.7235 0.69102

With Domain Adaption Benign 0.6823 0.8450 0.7550
Anomaly 0.7965 0.6065 0.6886

5.3. Few-Shot Scenario

In this section, the results obtained for the few-shot approach scenario are presented.
The values of the evaluation metrics are shown in Table 4. Three cases were considered. For
each of the cases, the SIMARGL2021 dataset was enriched with additional N samples from
the IoT-23 dataset. The number was gradually increased, starting from 100 traces, which
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represented a few minutes of recorded network flow samples. As shown in Table 4, as few
as 100 additional samples produced a significant boost in terms of accuracy.

Table 4. Few-shot scenario. Model trained on the SIMARGL dataset (with N additional samples from
IoT-23), and tested on IoT-23.

Samples Class Recall Precision F1-Score

100 Benign 0.9122 0.9500 0.9307
Anomaly 0.9478 0.9085 0.9278

500 Benign 0.9497 0.9730 0.9612
Anomaly 0.9723 0.9485 0.9603

1000 Benign 0.9875 0.9880 0.9878
Anomaly 0.9880 0.9875 0.9878

5.4. Comparison of Results with Other Methods

In this section, we compare the proposed detection method with other approaches
described in the literature. As SIMARGL2021 is a relatively new dataset, we have focused
the comparison on the IoT-23 dataset. The results are presented in Table 5. For brevity, we
selected the average F1-score as a basis for comparison of the different methods. This is
because the F1-score is always reported by researchers and is a better metric for performance
evaluation when imbalanced data is considered [30]. In the comparison, we have included
both classical (shallow) (e.g., [24]) and deep learning approaches (e.g., [31]).

Table 5. Comparison of methods.

Method Average F1-Score

Proposed method 0.99
Adversarial Autoencoders + KNN [31] 0.97

BiGAN + KNN [31] 0.97
AdaBoost [24] 0.83

SVM [24] 0.59

6. Conclusions and Future Work

In this paper, an innovative approach is proposed, which adapts sketchy data struc-
tures for extracting generic and universal features, and leverages the principles of domain
adaptation to improve classification quality in zero- and few-shot scenarios. The experi-
ments and the reported results enable us to conclude that the proposed mechanism can
be successfully used in difficult anomaly detection and threat identification scenarios. Al-
though the datasets utilized during the experiments were essentially different in terms of
tools (e.g., used for recording the datasets traffic traces), and the techniques used by the
adversaries to implement the attack, it was possible to extract common attack patterns that
can be successfully used to detect abnormal behaviour of network elements. Although the
presented “domain adoption” mechanism has already been demonstrated to be a useful
tool, the authors plan to further enhance it using additional information sources. In partic-
ular, the authors believe that by analysing multi-domain network-flow-based knowledge
transfer, it will be possible to extract general patterns that can help form better model
decision boundaries when transferring knowledge across various domains.
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