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Abstract: The accurate classification of traffic data is challenging for network management and
security, especially in imbalanced situations. The limitation of the existing convolutional neural
networks is that they have problems such as overfitting, instability, and poor generalization when
used to classify imbalanced datasets. In this paper, we propose a new imbalanced encrypted traffic
classification model. The proposed model is based on the improved convolutional block attention
module (CBAM) and re-weighted cross-entropy focal loss (CEFL) function. The model exploits the
redefined imbalance degree to construct a weight function, which is used to reassign the weights of
the categories. The improved CBAM based on the redefined imbalance degree can make the model
pay more attention to the characteristics of the minority samples, and increase the representation
ability of these samples. The re-weighted CEFL loss function can be used to expand the effective
loss gap between minority and majority samples. The method is validated on the public ISCX Tor
2016 dataset. The experimental results show that the performance of the new classification model is
better than the baseline methods, and the proposed method can remarkably push the precision of the
minority categories to 93.28% (14.63%↑), recall to 91.71% (16.98%↑), and F1 score to 92.49% (16.23%↑).

Keywords: imbalance ratio; convolutional neural network; attention module; loss function

1. Introduction

With the rapid development of online applications, the composition of the flow rate is
also richer, such as streaming media, instant messaging, online games, etc. Every day, new
applications appear and generate network traffic. Meanwhile, newly emerging encrypted
techniques are used to protect the privacy of users. However, various cyberattacks pose
enormous challenges to network security monitoring. In order to manage the network,
it is necessary to classify network traffic through technical methods and obtain relevant
information [1].

Traditional traffic classification methods are mainly divided into four categories [2]:
port-based, deep packet inspection (DPI), machine learning, and deep learning. With the
rapid growth of port camouflage [3], port randomization [4], and tunneling technology [5],
the port-based method is quickly invalidated. The DPI-based methods patterns the packets,
and then classifies the traffic based on different matching characteristics [6]. However,
these methods have a high complexity, thus, it cannot be applied to the encrypted traffic.
Machine-learning methods do not require parsing data inside traffic, which can simplify
the computational complexity. These methods rely highly on the design of features sets,
which directly affect the classification performance, and require a suitable dataset for
classification [7]. To tackle the above problems, research in encrypted traffic classification
evolved significantly over time. Recently, deep-learning methods automatically learn
layer-by-layer from the raw traffic, and classify them based on the generated high-level
features. Although promising results were achieved, the classification precision of minority
categories is still low, due to the imbalanced distribution of encrypted traffic data [8].
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In this paper, we improve the classification accuracies of minority categories by solving
the problems caused by an imbalanced dataset. These problems are currently solved mainly
by using over-sampling methods such as synthetic minority over-sampling technique
(SMOTE). However, the data it generates may not be sufficiently realistic. To handle the
classification problems caused by imbalanced data categories, and improve the classifi-
cation performance of these categories, we propose a new imbalanced encrypted traffic
classification model based on CBAM–CEFL. The experiments are conducted on the public
dataset ISCX Tor 2016 that contains more than 18 representative applications of Tor and
non-Tor encrypted traffic data.

The main contributions of this paper are summarized as follows:

• We propose a redefined imbalance degree for imbalanced encrypted traffic datasets,
and take it as the indicator to construct a weight function to reassign the weights of
each category;

• According to the performance tendency problems caused by imbalanced datasets,
we propose a re-weighted CEFL loss function to expand the inter-class distance and
increase the effective loss gap between the majority and minority samples;

• We improved the channel attention module (CAM) in CBAM with the redefined
imbalance degree, which can make the model pay more attention to the characteristics
of the minority categories, and increase the representation ability of these samples.

2. Related Work

In the literature, deep-learning-based methods dominated encrypted traffic classifica-
tion tasks in recent years. Due to the advantages of automatically extracting discriminative
features rather than relying on manual design, these methods can classify large amounts of
encrypted traffic data. Hence, various deep-learning-based techniques were investigated
in the literature to classify encrypted traffic. ICLSTM [9] uses long short-term memory
networks (LSTMs), and ETCC [10] uses convolutional neural networks (CNNs) to auto-
matically extract representations from raw packet size sequences of the encrypted traffic.
CBD [11] is pre-trained with unlabeled data to classify encrypted traffic from the packet
level and traffic level. However, these approaches rely on a large amount of balanced data,
while the vast majority of datasets cannot meet this requirement. This phenomenon is
observed in multiple fields such as banking fraud detection, medical diagnosis, especially
in the field of the network security. In the face of these imbalanced datasets, the traditional
deep-learning-based models will be biased towards the majority categories, and correspond-
ingly, the minority categories will be ignored or even misclassified. Hence, for datasets with
imbalanced categories, the classification performance of traditional deep-learning-based
models is always poor.

In imbalanced encrypted traffic classification, the methods used by researchers are
divided into data-level methods, algorithm-level methods, and hybrid methods. Data-level
methods reduce the imbalance and noise of data through various data sampling methods,
such as over-sampling and under-sampling. Bai [12] proposed to generate samples with
similar statistical characteristics to other minority categories to build a balanced dataset.
However, as the over-sampling method for resolving the imbalance problem involves
repeatedly learning the same data, the classification model can overfit the learning data.
Meanwhile, the under-sampling methods proposed to address the imbalance problem may
cause information loss as they remove data from the original set. Without changing the
data distribution, algorithm-level methods increase the emphasis on minority categories by
adjusting learning styles or decision-making processes. A. Telikani [13] proposed to use a
cost-sensitive learning method to increase the robustness of deep-learning classifiers against
the class imbalanced problem in network traffic classification. Feng [14] proposed to use
random forest method for imbalanced traffic classification. It is compared with K-nearest
neighbor and C4.5 decision tree algorithms, and the experimental results show that it can
classify imbalanced encrypted traffic more effectively. Hybrid methods resample the data
to reduce noise and imbalance, and then use algorithm-level methods to further reduce
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bias towards most classes. COUSS [15] introduces a combined over-sampling and under-
sampling method based on the slow-start algorithm. Compared with synthetic minority
over-sampling technique (SMOTE) and generative adversarial network over-sampling
algorithms, the method improves the F1 score by 8.639% and 4.074%, respectively.

3. Methodology

In this paper, we aim to improve the classification performance of the model in an
imbalanced encrypted traffic situation. This section presents the re-weighted CEFL loss
function algorithm formulation and the improved CBAM, which are based on redefined
imbalanced degree (ID), including a description of other loss functions and the original
CBAM, for comprehensive comparisons. The method structure diagram of this paper is
shown in Figure 1.

Appl. Sci. 2022, 12, 9631 3 of 12 
 

with K-nearest neighbor and C4.5 decision tree algorithms, and the experimental results 
show that it can classify imbalanced encrypted traffic more effectively. Hybrid methods 
resample the data to reduce noise and imbalance, and then use algorithm-level methods 
to further reduce bias towards most classes. COUSS [15] introduces a combined over-sam-
pling and under-sampling method based on the slow-start algorithm. Compared with 
synthetic minority over-sampling technique (SMOTE) and generative adversarial net-
work over-sampling algorithms, the method improves the F1 score by 8.639% and 4.074%, 
respectively. 

3. Methodology 
In this paper, we aim to improve the classification performance of the model in an 

imbalanced encrypted traffic situation. This section presents the re-weighted CEFL loss 
function algorithm formulation and the improved CBAM, which are based on redefined 
imbalanced degree (ID), including a description of other loss functions and the original 
CBAM, for comprehensive comparisons. The method structure diagram of this paper is 
shown in Figure 1. 

PCAP

Split network 
flow

Sift  packet

Generate 
picture

Input 
Image

conv1
F

Spatial attention
Channel attention

maxpool
Mc

conv4_x

F′ 

Ms

F″ 
conv2_x conv3_x

conv5_x

Spatial attention
Channel attention

avgpool
Full connection

Feature extraction

Real lable

Ms Mc

F′ F″ 

Predicted 
lable

Softm
ax

Loss

Output

D
ata Processing M

odule
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3.1. Imbalance Degree Based on Information Entropy

The symbol ID is generally expressed as the ratio between the maximum and minimum
number of samples. Suppose that there are C categories in the dataset N, and the ID
calculation formula is shown in Equation (1).

ID =
max{Ni}
min{Ni}

(1)

where Ni represents the number of samples in category i, i = 1, 2, 3, . . . , C. In order to
transform the traditional ID into multi-class imbalanced datasets, we redefine the ID′ using
information entropy, whose calculation formula is shown in Equation (2).

ID′ = − 1
C ∑C

i=1 log
NI

max{Ni}
(2)

where C represents the number of categories, Ni represents the number of samples in
category i, I = 1, 2, 3, . . . , C, and the log default base is 10.

As shown in Table 1, the redefined ID is more reasonable and accurate. A larger
number of ID′ indicates that the distribution of the dataset category is more uneven.

Taking ID′ as the decision indicator, the constructed weight function is defined as:

f(λ, Ni, Nmax) =

(Nmax
Ni

)
1
2 ID ≤ 1

(Nmax
Ni

)
1
λ other

(3)

In Equation (3), Nmax = maxi{Ni}, λ is a hyperparameter.
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Table 1. Imbalance of different category distributions.

Category Distribution ID ID′

[1,1,1,1,10] 10 0.8000
[2,4,6,8,10] 5 0.2831

[1,10,10,10,10] 10 0.2000
[10,10,10,10,10] 1 0

[1,10,100,1000,10000] 10,000 2

As shown in Table 2, the weight function is used to assign weights to obtain various
categories of weight coefficients.

Table 2. Imbalance of different category distributions.

Category Distribution ID′ f(λ,Ni,Nmax) (λ=4)

[1,1,1,1,10] 0.8000 [3.1623,3.1623,3.1623,3.1623,1]
[2,4,6,8,10] 0.2831 [2.2361,1.5811,1.2910,1.1180,1]

[1,10,10,10,10] 0.2000 [3.1623,1,1,1,1]
[10,10,10,10,10] 0 [1,1,1,1,1]

[1,10,100,1000,10000] 2 [10,5.6234,3.1623,1.7783,1]

3.2. Channel–Spatial Domain Attention Module

In 2018, ref. [16] proposed to use the CBAM module, which is composed of the
channel attention module (CAM) and the spatial attention module (SAM), to optimize
adaptive features from the channel dimension and spatial dimension. The CAM can learn
more important feature content, and the SAM can learn more important feature positions.
However, the CAM simply adds the eigenvectors obtained after the pooling layer without
considering the correlation between the imbalanced data and vector [17]. To this end, we
improve the CBAM module with the weight function to increase the representation ability
of these samples.

As shown in Figure 2, the feature graph obtained after the convolutional layer is
used as the input. We compress the spatial dimensions by global max pooling (GMP) and
global average pooling (GAP) and obtain two 1× 1× C feature vectors called MaxPool
and AvgPool. We input the feature vectors into the same multi-layer perception (MLP)
to obtain the GMP-based weight vector W1 and GAP-based weight vector W2. We then
use the activation function to operate on M, which is obtained by adding the two weight
vectors and multiplying the weight function, to obtain the eigen weight vector MC(F).
In addition, we multiply MC(F) with the input feature map to assign each category the
corresponding weight.
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The MC(F) calculation formula is shown in Equation (4), where σ represents the
sigmoid function.

MC(F) = σ[(W1 + W2)f(λ, Ni, Nmax)] (4)

3.3. Heavily Weighted Cross-Entropy Focal Loss Function

The loss function is an operation function that measures the degree of difference
between the predicted and the true value. The common loss functions such as CE loss per-
form well when trained on balanced datasets, such as CIFAR-10/100 datasets and MNIST
datasets. However, CE loss processes all samples equally, even if the datasets are imbal-
anced, which leads to the contribution of the minority categories being ignored [18]. In this
paper, we propose an ID′-based re-weighted CEFL loss, which combines the characteristics
of CE loss and FL loss. This makes the model pay more attention to the minority categories.

3.3.1. CE Loss Function

The CE loss function is one of the most commonly used loss functions in classification
problems. The calculation formula is shown in Equation (5), where C represents the number
of sample categories, yi ∈ {0, 1} represents the true label of the sample, and ŷi represents
the probability that the sample predicts correctly.

LCE = −
C

∑
i=1

yilog ŷi (5)

During the initial training period of the model, the ŷi of the same category is almost
unchanged, and ŷi gradually increases to 1 as the training progresses. It means that CE loss
is biased towards categories with large sample sizes in imbalanced datasets.

3.3.2. Focus Loss Function

The FL loss function proposed by Huang et al. [19] greatly solves the problems caused
by the imbalanced categories. It adjusts the proportion of losses in positive and negative
samples by reducing the weight of loss for negative samples, so that the model is not be
biased towards the negative samples. The calculation formula is shown in Equation (6),
where α and γ are hyperparameters. α is the proportional parameter that controls the
importance of positive and negative samples, and the focus parameter γ is used to adjust
the rate at which the weight of the sample decreases. When γ = 0, the FL loss function is
equivalent to the weighted CE loss.

LFL = −
C

∑
i=1

αyi(1− ŷi)
γlog ŷi (6)

3.3.3. CEFL Loss Function

The FL function only reduces the amplitude of losses for the categories with small
sample sizes. It does not make a loss allocation of these samples. Therefore, we propose
a re-weighted CEFL loss function to control the weights of CE loss and FL loss, which is
defined as:

LCEFL =
C

∑
i=1
−(1− ŷi)log ŷi − yi(1− ŷi)

γlog ŷi (7)

In Equation (7), the weights of ŷi and 1− ŷi are assigned to the CE loss and FL loss,
respectively. When the sample prediction probability is small (ŷi < 0.5), the CEFL loss
training is closer to the CE loss; conversely, when ŷi > 0.5, the CEFL loss training is closer
to the FL loss, which means that for samples of the majority categories, less loss is allocated
by FL loss, and for the other categories, more loss is allocated by CE loss [20]. Therefore, the
polarization trend of well-classified and poorly classified samples is conducive to reducing
the loss in minority samples and increasing the loss in majority samples, making model
training pay more attention to minority samples.
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To enhance the classification performance of the loss function, we introduce a recon-
structed weight function for CEFL loss, and the calculation formula is shown in Equation (8).
On this basis, a weight function is added to CEFL loss to enhance the allocation perfor-
mance of CEFL loss. Considering the performance difference caused by the imbalance in
sample number, the re-weighted CEFL loss can widen the distance between classes to a
certain extent. It increases the effective loss gap of the majority and minority samples. It is
calculated as:

LCEFL =
C

∑
i=1

(−(1− ŷi)log ŷi − yi(1− ŷi)
γlog ŷi)f(λ, Ni, Nmax) (8)

For imbalanced datasets, the re-weighted CEFL loss can widen the inter-class distance,
which increases the effective loss gap between the majority and minority samples.

4. Experiment and Analysis
4.1. Dataset and Pre-Processing

The encrypted traffic dataset used in this paper is the UNB ISCX Tor 2016 [21], which
contains more than 18 representative applications of Tor and non-Tor encrypted traffic, such
as Facebook, Skype, Spotify, Gmail, etc. We categorize the dataset by services, forming the
dataset with eight categories, namely, browsing, chat, audio-streaming, video-streaming,
mail, VoIP, P2P, and file transfer. The sample size and proportion of each type in the dataset
are shown in Table 3.

Table 3. Sample size and proportion in the dataset.

Service Category Sample Size Proportion (%)

VoIP 684,601 54.20%
File transfer 271,804 21.52%

P2P 228,300 18.07%
Browsing 39,323 3.11%

Video-streaming 16,923 1.34%
Audio-streaming 13,727 1.09%

Mail 5076 0.40%
Chat 3419 0.27%

According to Table 3, the sample size of the eight different categories in the dataset
is extremely uneven, such as VoIP accounting for 54.20%, while browsing, chat, audio-
streaming, video-streaming, and mail account for less than 5%. The imbalance in the sample
sizes severely affects the classification performance of the model. Thus, we propose several
optimization methods to improve the classification accuracy of these minority samples in
the dataset.

Data pre-processing can reduce the noise in the raw traffic and adjust the traffic to fit
the input form of the deep-learning model. The following pre-processing steps contain:

• Data splitting: since the CNN model requires the input data to be of the same size, we
split the traffic data at the session level and pick the first 784 bytes;

• Data cleaning: we remove the packets in .pcap format without application layer data
to avoid generating bin files with no actual content;

• Image generation: we convert the file with the length of 784 bytes into a grayscale
image in binary form, one byte for one grayscale pixel value.

4.2. Evaluate Metrics

Different from the classification of balanced datasets, a single classification accuracy
does not fully reflect the classification performance of the model. We evaluate and compare
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the performance of our methods by three typical metrics, including precision (PR), recall
(RC), and F1, which are designed as:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 =
2∗Precision ∗ Recall
Precision + Recall

(11)

where PR denotes the ratio of correctly predicted samples to total positively predicted
samples, RC denotes the ratio of correctly predicted samples to actual positive samples in
the dataset, and F1 is the harmonic mean of precision and recall.

4.3. Results and Analysis
4.3.1. Parameter Settings

All experimental models are based on PyTorch framework. The dataset is divided into
the training set, the validation set, and the testing set, according to the ratio of 8:1:1. During
the model training period, the batch size is 64 and the epoch is 20. The learning rate is set
to 1 × 10−3, the momentum is 0.9, and the weight decay parameter is 1 × 10−4.

4.3.2. Compare Experiment

In the 2012 ILSVRC Challenge, AlexNet won the championship and was well ahead
of second place. This led to extensive research on AlexNet, and led to the belief that “the
deeper the network, the higher the accuracy.” As VGGNet, Inception v1, Inception v2, and
Inception v3 have been continuously verified and strengthened, this belief is increasingly
recognized. However, as the number of layers of the network increases, the loss in the
training dataset rises, which causes the degradation problem of neural networks. To solve
the degradation problem, Kaiming [22] proposed the residual neural network (ResNet),
which consists of residual blocks. The structure of the residual block is shown in Figure 3.
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In order to evaluate the classification performance of the proposed loss function, we
compare the CEFL loss, CE loss, and FL loss used in various ResNet classification models.
The experimental results are shown from Tables 4–6.

As shown from Tables 4–6, the proposed CEFL loss without using the weight function
obtains better classification performance than CE loss and FL loss, which can be improved
by about 1% to 5%. As the number of network layers deepens, the F1 score of CEFL loss
increases 1.7% from ResNet-18 to ResNet-34, then decreases by about 1.2% from ResNet-34
to ResNet-50. Finally, the performance of ResNet-50 is increased by 5.2% over ResNet-101.
However, the classification performance of models that use the re-weighted CEFL loss
function is further improved. In particular, when the parameter γ = 1, λ = 4, the model
achieves the best performance on F1 score, with 88.63%.
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Table 4. Accuracy rates based on different loss functions of various ResNets.

Loss Function

Classification Model
ResNet-18 ResNet-34 ResNet-50 ResNet-101

CE Loss 69.95% 73.71% 79.82% 81.34%
FL (α = 0.25 γ = 2) 78.42% 82.52% 84.65% 85.35%
FL (α = 0.75 γ = 2) 76.04% 77.23% 81.53% 83.79%

FL (α = 1 γ = 2) 75.18% 74.26% 81.81% 84.92%
CEFL (γ = 1) 82.17% 78.82% 85.35% 88.50%
CEFL (γ = 2) 81.86% 77.74% 85.73% 88.63%
CEFL (γ = 5) 82.39% 79.91% 86.49% 89.14%

CEFL (γ = 1 λ = 4) 87.42% 89.91% 90.25% 92.70%
CEFL (γ = 2 λ = 4) 87.65% 87.56% 89.12% 93.77%
CEFL (γ = 5 λ = 4) 88.07% 87.77% 91.05% 92.35%

Table 5. Recall rates based on different loss functions of various ResNets.

Loss Function

Classification Model
ResNet-18 ResNet-34 ResNet-50 ResNet-101

CE Loss 72.33% 71.62% 74.07% 71.19%
FL (α = 0.25 γ = 2) 72.99% 67.75% 72.20% 71.16%
FL (α = 0.75 γ = 2) 69.94% 69.14% 66.78% 71.66%

FL (α = 1 γ = 2) 71.40% 72.83% 69.05% 68.55%
CEFL (γ = 1) 68.83% 79.62% 63.29% 76.13%
CEFL (γ = 2) 73.10% 83.36% 67.50% 78.50%
CEFL (γ = 5) 71.94% 77.25% 69.84% 76.78%

CEFL (γ = 1 λ = 4) 89.87% 85.25% 82.66% 84.61%
CEFL (γ = 2 λ = 4) 87.83% 88.36% 80.21% 85.02%
CEFL (γ = 5 λ = 4) 87.12% 88.77% 81.79% 85.42%

Table 6. F1-score based on different loss functions of various ResNets.

Loss Function

Classification Model
ResNet-18 ResNet-34 ResNet-50 ResNet-101

CE Loss 71.12% 72.65% 76.84% 75.93%
FL (α = 0.25 γ = 2) 75.61% 74.41% 77.93% 77.61%
FL (α = 0.75 γ = 2) 72.86% 72.96% 73.42% 77.25%

FL (α = 1 γ = 2) 73.24% 73.54% 74.89% 75.86%
CEFL (γ = 1) 74.91% 79.22% 72.68% 81.85%
CEFL (γ = 2) 77.23% 80.45% 75.53% 83.26%
CEFL (γ = 5) 76.81% 78.56% 77.28% 82.50%

CEFL (γ = 1 λ = 4) 88.63% 87.52% 86.29% 88.47%
CEFL (γ = 2 λ = 4) 87.74% 87.96% 84.43% 89.18%
CEFL (γ = 5 λ = 4) 87.59% 88.27% 86.17% 88.75%

In order to verify the effectiveness of the improved CBAM module, this section
introduces the improved CBAM module, traditional CBAM module, and the single-domain
attention module to the CNN model for comparative experiments. The experimental results
are shown from Tables 7–9.

From the results presented above, it can be observed that the various ResNet models
introduced to the improved CBAM module increase significantly in their PR, RC, and
F1 score. This is because the CBAM module improves with the redefined imbalance
degree, and can extract features that are more conducive to sample classification. It makes
the model pay more comprehensive attention to the characteristics of minority samples,
enhance classification accuracy, and thus, improves the classification effect of the model.
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Table 7. Accuracy rates of classification models under each attention mechanism.

Added Modules

Classification Model
ResNet-18 ResNet-34 ResNet-50 ResNet-101

No attention module 75.21% 74.17% 78.47% 77.24%
Spatial domain attention module 77.85% 75.88% 78.89% 77.17%

Channel domain attention module 75.59% 77.29% 79.27% 79.55%
CBAM module 79.83% 79.25% 80.88% 82.23%

Improved CBAM module 83.52% 85.81% 87.22% 85.64%

Table 8. Recall rates of classification models under each attention mechanism.

Added Modules

Classification Model
ResNet-18 ResNet-34 ResNet-50 ResNet-101

No attention module 72.39% 73.28% 72.98% 75.42%
Spatial domain attention module 71.84% 75.14% 74.51% 77.09%

Channel domain attention module 74.51% 75.53% 75.26% 76.15%
CBAM module 77.37% 77.88% 78.16% 79.27%

Improved CBAM module 84.21% 85.42% 86.29% 85.51%

Table 9. F1 score of classification models under each attention mechanism.

Added Modules

Classification Model
ResNet-18 ResNet-34 ResNet-50 ResNet-101

No attention module 73.77% 73.72% 75.61% 77.74%
Spatial domain attention module 74.71% 75.51% 76.63% 78.99%

Channel domain attention module 74.05% 76.40% 77.21% 78.65%
CBAM module 79.99% 78.56% 81.81% 80.25%

Improved CBAM module 83.86% 85.61% 86.75% 86.07%

We combine the re-weighted CEFL loss function and the improved CBAM module for
a comprehensive comparative experiment. The results are shown in Tables 10–12.

Table 10. Accuracy rates for each classification model.

Classification Model ResNet-18 ResNet-34 ResNet-50 ResNet-101

Not CEFL loss 75.21% 74.17% 78.47% 77.24%
CEFL loss (γ = 1 λ = 4) 87.42% 89.91% 90.25% 92.70%

Improved CBAM module 83.52% 85.81% 87.22% 85.64%
Improved CBAM module + CEFL loss (γ = 1 λ = 4) 89.04% 90.53% 90.75% 93.28%

Table 11. Recall rates for each classification model.

Classification Model ResNet-18 ResNet-34 ResNet-50 ResNet-101

Not CEFL loss 72.39% 73.28% 72.98% 75.42%
CEFL loss (γ = 1 λ = 4) 89.87% 85.25% 82.66% 84.61%

Improved CBAM module 84.21% 85.42% 86.29% 85.51%
Improved CBAM module+CEFL loss (γ = 1 λ = 4) 90.26% 89.84% 90.17% 91.71%

Table 12. F1-score for each classification model.

Classification Model ResNet-18 ResNet-34 ResNet-50 ResNet-101

Not CEFL loss 73.77% 73.72% 75.61% 77.74%
CEFL loss (γ = 1 λ = 4 88.63% 87.52% 86.29% 88.47%

Improved CBAM module 83.86% 85.61% 86.75% 86.07%
Improved CBAM module+CEFL loss (γ = 1 λ = 4) 91.14% 90.68% 91.44% 92.49%
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From the results presented from Tables 10–12, it can be observed that after using the
CEFL loss function and the improved CBAM module, the performance of each classifica-
tion model is significantly enhanced, which is better than only introducing one improved
scheme. Further, validation accuracy is also compared with other models named as AAE
(87.3%) and GAN (82.8%). After comparison, we can find that the classification accuracies
of similar architectures are not as good as the architecture mentioned in this paper. There-
fore, the effectiveness of the encrypted traffic classification model proposed in this paper
is confirmed.

5. Conclusions, Discussion, and Future Research

In this paper, we propose a new imbalanced encrypted traffic classification model,
which is based on the improved CBAM and CEFL loss function, to solve the problems
caused by imbalanced datasets. We construct a weight function with a redefined imbalance
degree to reassign the weights of each category. To expand the inter-class distance, we
propose a reweighted CEFL loss, which increases the effective loss gap between the majority
and minority samples. In addition, we take the redefined imbalance degree as an indicator
to improve the CBAM. It makes the model pay more attention to the characteristics of the
minority categories, and increases the representation ability of these samples. The results
confirm the superior performance of the proposed classification model by pushing the
precision, recall, and F1 to 93.28% (14.63%↑), 91.71% (16.98% ↑), and 92.49% (16.23%↑),
respectively. In the future, we would like to investigate the ability of the model to predict
new classes of samples and to resist sample attacks.
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