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Abstract: The expansion of blockchain storage has become a major problem limiting the application
of blockchain. From the perspective of improving the scalability of blockchain storage, a DHT
(distributed hash table)-based blockchain dual-sharding storage extension mechanism (DBDSM)
is proposed. The nodes in the network are divided into m DHT clusters. Each cluster includes n
nodes, and stores 1/m of the transaction data, and the nodes within each cluster store part of data
allocated to that cluster. In this way, node storage pressure is alleviated. Furthermore, a hybrid query
mechanism has been designed to achieve efficient querying of transaction data, without changing the
original state data query. Simulation results showed without changing the original state data query,
that the storage space consumed by the nodes is only s/(m x n) of that used in the traditional method;
when the number of faulty nodes in the cluster does not exceed s — 1, the integrity of blockchain
data can still be ensured. For transaction data queries, the average number of hops was 1.99, greatly
improving query efficiency in the sharded state.

Keywords: blockchain; sharding; DHT; Kademlia; overlap storage

1. Introduction

Since the concept of peer-to-peer electronic cash transaction emerged in 2008 [1],
blockchain technology and its underlying architecture have been applied in diverse areas
including financial transactions, smart contracts, data management, storage, and com-
munication [2]. Blockchain is a distributed ledger, maintained jointly by nodes over a
distributed network. Nodes in the network maintain a local copy of the ledger by executing
transactions authenticated by the consensus protocol. After more than 10 years of practical
tests, blockchain technology has been recognized by many industries for the security of
its transactions, data transparency, and the immutability of its transaction records. This
has helped to enhance trust in direct electronic transactions without the need for trusted
third-party intermediaries. However, the nodes in the blockchain network locally store
multiple replicas of the entire blockchain, causing pressure on storage resources. Certain
applications generate large quantities of transactional data, such as product traceability and
scenarios from the Internet of Things (IoT), presenting challenges that cannot be adequately
addressed by typical blockchain storage mechanisms [3]. Rapid growth of blockchain data
creates huge storage pressure on the participating nodes, increasingly forcing nodes with
limited storage resources to withdraw from the blockchain network, causing vulnerabilities
in the stability of the system [4]. The expansion of blockchain storage capacity has become
a major problem that limits the applicability and usability of blockchain technology [5].
Blockchain storage solutions that reduce infrastructure requirements are urgently needed.

Sharding has been used for traditional database capacity expansion by splitting large
data collections across multiple servers [6]. The Elastico system [7], proposed in 2016, is an
applied sharding protocol for improving blockchain efficiency [8-10]. Since then, various
blockchain sharding solutions have been proposed for blockchain capacity expansion,
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making sharding a mainstream blockchain expansion technology. Sharding helps not only
to avoid erosion of the extent of decentralization within the system, but also supports the
expansion of blockchain storage capacity and reduces the severity of scalability problems
faced by blockchain applications [11]. Sharding divides the complete blockchain network
into multiple separate fragments, each of which is maintained by a defined group of
network nodes. All transaction processing and the storage of state data are completed
within the fragment [12]. Multiple transactions generated on the blockchain, through
parallel processing within each fragment, enable approximately linear improvement of the
transaction processing speed. Meanwhile, transaction data are stored in different fragments
to reduce the pressure of single-node storage.

Here we propose a DHT-based blockchain dual-sharding storage extension
mechanism—DBDSM—that uses sharding to achieve scalable storage capacity within
the blockchain. DBDSM has been designed to enable nodes to realize their basic func-
tions and simultaneously reduce data storage requirements. A mixed query mechanism
for transaction data in the fragmented state is deployed to improve the efficiency of the
transaction data queries. The main focus of the DBDSM is to improve blockchain storage
expansion capabilities.

The main contributions of this paper are as follows:

(1) We designed a DHT-based blockchain dual-sharding storage extension mechanism—
DBDSM. The transaction data of the whole network are processed by the second fragmen-
tation and stored in nodes across different clusters, providing security and availability
of data while reducing transaction data storage requirements at individual nodes, thus
realizing the expansion of the blockchain storage capacity.

(2) A hybrid query mechanism for transaction data in the fragmented state is proposed.
On the premise of not changing the query of the blockchain state data, the query
efficiency of transaction data in the fragmented state has been improved through the
master-node caching mechanism and the routing lookup mechanism.

(38) The overlapping storage of fragmented data is allocated to the cluster by nodes within
the cluster, guaranteeing the availability of fragmented data even when some of those
nodes fail.

In Section 2 of this paper, we introduce some of the related work. The statement of the
problem is presented in Section 3. Section 4 describes the dual-sharding mechanism. The
theoretical analysis is presented in Section 5. The design of a simulation experiment and
the results of the simulations are presented in Section 6. Section 7 summarizes the findings,
offers conclusions, and discusses future work.

2. Related Work
2.1. DHT

A distributed hash table (DHT) is a distributed storage technology. In the DHT
network, each node is responsible for storing part of the network’s data and maintaining
part of the node routing. Distributed storage of data and searches for specific resources can
be realized without a centralized server.

The Kademlia protocol is an implementation of DHT technology. Unlike the ring
network of the Chord protocol [13], the Kademlia protocol can map nodes in the network
to a logical binary tree. When a node joins the network, the Kademlia protocol deploys the
SHA-1 hash function to generate a 160-bit unique ID for each node, reflecting the node’s
unique identity. The protocol then converts the ID into binary storage, which uniquely
determines the node’s position in the logical binary tree. In the Kademlia protocol, the
logical distance between nodes can be quantified by each node’s ID value, where the XOR
operation of two node ID values is used for determination of the distance. The smaller
the operation value, the closer is the logical distance between the two nodes. In the DHT
network, nodes can be dynamically adjusted without affecting the robustness of the system.
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2.2. Sharding Storage Protocol

Sharding storage technology originated in the field of database storage. With the
dramatic growth of data generated on the Internet, databases also need constant expansion
to optimize the storage space of each node. Sharding technology has been applied to
optimize storage availability by reducing the redundancy of database storage [14]. In the
context of blockchain storage expansion, sharding storage is regarded as the most likely
solution to address the bottleneck of blockchain storage capacity [15].

Elastico [7] was an early application of sharding that addressed the problem of man-
aging blockchain expansion. Its core idea is transaction sharding. The nodes of the whole
network are randomly divided into several trading committees. Each committee does not
interfere with the others, and they verify their transactions in parallel, which allows linear
growth of the blockchain performance. However, the Elastico model does not fragment the
state data. Therefore, nodes in the network still need to store all the state data. Elastico is
considered to have been the first public blockchain protocol based on sharding [16].

OmniLedger [17] improved on Elastico by offering a sharded blockchain design based
on security and horizontal scaling. This solution solved several limitations that were
manifest in Elastico. OmniLedger is a full sharded ledger in which each sharding node
stores only part of the ledger data rather than the entire ledger data. The transaction
verification process is entrusted to the cross-sharding consensus protocol, resulting in
improved transaction processing efficiency and the reduction of storage consumption
by single nodes. However, OmniLedger performs regular sharding and reorganization
operations which cause an increased communication load during the process of data
migration. OmniLedger performs better than Elastico in the trade-off between storage
scaling, system security, and decentralization.

SSChain [18] is a public chain full sharding protocol without the data migration over-
head. It adopts a two-layer architecture of root chain network and sharding network. The
root chain network is responsible for verifying the blocks generated by each sharding,
where each sharding network maintains part of the ledger data and processes transac-
tions belonging to the same sharding. The market incentive mechanism can adjust the
computing power distribution of the whole network to avoid double-spending attacks.
SSChain supports transaction segmentation and state segmentation, reducing the storage
consumption of nodes in the network. This protocol adopts a node incentive mechanism
to allow nodes to freely join fragments. Therefore, nodes do not need to be reorganized
regularly, eliminating the communication overhead caused by data migration.

ElasticChain [19] is a sharded storage method based on repetition ratio adjustment.
Nodes use the storage ratio adjustment algorithm to store each part of the blockchain in
shards to ensure data availability, thus reducing the storage consumption of the nodes.
ElasticChain contains two types of chains: POR chain and P chain. The former records the
node reliability certificate, the latter stores data. Each node can assume one of three different
roles: user, storage, and verification. The verification nodes ensure that the fragmented
data is always stored in a node with high reliability. This is achieved by verifying and
recording the reliability of storage nodes on the POR chain, breaking the decentralized
characteristics of the blockchain. ElasticChain involves two types of chains and three types
of nodes, making it more complex than other storage solutions.

RapidChain [20] was the first public chain protocol based on sharding, and can provide
complete sharding of communication, computation, and storage overheads of processing
transactions without the assistance of a third party. However, for different states in the
network, each committee is randomly stored. When a transaction is generated in the
network, the initiator and the receiver of the transaction are not necessarily members of
the same committee. They appear in two shards for cross-validation. The efficiency of this
design is diminished in systems that have frequent communication and state exchanges.

The Monoxide model [21] includes asynchronous consensus zones for linear scaling
of the blockchain. Nodes in the network are divided into multiple parallel zones. This
method retains a cross-shard consensus problem. Meanwhile, to ensure the correctness of
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cross-regional transactions, it proposes eventual atomicity, which can enhance the security
of a single zone.

Xie et al. [22] proposed research on blockchain storage extension based on DHT (DBSE).
Using the third-generation Kademlia protocol DHT technology, the nodes in the network are
divided into several clusters. Each cluster stores the complete blockchain data, and a special
node-mapping mechanism is used in the clusters to save the sharded data across different
nodes, reducing the storage pressure on the nodes. A dynamic cluster reorganization
mechanism is also included, but the data stored in each node in the network can never
exceed 256 MB. With practically infinite recombination possibilities for the clusters, the
number of sharding replicas is continuously reduced, diminishing the reliability of the
system. The query efficiency of the transaction data in the sharding state has not been
analyzed. In the DBSE model, each node stores complete account data and does not affect
the verification of transactions in the blockchain.

In the progress of their research, Xing et al. [23] proposed scalable blockchain storage
system models (SMBSS). Analysis of the Bitcoin UTXO model [24] and experimental
validation indicated that nodes can independently verify more than 80% of the transactions
on the blockchain by storing only the latest 3000 blocks on the chain. Based on this finding,
it was determined that nodes in the UTXO-based blockchain network need only to store new
block data generated within a specific time window to ensure the transaction validation
function, and need to store only part of the old block data. The SMBSS model reduces
consumption of node storage resources while ensuring independent participation of the
nodes in the transaction validation. However, nodes must dynamically delete some of
the latest blocks that have been saved, initially making the system more complicated to
implement. The SMBSS model affects neither the decentralization of the network nor the
availability of data.

The Meepo model [25] uses the concept of transaction sharding. It includes two
processes: cross-epoch and cross-call. To handle multi-state dependencies in contract calls,
it also includes a partial cross-call merging strategy, providing cross-contract flexibility.
Meepo uses a replay epoch to ensure strict transaction atomicity. However, the nodes still
need to store all data since the system is mainly used for transaction sharding but not for
storage sharding.

3. Problem Statement

Blockchain platforms can be either public or consortium blockchains. Public blockchains
are represented by Bitcoin and Ether, and the dominant consortium blockchain is Hyperledger
Fabric. The cross-sharding consensus problem occurs when the sharding scheme is used
for the extension of public blockchain platforms. In the Fabric consortium blockchain, the
consensus process involves ordering nodes for sorting transactions without the participation
of peer nodes. The numbers of nodes in consortium blockchains are relatively stable and
change less frequently than in public blockchains. In this paper we report a novel storage
scaling strategy using Fabric ledger.

3.1. Storage Model

Data in Hyperledger have four parts: world state, block index, ledger data, and
historical state index. Among these, the world state and ledger data are the most important
components used in Hyperledger, which together form the blockchain. The data-storage
structure of Hyperledger consists of a state database, a file system, and a historical database.
The Fabric ledger architecture is shown in Figure 1.
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Figure 1. Fabric ledger storage.

The current values of all state data on the blockchain are stored in the state database,
usually using databases such as Level DB or CouchDB. The current value of an account
status can be accessed directly through the world state, and the state data are stored as key-
value pairs. The file system stores all the block data in the blockchain network. The blocks
are linked with hash pointers, while the data information generated by the world state is
recorded in the blocks. In Hyperledger, the peer nodes on the same channel store complete
copies of the blockchain data. In the Hyperledger storage structure, the transaction data
in the block are the main reason for the expansion of the blockchain storage capacity.
Considering that the nodes require transaction verification functions, all nodes must store
all the state data. Our solution uses block as the basic data unit to divide the data within
the network.

3.2. Storage Reliability

In our solution, blockchain storage capacity expansion has been achieved by using
sharding technology, where the nodes in the network abandon the original high-redundancy
storage method and store only part of the blockchain data. However, this inversely affects
the reliability of the system, and risk of data loss may occur when some nodes in the
network fail. Therefore, it was important to ensure the reliability of the system used in the
sharded storage capacity expansion scheme.

In the underlying design of the blockchain system, the traditional design model of p2p
systems was adopted. The system reliability relationship is defined by:

r=Y Cip'(1—p)"? (1)
i=b
log(1—r)
d=—=2——= 2
log(1—p) @

In Equations (1) and (2), r denotes the reliability of the system, p denotes the reliability
of the nodes, d denotes the number of replicas of the sharding, and # is the total number of
nodes. When node reliability is determined, the relationship between the system reliability
and the number of replicas of the sharding can be calculated by Equation (2).

3.3. Node Performance Evaluation Strategy

In DHT clusters, to achieve efficient querying of transaction data in the sharding state,
each cluster needs to elect a head node for a query; i.e., the master node. Therefore, it is
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necessary to evaluate the performance of each node and then compare the stability values
of all nodes in the cluster, before selecting the node with the largest stability value as the
query master node. The calculation formula of the stability value T(i) is:

T(i) =< 1opny) ()
0, otherwise

The ratio of master nodes to total nodes in the network is designated by p. Because 1/p
may appear as a non-integer, 1/p is rounded up and expressed as 1/p = [1/p ]. The cluster
label is denoted by m, while  is the number of nodes in a cluster. Using Equation (3), we can
calculate the performance of each node in the network. This equation provides the foundation
for analysis of the query mechanism performance.

To analyze comprehensively the performance of the elected master nodes, we introduced
control parameter W. The primary function of the master node is to achieve fast querying of
historical data, so it is necessary to give priority to the node bandwidth parameter. The node
with large bandwidth is preferentially elected as the master node. Equation (4) is used for
calculating the parameter W:

Bi(m)
Bayg(m)

Si(m)
avg (m)

W=ua- +B- S 4)
« and P are weights where the relationship is expressed as: « + = 1. In specific

applications, control of the weights of bandwidth and storage in the process of calculating

stability values can be achieved by varying the values of the two weight factors « and B.
B;(m) denotes the bandwidth of the ith node in the mth cluster. Bsyg () denotes the

average of the bandwidth values of all nodes in the mth cluster, calculated by Equation (5):

X Bi(m)
Bavg(m) == &)
n
S;(m) denotes the storage capacity available at the ith node in the mth cluster. Sgyq (1)
denotes the average of the storage capacity of all nodes in the mth cluster and n denotes
the total number of nodes in the cluster, calculated by Equation (6):

X Si(m)
Savg(m) =5 (6)
n
4. Dual-Sharding Mechanism
4.1. Cluster Division

Dual sharding uses the Kademlia protocol to divide the nodes in the network into DHT
clusters. The Kademlia protocol generates a unique ID for each node based on the IP and
Mac information of the nodes joined in the blockchain network. It uses the Shal algorithm
(www.rfc-editor.org/rfc/rfc3174 (accessed on 16 July 2022)) to hash the unique information
of the nodes, with an ID length of 160 bits. Therefore, 2160 nodes can theoretically exist in
the network. By converting the ID value of each node into binary storage, the nodes in the
network can be organized in a binary tree. All leaf nodes in the tree constitute the complete
blockchain network, and the node position is uniquely determined by the shortest prefix
of its ID value. We divide the peer nodes in the network into m clusters, and each cluster
consists of n nodes. Each cluster needs only to store part of the data assigned to it by the
blockchain network (1/m), obviating the need to store all the data on each cluster. The
nodes in the cluster overlap to store the data assigned to that cluster by the blockchain
network, and each sharding stores s (s < 1) copies within the cluster. Therefore, the nodes
in the cluster need to store s/n of the data assigned to that cluster to ensure data security.
Each node in the network needs to store all the state data.
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The clusters are divided according to the order of the leaf nodes in the binary tree,
from left to right. For example, 12 nodes are divided into four clusters of three nodes each
(Figure 2).

ClLuster 1 Cluster 2 Cluster 3 Cluster 4

Figure 2. Cluster division.

If the number of nodes is not divisible by 1, the number of nodes in the last cluster
is less than 7. Each node in this cluster needs to store all the data of the cluster until new
nodes join the cluster, so that after the number of nodes reaches #, the data in the cluster is
dynamically reorganized based on the set of overlapping shard groupings.

In our solution, the nodes in the blockchain network are divided into master nodes
and ordinary nodes. Using Equation (3), the stability value of each node is calculated by
considering the node network bandwidth, storage capacity, and other information. Based
on the calculation results, AODV routing protocol [26] is applied to compare the stability
value of each node in the cluster, and the node with the largest stability value is finally
selected as the master node. A master node exists in each cluster. There is no difference
between the master node and the normal nodes in terms of storage. Therefore, the storage
mechanism of the blockchain nodes does not change. Each master node maintains a routing
table, which stores the routing information of the remaining master nodes and the routing
information of the common nodes in this cluster, to enable easy querying.

4.2. XOR Mapping Mechanism

We propose a shortest suffix sharding mapping mechanism, based on the Kademlia
protocol. When a new block is packaged in the blockchain network, it generates a unique
hash value, which we select as the unique ID of the new block and represent in the binary
tree. The block ID value is subjected to shortest suffix XOR operation with the ID value of
the nodes in its assigned cluster, The specific number of bits of the operation is | logyn],
and the s nodes associated with the operation from smallest to largest are selected as the
nodes assigned for storage of this sharding. When some nodes in the network fail, the
integrity of the data in the network can be maintained. The robustness of the system is
ensured, even with the advantage of reduced redundancy of system storage.

Because our solution uses a dual-sharding mechanism, it is necessary to determine
which cluster a block is assigned to after it has been generated. The scheme performs a
specific operation based on block number b and cluster number i, to determine whether or
not the cluster keeps the block, with the following operation rules:

Define the operation |, for any non-zero integers X, y.

If x%y is not equal to 0, x|y = x%y.

Otherwise: xly =y.

The initial value of block number b is 1, and it increases sequentially, b=1,2,3, ...
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Figure 3 shows the process of sequentially assigning new blocks to the cluster and

mapping them to the final node storage, with m = 4, n = 3, and s = 2 as an example.

Kademlia Tree
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Figure 3. Data storage mechanism in cluster 1.
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The first generated block number is 1. The storage cluster location calculation for-
mula yields 114 =1, determining that the block should be stored in cluster 1. Then,
according to the last-bit XOR mapping mechanism, the XOR operation is performed
between the ID and the last [logyn] bit of the ID of the node in the cluster. The two
nodes with the smaller operation values are selected as the storage nodes, and the
final nodes stored in this block are determined to be nodes 0000 and 0001;

The subsequently generated blocks numbered 2, 3, and 4 are calculated and stored in
clusters 2, 3 and 4, respectively. The process of mapping blocks to nodes is the same
asin (1).

When the block number is 5, the storage location calculation formula yields
514 = 1, determining that the block is stored in cluster 1. According to the last-
bit XOR mapping mechanism, the final nodes for the block storage are nodes 0000
and 0010.

Continuing the process of (2) above, when the resulting block number is 9, the storage
location calculation formula yields 914 = 1, determining that the block is stored in
cluster 1. Then, according to the last-bit XOR mapping mechanism, the final nodes of
the block storage are nodes 0001 and 0010.

4.3. Hybrid Query Mechanism

In a blockchain network, nodes adopt a kind of high-redundancy storage structure to

store all of the blockchain data, including the state data and the transaction data. Therefore,
the query process is divided into two types: one directly querying the state database to
obtain data such as the asset information of an account; the other querying the transaction
data, such as that generated by a user’s asset transaction on the blockchain. When querying
transaction information, it is necessary to traverse the complete local blockchain replica
until the transaction information is acquired. In the storage design for the scheme presented
here, the mechanism for storing all the state data in each node in the network is retained,
and only the transaction data in the block is sharded. Therefore, querying the state data is
consistent with the original Hyperledger query mechanism. However, when querying the
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transaction data, since the sharded transaction data is stored in overlapping s nodes, it is
necessary to send query requests to neighboring nodes in the network to traverse the query
until the result is returned.

In the DBSE model, no query mechanism has been designed for the sharding state,
so the query process adopts the original broadcast mechanism, which performs flooding
lookup in nodes and sends query requests to neighboring nodes at random. If no query
result is returned, the neighboring nodes continue to send query requests to their adjacent
nodes until the query result is returned.

In the p2p network, there are a certain access patterns for data access. The access
requests obey the zifp model distribution [27]. In this model, 10% of the nodes bear ~90%
of access requests, and the remaining nodes bear ~10% of access requests. According to the
principle of hot data access, data currently being accessed have a high probability of being
accessed in a short period of time [28]. Based on the hot data access principle, we propose
an efficient hybrid query mechanism to solve the problem of reduced query efficiency in
the blockchain network sharded storage state. The query structure diagram is shown in
Figure 4.

‘Eg;j :’ Master Node

7/
'

= .

\ ° )

\ : E] Normal Node

Figure 4. Query structure diagram.

(1) Master node cache mechanism

After a user makes a transaction data query request, the query result is cached in the
cache database of the master node of the cluster. When the user queries the same data
again, the data is directly searched from the cache database of the master node of the cluster,
which improves query efficiency. When cached data reaches 256 MB, the cached data is
dynamically deleted in chronological order, which reduces the redundancy of node data
storage and reduces the consumption of storage resources.

(2) Route lookup mechanism

At the time of a transaction data query, there are master nodes and ordinary nodes
in the network. Each master node in the network stores the routing information of the
remaining master nodes, as well as the routing information of the adjacent ordinary nodes.
The ordinary nodes need to store at least the routing information of the master nodes.
When user sends a query request, if the required transaction data cannot be queried
locally, the search moves to the adjacent master nodes through the routing information
and gives priority to querying in all master nodes. If still no information is returned, it
continues to query all ordinary nodes adjacent to the master nodes until the data is returned.
Since storing routing information consumes very little node storage and has almost no
storage impact, data lookup based on routing information greatly improves query efficiency
without affecting storage redundancy.
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The algorithm design of the hybrid query mechanism is shown in Algorithm 1.

Algorithm 1 Transaction data query algorithm.

Initialization: S =0

Input: node N, condition Ki//Ki means account key.
if N is ordinary node then

access master node

end if

while S >0

forj«+—0to S

if get result then

return data

update cache data time

end if

end for

end while

Iterate through M local file system and M storage routing information, and query other master
nodes and common nodes

return data

if cache < 256 MB then

Broadcast data to all master node caches

S=5+1

else

Delete data that has not been accessed for a long time
Broadcast data to all master node caches

S5=5+1

end if

Output: transaction data

5. Theoretical Analysis
5.1. Storage Efficiency Analysis

Data stored in the blockchain are mainly state data and the transaction data. In this
scheme, each node needs to store the state data to enable transaction verification. For the
transaction data, the nodes in the cluster only need to store the part of data assigned to the
cluster. Let | H| denote the blockchain size, | W | denote the state data size, | S| denote the
size of the master node cache data, m is the number of clusters, 7 is the number of nodes in
a single cluster, and s is the number of copies of the slice in the cluster.

In this scheme, a single cluster needs to keep 1/m x | H| number of blocks, and the
total amount of data stored by any ordinary node in the network is s/(m x n) x |[HI+IWI.
Therefore, compared with the original blockchain, the storage rate (R;) of an ordinary node
in the sharded state is:

o, W]
[H|+[W]|
The total amount of data stored by the master node in the network is s/(m x n) x 1H| +
W1 + |SI|. Therefore, the storage rate (R;) of the master node in the sharding state is:

@)

o _ wx HIHWlH]s
|H|+|W]|

®)

When the transaction data storage capacity is much larger than the state data storage
capacity, the storage space consumed by the common node tends to be s/(m x n) x |BI,
see Equation (7). This scheme design supplies the master node with a dynamic adjustment
mechanism to limit its cache capacity to no more than 256 MB. From Equation (8), the
storage space of the master node tends to be s/(m x n) x | Bl when the transaction data
storage capacity is much larger than either the state data storage capacity or the cache data
storage capacity. When s = 1, each node in the cluster stores all the slice data assigned to
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that cluster, and the storage overhead is at its maximum,; if s = 1, it means that a slice is
stored on only one node in the network with no storage copy, and the storage overhead
is minimal.

5.2. Query Efficiency Analysis

This scheme provides a hybrid query mechanism. When a node initiates a transaction
data query request, the best case scenario is that the data requested by the node were
requested a short time ago and are cached in the master node cache database. In such a case,
the node only needs to query the neighboring master node cache database to obtain the
requested data, and the whole query process requires only one or two hops. The worst case
is when a node initiates a query request, the master node adjacent to the node is in a fault
state and neither the cached data nor the routing information can be provided. The system
can only use the flood query algorithm to query data on the nodes in the network, whereby
the query process can reach up to six hops according to the six-degree separation theory.
The specifics of query efficiency are described in the reports of the simulation experiments,
in Section 6.

5.3. Security Analysis

Within a DHT cluster, the reliability of the system is mainly dependent on the storage
policy and the data recovery policy. The storage policy refers to the redundancy method
and the node selection mechanism is used when nodes store data. In this scheme, the
number of replicas of each sharding is s. The larger the value of s, the more replicas of the
sharding, the greater the storage space consumption of a single node, and the higher the
system reliability; a smaller value of s indicates fewer replicas of the sharding, less storage
space consumption in a single node, and lower reliability of the system. The node selection
mechanism adopts the last-bit XOR mapping method to distribute the blocks generated
by the blockchain network evenly among the nodes in the network, to ensure reliability of
data storage. The data recovery strategy means that the data maintain integrity even after
failure of some nodes in the cluster. Suppose that among n nodes, x nodes are randomly
selected as the failed nodes, while the remaining #n — x nodes continue to keep all the blocks
of the cluster intact. For a particular #, the larger the value of x, the higher the reliability of
the system, and the redundancy in the system is greater at that time.

When 7 is a fixed value, the system reliability is related to s. When s = 1, each block
is stored in only one node. At this time, x must be 0 and no node is allowed to fail, or
such a failure will lead to unrecoverable blockchain data; when s = n, at this time x has
a maximum value of n — 1, and even if n — 1 nodes fail, the full blockchain data can be
recovered.

6. Experiment
6.1. Experiment Setup

The experimental machine was configured with an Intel(R) Core (TM) i7-8565U CPU
@ 1.80 GHz 1.99 GHz and 64 G RAM, and the operating system was CentOS 8. Python
language was employed to complete the experiment, and Python-igraph was selected to
create a Watts-Strogatz network, simulating nodes in the blockchain network.

6.2. Experimental Results

Simulation experiments were carried out on the state data, transaction data, query
efficiency, and the blockchain to verify the storage efficiency, query efficiency, and data
availability provided by this solution.

During the experiment, a small-world network with 100 nodes (dim = 3, size =5, nei =1,
p = 0.1) was created with the use of the igraph library in Python. Based on the cluster division
method designed in our system, the nodes in the network were divided into four clusters. At
this time, m =4, n = 25, and the number of sharding replicas s was set to s = [211/3], i.e., two
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thirds of the total number of nodes in the cluster rounded upward to obtain the number of
replicas of the sharding. The small-world network model is shown in Figure 5.

Figure 5. Small-world network model.

Experiment 1: Single-node storage consumption.

In the experiment, we set the size of a world’s state record to S, transaction data to Sy,
and a block to Sj. For simplicity of the experiments, the block header data were ignored.
Transactions were simulated between different world states, and the transaction data were
stored. When the transaction data reached the threshold of the specified block size, a new
block was generated and broadcasted, and the block was stored on a peer node in the
network according to the design of this scheme.

The network was initialized according to the Fabric default values, setting the S;, value
to 512k, while each block contained 10 transaction data, bringing the S; value to 51.2k. The
variable N; indicates the total number of transactions generated in the network, and Ny,
indicates the total number of world states generated in the network. The experimental
results of the simulated storage consumption within a single node are shown in Figure 6.
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Figure 6. Single-node storage consumption.

By analyzing the experimental results in Figure 6, it can be concluded that:

(1) When N; was less than or equal to Ny, in the network (one world state corre-
sponding to at most one transaction), there was no significant change in the storage space
consumed by DBDSM nodes compared with the Fabric node data storage. When N; dimin-
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ished, as Ny, increased, the DBDSM node storage consumption was closer to the original
Fabric node storage consumption.

(2) When N; in the network was larger than Ny, with one world state corresponding to
multiple transactions, DBDSM node storage consumption appeared significantly reduced
compared with the Fabric node data storage. When N; was much larger than Ny, compared
with the transaction data, the impact of state data on node storage consumption can be
neglected. At this time, the storage consumption of DBDSM nodes was smaller compared
with the Fabric nodes, at 66% of the storage consumption of Fabric nodes.

From the experimental results in Figure 7, it can be concluded that:

—4— DBDSM RapidChain === Fabric

pacity (MB)
g 8 8

g

g

8

Node Storage Ca

o

500 1000 2000 4000 6000 8000 10,000
Number of Transactions

Figure 7. Storage space occupied by DBDSM, RapidChain and Fabric.

(1) When the number of transactions generated in the network was small, the data
generated were also small, and the quantities of data stored by the nodes in the DBDSM
model, RapidChain model, and the Fabric model did not differ greatly. Because each
scheme stores state data, when the transaction data were small, the main impact on storage
was restricted to the state data.

(2) With the increase in the number of transactions generated in the network, compared
with Fabric, the DBDSM model and the RapidChain model tended to flatten the increment
of node storage data, because both the DBDSM model and the RapidChain model use a
sharding scheme, reducing the number of single nodes and the amount of data stored by
each node.

(3) When the number of transactions generated in the network continued to increase,
the growth rate of data storage in the DBDSM model nodes was slower than in RapidChain.
We can conclude that the DBDSM model has good scalability performance.

Experiment 2: Query efficiency.

Each node in this scheme stores the state data, so the query for the world state is
consistent with that of Fabric. For the query of transaction data, based on the original gossip
protocol query, our scheme proposes a hybrid query mechanism for efficient querying
through the master node caching mechanism and routing mechanism, using a hybrid query
algorithm. In this experiment, we used data results generated from Experiment 1. A node
was randomly selected to query the specified transaction. If the selected node was the
master node, the transaction was first sought in the cache database, and if no transaction
was returned, the transaction continued to be queried from the node’s stored blocks, and
if the desired transaction was obtained, the network overhead of the query was recorded
as one. Otherwise, the network overhead was recorded as one, according to the node’s
other master and the routing information of ordinary nodes. If the selected node was not
the master node, the lookup was performed locally, and if results were returned, then
the communication overhead was given a value of one. Otherwise, the master node and
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ordinary nodes were queried through the routing information, and the communication
overhead increased by one point for each routing information lookup. Following this
process, 100 transactions and 1000 transactions were considered, and 1000 transaction data
queries were performed for each set. The experimental results are shown in Figure 8 and
the statistical results of different models are shown in Table 1.
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Figure 8. Query efficiency result statistics. (a) Transaction data query communication overhead.
(b) Query result statistics.

Table 1. The statistical results of different models.

Hops
1 2 3 4 5 6
Model Frequency
DBSE 150 52 260 346 173 19
DBDSM-100 199 739 62 0 0 0
DBDSM-1000 183 650 167 0 0 0

By analyzing the experimental results in Figure 8, it can be concluded that:

(1) Under the same query conditions, the network communication overhead required
to perform 1000 random transaction queries in this scheme was usually within two and
not more than three hops. The DBSE network communication overhead was usually three
or four hops and not more than six hops. The original DBS scheme adopted a broadcast
query mechanism, where the data query process was flooded, so the query efficiency was
lower. In contrast, the master route lookup mechanism used by DBDSM in this scheme can
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System Reliability

4

6

quickly locate the required transaction data based on the route information maintained by
the nodes when performing transaction data queries, greatly improving the query efficiency
in the sharding state.

(2) A comparison of the query range for different transactions shown in Figure 8b
reveals that when 1000 queries were made randomly for 100 transactions, the communica-
tion overhead was usually two hops or one, with an average communication overhead of
1.85; when 1000 queries were made randomly for 1000 transactions, the communication
overhead was usually two hops or one, with an average communication overhead of 1.99,
meaning that compared with 100 transactions, the query efficiency was slightly lower. Our
scheme uses a transaction data caching mechanism, where a node performs multiple query
operations on the same transaction data, and the master node in the network caches the
transaction after the first query operation. In the subsequent multiple queries, a node only
needs to access the adjacent master node and query its cache database. The cache database
uses a dynamic deletion mechanism, greatly improving the efficiency of data queries in the
sharding state without affecting the storage redundancy of master nodes.

Experiment 3: System reliability and node storage rate analysis.

Assuming that the average availability of nodes in the blockchain network is 0.7, the
probability of node failure is 0.3. When n = 25, denoting the average number of copies
of data allocated in the cluster, b denotes the number of nodes required to recover the
complete data. When b takes different values, the system reliability results are calculated
from Equation (1).

By analyzing the experimental results in Figure 9, it can be concluded that:

(1) When there were two overlapping replicas of the sharding in the blockchain
network, the reliability of the system was at its worst; as the number of overlapping replicas
of the sharding increased, the reliability of the system increased gradually, and when the
number of replicas reached 16, the reliability of the system was 99.9%. Therefore, the system
was reliable when the number of overlapping replicas of the sharding reached 16.

(2) The comparisons in Figure 8a,b show that, unlike the system reliability, the node
storage rate increased linearly with an increasing number of overlapping sharding replicas.
When the number of replicas was two, the storage rate of the nodes was the lowest
and the system reliability was at its worst; when the system reliability reached 99.9%,
the corresponding node storage rate was 64%. Therefore, the system’s node storage
consumption was effectively reduced while its reliability was maintained.
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Figure 9. System reliability and node storage ratio. (a) System reliability. (b) Node storage ratio.

7. Conclusions

Blockchain technology has developed rapidly in the past few years, and blockchain tech-
nology will expand to more fields of application in future. Therefore, blockchain scalability
is a problem that must be considered and solved. In this paper, we propose a DHT-based
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blockchain dual-sharding storage extension mechanism. Our solution uses DHT technology
and sharding technology to realize sharding storage of blockchain data and at the same time
reduce the storage consumption of nodes. Through the XOR operation mechanism, sharding is
evenly mapped to different nodes in the cluster for overlapping storage, ensuring the safety
and reliability of the sliced data while effectively solving the blockchain storage scaling problem.
We propose a hybrid query mechanism for transaction data under the sharding storage state, to
improve the query efficiency of transaction data under the sharding state with almost no impact
on node storage consumption. Simulated experimental results showed that the DBDSM model
can meet the blockchain scalability requirements.

This scheme is currently applicable to licensed blockchains. For non-licensed blockchains,
such as Bitcoin and Ether systems, this scheme is not applicable due to the cross-partition
consensus involved between different partitions. Future research will involve further opti-
mization and improvements based on this scheme, so that it can be applied to non-licensed
blockchain systems. Optimization and scalability of blockchain solutions are key issues for
applications that deal with big data. There are significant implications for growing areas of
research such as the collection, analysis, storage, and use of big data collected by drones,
smart agriculture, the security of big data systems, medical applications, machine learning
from IoT data, and applications across smart cities [29,30].

Potential applications of our solution include blockchain applications in the IoT en-
vironment where large data streaming results need be transferred securely, safely, and
with good scalability properties. These may include industrial IoT blockchains, mobile
computing applications, social data storage, collaborative computing, and smart home
computing, among others [31-35].
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