
Citation: Galhardo, P.; Silva, A.R.d.

Combining Rigorous Requirements

Specifications with Low-Code

Platforms to Rapid Development

Software Business Applications. Appl.

Sci. 2022, 12, 9556. https://doi.org/

10.3390/app12199556

Academic Editors: Christos Bouras

and Peng-Yeng Yin

Received: 26 June 2022

Accepted: 20 September 2022

Published: 23 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Combining Rigorous Requirements Specifications with
Low-Code Platforms to Rapid Development Software
Business Applications
Pedro Galhardo 1,* and Alberto Rodrigues da Silva 2,*

1 Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisbon, Portugal
2 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisbon, Portugal
* Correspondence: pedromgalhardo@tecnico.ulisboa.pt (P.G.); alberto.silva@tecnico.ulisboa.pt (A.R.d.S.)

Abstract: Low-code development platforms have gained popularity as an effective solution to
address urgent market demands for software applications. These platforms have often overcome
challenges faced by traditional software development processes, including requirements engineering
processes, as they tend to incorporate the requirements in their prototyping phase. However, low-
code platforms have followed different approaches with proprietary languages, which is a problem
when customers need to move to other technologies or intend to define the specification of their
applications in a readable and platform-independent way. To mitigate these challenges, this article
discusses a model-driven approach that semi-automatically produces software business applications
by combining rigorous requirement specifications (defined with the ITLingo ASL language) with a
concrete low-code platform (Quidgest Genio). First, we analyse the common concepts in both ITLingo
ASL and Genio languages. Then, we discuss model-to-model transformations that allow converting
ASL specifications into Genio low-code projects. Finally, the code generation capabilities of the Genio
low-code platform are employed to generate the source code of the target software applications. To
evaluate the consistency of the proposed approach, we use and discuss a simple and representative
case study based on a fictitious system, the Invoice Management System (IMS), whose requirements
are similar to those found in many business applications.

Keywords: requirements specification; model-driven engineering; low-code platforms; ITLingo ASL;
Quidgest Genio

1. Introduction

The development of modern software applications is a complex process requiring a
multidisciplinary team. The diversity of backgrounds among the members of such teams
causes communication barriers and difficulties in sharing a common vision of the systems
to be developed [1]. Requirements engineering (RE) practices help mitigate these barriers’
impacts and increase software development teams’ productivity [2]. RE has proven to be
a crucial collaboration facilitator [3], as business requirements specifications are defined
in natural languages (or controlled natural languages) that are easier to understand than
programming languages.

Low-code development platforms (or just “low-code platforms” for brevity) started
to grow as the need to create applications that quickly adapt to urgent market demands
increased [4–6]. Low-code platforms intend to reduce the development and maintenance
effort required to deliver and operate some application classes and enable digital-savvy
citizen developers (who lack or have limited programming experience) to contribute
directly to the software development process [7]. Considering a spectrum where controlled
natural languages and programming languages are opposite ends, low-code platform
languages stand somewhere in the middle; most of them allow for specifying business
requirements more comprehensively than programming languages do. However, they are

Appl. Sci. 2022, 12, 9556. https://doi.org/10.3390/app12199556 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199556
https://doi.org/10.3390/app12199556
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6884-1477
https://orcid.org/0000-0002-7900-9846
https://doi.org/10.3390/app12199556
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199556?type=check_update&version=1

Appl. Sci. 2022, 12, 9556 2 of 26

not as abstract as platform-independent specification languages. Low-code platforms such
as Quidgest Genio [8], OutSystems [9], or Mendix [10] can be particularly beneficial at the
prototyping stages of the development process, as experienced users of these tools can
create simple yet fully functional systems in a matter of days or weeks. Currently, most
large cloud providers offer low-code platforms within their cloud-based solutions. For
instance, Microsoft released its Power Apps framework [11] in November 2016; Google
acquired the provider AppSheet [12] and made it its primary low-code solution in January
2020; and Amazon released Honeycode [13], a low-code platform for web and mobile
application development, in June 2020.

On the other hand, model-driven engineering (MDE) is an approach that considers
models not just as documentation artefacts but also as first-class citizens, where models
might be used throughout all engineering disciplines and in any application domain [14].
As MDE has similar goals to low-code development, there is an open debate on how
low-code development differs from MDE and to what extent work carried out in the field
of MDE can be directly transferable to low-code platforms [15]. For instance, Di Ruscio
et al. discuss the commonalities and differences between both approaches, concluding that
not all model-driven techniques aim at reducing the amount of code needed to implement
software solutions, and not all low-code approaches are model-driven [7].

In the scope of this debate, our research intends to show and discuss the combination
of a platform-independent language for the specification of software applications, ITLingo
ASL [3], with a concrete low-code software development platform, Quidgest Genio [8].
First, we discuss how ASL compares to the Genio language to evaluate the possibility of
automatically developing mechanisms to transform ASL specifications into Genio projects.
Then, we take the findings of this analysis and design the proposed transformation, rep-
resented by the ASL2LC task in Figure 1. It is out of the scope of this paper to discuss
the second transformation illustrated in Figure 1 as the LC2Code (code generation) task.
Indeed, this transformation has been extensively implemented and evaluated in hundreds
of applications of the Genio framework [16].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 26

requirements more comprehensively than programming languages do. However, they are

not as abstract as platform-independent specification languages. Low-code platforms

such as Quidgest Genio [8], OutSystems [9], or Mendix [10] can be particularly beneficial

at the prototyping stages of the development process, as experienced users of these tools

can create simple yet fully functional systems in a matter of days or weeks. Currently,

most large cloud providers offer low-code platforms within their cloud-based solutions.

For instance, Microsoft released its Power Apps framework [11] in November 2016;

Google acquired the provider AppSheet [12] and made it its primary low-code solution in

January 2020; and Amazon released Honeycode [13], a low-code platform for web and

mobile application development, in June 2020.

On the other hand, model-driven engineering (MDE) is an approach that considers

models not just as documentation artefacts but also as first-class citizens, where models

might be used throughout all engineering disciplines and in any application domain [14].

As MDE has similar goals to low-code development, there is an open debate on how low-

code development differs from MDE and to what extent work carried out in the field of

MDE can be directly transferable to low-code platforms [15]. For instance, Di Ruscio et al.

discuss the commonalities and differences between both approaches, concluding that not

all model-driven techniques aim at reducing the amount of code needed to implement

software solutions, and not all low-code approaches are model-driven [7].

In the scope of this debate, our research intends to show and discuss the combination

of a platform-independent language for the specification of software applications, ITLingo

ASL [3], with a concrete low-code software development platform, Quidgest Genio [8].

First, we discuss how ASL compares to the Genio language to evaluate the possibility of

automatically developing mechanisms to transform ASL specifications into Genio pro-

jects. Then, we take the findings of this analysis and design the proposed transformation,

represented by the ASL2LC task in Figure 1. It is out of the scope of this paper to discuss

the second transformation illustrated in Figure 1 as the LC2Code (code generation) task.

Indeed, this transformation has been extensively implemented and evaluated in hundreds

of applications of the Genio framework [16].

Figure 1. Transforming an ASL specification into a software application via a low-code platform

(BPMN notation).

ITLingo is a research initiative that has proposed new languages, tools, and tech-

niques to support users in improving their practices mainly related to project manage-

ment, requirements engineering, and system design. This initiative has since expanded to

include both concluded and ongoing research projects to address challenges like poor

productivity and low-quality technical documentation [17].

In this scope, ASL (“Application Specification Language”) is research that explores

specification languages for the IT domain, mainly targeting the design of software appli-

cations [3]. Besides continuously improving as a platform-independent specification lan-

guage, recent work surrounding ASL has explored model-to-model and model-to-code

transformations, respectively, from ASL into ASL specifications and from ASL specifica-

tions into Django artefacts [3].

The main contribution of this paper is the proposal and discussion of a functional

approach that combines model-driven techniques with low-code platforms. This ap-

proach allows developers to quickly write software application specifications in a

Business Process Transforming a ASL specification into a software application via a low-code platform

Low-code

platform

specification

ASL

specification

ASL2LC LC2Code (code

generation)

Application

source code

Figure 1. Transforming an ASL specification into a software application via a low-code platform
(BPMN notation).

ITLingo is a research initiative that has proposed new languages, tools, and techniques
to support users in improving their practices mainly related to project management, re-
quirements engineering, and system design. This initiative has since expanded to include
both concluded and ongoing research projects to address challenges like poor productivity
and low-quality technical documentation [17].

In this scope, ASL (“Application Specification Language”) is research that explores
specification languages for the IT domain, mainly targeting the design of software ap-
plications [3]. Besides continuously improving as a platform-independent specification
language, recent work surrounding ASL has explored model-to-model and model-to-code
transformations, respectively, from ASL into ASL specifications and from ASL specifications
into Django artefacts [3].

The main contribution of this paper is the proposal and discussion of a functional
approach that combines model-driven techniques with low-code platforms. This ap-
proach allows developers to quickly write software application specifications in a platform-
independent language mainly focused on these applications’ data, user interface, and
business aspects. ASL specifications can later be automatically converted to concrete low-

Appl. Sci. 2022, 12, 9556 3 of 26

code platform specifications to take advantage of the numerous features offered by these
platforms. Our work differs from the work developed by Gamito and Silva [3] because, in
their approach, they discuss model-to-code transformations, i.e., directly from ASL specifi-
cations into Django/Python code. In contrast, our approach is based on the combination
of model-to-model and model-to-code transformations, as suggested in Figure 1. More-
over, this paper presents and compares the metamodels underlying both ASL and Genio
languages and proposes ASL extensions (developed during this research) to better support
the alignment and transformation between ASL and Genio specifications or models.

The rest of this article is organised as follows: Section 2 provides the background
on domain-specific languages for the specification of software applications and low-code
platforms. Section 3 compares the common concepts of ITLingo ASL and Quidgest Genio
languages. Section 4 presents the extensions we propose to ASL based on the previous
analysis and comparison findings. Section 5 overviews the ASL2Genio transformation
mechanism. Section 6 illustrates how the evaluation and testing of this research were
conducted based on a simple yet representative business application. Section 7 identifies
and discusses the related work. Finally, Section 8 presents the conclusion, discusses the
advantages and limitations of the proposed approach, and identifies future research goals.

2. Background

This section introduces the main concepts and technologies underlying this research.
Namely, it introduces ITLingo ASL, a platform-independent language for the specification
of software applications, and Quidgest Genio, a low-code platform for developing business
software applications.

2.1. Domain-Specific Languages for Business Apps

Domain-specific languages (DSLs) are visual or textual languages specialised in solv-
ing problems for specific domains, as opposed to general-purpose languages (GPLs), which
provide mechanisms to solve problems in any domain [18]. It is important to note that
a higher degree of specialisation means that new DSLs can be created to solve specific
problems, and DSLs can solve problems related to their domain faster than GPLs can [19].
Popular examples of DSLs are HTML (Hypertext Markup Language) [20] and CSS (Cascad-
ing Style Sheets) [21] (for web pages), or LaTeX (for technical documentation) [22].

In this study, we focus on DSLs for the specification of business applications. A
problem faced by development teams in the IT industry is the language barrier between
software developers (responsible for building such applications) and business analysts or
domain experts (responsible for specifying the business and user requirements). These
DSLs can contribute [18,23] to (1) increasing the developer’s productivity because they
are simpler to understand and write, (2) reducing the language barrier between different
stakeholders, and (3) increasing the overall productivity of the development team.

2.2. Low-Code Development Platforms

Low-code development platforms started to grow as the need to create applications
that quickly adapt to urgent market demands increased [4–7,24]. These platforms pro-
duce applications whose source code is mostly automatically generated rather than being
hand-coded as it occurred traditionally. Based on code generation features, this approach
aims to reduce delivery times and the size of the teams required to build them. On aver-
age, low-code platforms can decrease the time to produce a fully functional system from
months to days, or from years to weeks, depending on the complexity of the needs of their
customers [25].

The reduced need for manual code allows professionals without an IT background
to design and build complex systems using their domain expertise to define application
specifications, which may be used to automatically generate fully functional software
products. For instance, a study conducted by Gartner in June 2021 predicts that non-IT
professionals will build around 80% of technology products and services by 2024 [26]. This

Appl. Sci. 2022, 12, 9556 4 of 26

trend is fuelled by the growth of low-code software development platforms and the use of
artificial intelligence applied to the automatic generation of code [27].

Moreover, the “low-code” trend is not exclusive to the industry. Some academic
research has been conducted towards analysing the evolution of low-code platforms,
focusing on their promises and limitations. For example, Frank et al. [5] perform an
exploratory study in the market of low-code platforms to determine whether and to what
extent the promises and prospects of low-code platforms are appropriate. Their study did
not find evidence that low-code platforms go beyond the state of the art in the research.
However, the authors acknowledge that the “low-code” trend raises awareness of the
importance of researching alternative representations to code. Overeem [6] discusses the
evolution of low-code platforms and how they can support the new generation of digital
companies. For instance, the author discusses how software applications generated by
low-code platforms must include features of modern software systems, such as event
sourcing [28], API management [29], and evolution supporting architecture [30], in order
to be an effective tool to support the development of complex software systems. Bock
et al. [4] provide a balanced account of the current trend of low-code platforms. The authors
discuss how low-code platforms compare with the current status of research, and what
opportunities for future research arise from the present attention to low-code platforms.
Similarly, their analysis did not provide evidence that the individual components of low-
code platforms are radical innovations but that the momentum generated by the “low-code”
trend gives rise to other significant research opportunities.

2.3. ITLingo ASL

ITLingo ASL (or just ASL for brevity) [3] is a specification language to define software
business applications and is part of the ITLingo Initiative [17]. ASL combines some concepts
from ITLingo RSL and OMG IFML languages. ITLingo RSL is a requirement and test
specification language [31–34]. OMG IFML language is a modelling language to describe
the user interface aspects of an application front-end [35].

The fundamental concepts (relevant for this paper) provided by ASL are (1) data
entities and enumerations, which represent domain-specific concepts; (2) UI elements,
such as UI containers, components, and parts; (3) actors, who represent roles played by
users or other systems; and (4) use cases, which represent interactions between the actor(s)
and the system under consideration. These concepts are organised in the following key
architectural views: data view and use case view (also based on the RSL language) and
user interface view (inspired by the IFML language).

To assist the writing of *SL specifications (namely, ASL specifications), some software
tools have been offered within the context of the ITLingo Initiative. Currently, authoring
ASL specifications is best supported by ITLingo-Studio, a specialised tool for rigorously
writing *SL specifications [17]. However, a web version of ITLingo-Studio is being de-
veloped, named ITLingo-Cloud. This platform aims to bring multi-organisation and
multi-project collaboration features to the ITLingo ecosystem. Figure 2 shows some of
the features provided by ITLingo-Studio to aid the specification process, such as syntax
highlighting and error checking.

2.4. Quidgest Genio

Quidgest Genio (or just Genio for brevity) is a low-code software development plat-
form developed by Quidgest, a multinational technology company based in Portugal [36].
Genio is defined as an extreme low-code platform (rather than simply a low-code platform)
since, according to Quidgest, solutions generated by Genio are composed of, on average,
only 2% of manual code [8]. Since most of the source code is automatically generated, the
resulting systems are easily maintainable and adaptable to new market demands.

Developing software systems in Genio follows a model-driven engineering approach;
most of the effort is put into creating models that can be used by any business process,
rather than following a process-driven approach by specifying distinct business processes.

Appl. Sci. 2022, 12, 9556 5 of 26

Genio acts as an IDE that supports editing data entities, business rules, forms, and
menus of software applications rather than source code. Genio’s user interface is shown in
Figure 3, including a menu with the main concepts that can be defined.

Figure 2. ITLingo-Studio development environment for ASL.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 26

Figure 2. ITLingo-Studio development environment for ASL.

2.4. Quidgest Genio

Quidgest Genio (or just Genio for brevity) is a low-code software development plat-

form developed by Quidgest, a multinational technology company based in Portugal [36].

Genio is defined as an extreme low-code platform (rather than simply a low-code plat-

form) since, according to Quidgest, solutions generated by Genio are composed of, on

average, only 2% of manual code [8]. Since most of the source code is automatically gen-

erated, the resulting systems are easily maintainable and adaptable to new market de-

mands.

Developing software systems in Genio follows a model-driven engineering ap-

proach; most of the effort is put into creating models that can be used by any business

process, rather than following a process-driven approach by specifying distinct business

processes.

Genio acts as an IDE that supports editing data entities, business rules, forms, and

menus of software applications rather than source code. Genio’s user interface is shown

in Figure 3, including a menu with the main concepts that can be defined.

Figure 3. Quidgest Genio’s graphical interface. Figure 3. Quidgest Genio’s graphical interface.

3. Comparison of ASL and Genio Languages

This section compares and discusses ASL and Genio based on their language meta-
models to draw initial conclusions about their closeness and alignments. This comparison
aims to identify: (1) concepts that are defined in both ASL and Genio so that the ASL2Genio
generator can transform them directly; and (2) concepts that are defined in Genio but not in
ASL, so we can design extensions to ASL and later update the generator accordingly.

This analysis focuses on the following groups of concepts usually found in the speci-
fication of business applications: data entities, user interface (UI), actors, use cases, and
related concepts.

Appl. Sci. 2022, 12, 9556 6 of 26

A fictitious “Invoice Management System” (IMS) supports our analysis and discussion.
The following text presents a summary description of the IMS informal requirements,
which are further detailed in [32,34]:

“The Invoice Management System (IMS) is a system that allows users to manage cus-
tomers, products, and invoices. An IMS user has a user account and is assigned to user
roles, such as operator, manager, and customer. For each customer, the system shall
maintain the following information: name, fiscal id, logo image, address, bank details, and
additional information such as basic personal contact information. Each product must
have only one VAT category and maintain the respective current VAT value. Additionally,
the system should maximise the productivity of its users by using computed fields, so the
users only need to focus on what is strictly necessary. [...]”

3.1. Data Entities

The elicitation and representation of data entities are usually defined as the first steps
of the development process of model-driven business applications (in parallel with use
cases or scenarios specification). Data entities denote the key concepts used in domain
modelling, data modelling, or data specification [32,37].

Figure 4 shows a fragment of ASL metamodel focused on data specification, which
includes DataEntity, DataAttribute, and Constraints concepts. A DataEntity denotes a data
element defined by several DataEntityConstraints and DataAttributes. A DataAttribute
represents a data value of a particular type (e.g., Integer or String) and is characterised
by several DataAttributeConstraints. A DataAttributeConstraint can be used to mark a
DataAttribute as a primary key of a DataEntity, to reference other DataAttributes denoting
foreign keys, etc.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 26

3. Comparison of ASL and Genio Languages

This section compares and discusses ASL and Genio based on their language meta-

models to draw initial conclusions about their closeness and alignments. This comparison

aims to identify: (1) concepts that are defined in both ASL and Genio so that the

ASL2Genio generator can transform them directly; and (2) concepts that are defined in

Genio but not in ASL, so we can design extensions to ASL and later update the generator

accordingly.

This analysis focuses on the following groups of concepts usually found in the spec-

ification of business applications: data entities, user interface (UI), actors, use cases, and

related concepts.

A fictitious “Invoice Management System” (IMS) supports our analysis and discus-

sion. The following text presents a summary description of the IMS informal require-

ments, which are further detailed in [32,34]:

“The Invoice Management System (IMS) is a system that allows users to manage cus-

tomers, products, and invoices. An IMS user has a user account and is assigned to user

roles, such as operator, manager, and customer. For each customer, the system shall

maintain the following information: name, fiscal id, logo image, address, bank details,

and additional information such as basic personal contact information. Each product

must have only one VAT category and maintain the respective current VAT value. Ad-

ditionally, the system should maximise the productivity of its users by using computed

fields, so the users only need to focus on what is strictly necessary. [...]”

3.1. Data Entities

The elicitation and representation of data entities are usually defined as the first steps

of the development process of model-driven business applications (in parallel with use

cases or scenarios specification). Data entities denote the key concepts used in domain

modelling, data modelling, or data specification [32,37].

Figure 4 shows a fragment of ASL metamodel focused on data specification, which

includes DataEntity, DataAttribute, and Constraints concepts. A DataEntity denotes a

data element defined by several DataEntityConstraints and DataAttributes. A DataAttrib-

ute represents a data value of a particular type (e.g., Integer or String) and is characterised

by several DataAttributeConstraints. A DataAttributeConstraint can be used to mark a

DataAttribute as a primary key of a DataEntity, to reference other DataAttributes denot-

ing foreign keys, etc.

Figure 4. Partial ASL metamodel with data entities-related constructs (UML notation).

Spec. 1 shows a partial ASL specification of data entities that support the IMS system,

considering some of the usual properties an invoice (and invoice lines) shall include.

class Partial ASL metamodel with data entities related constructs

DataEntity

- name: string

- nameAlias: string

DataEntityConstraint

- isReadOnly: boolean

- isEncrypted: boolean

DataAttribute

- name: string

- nameAlias: string

DataAttributeConstraint

- isPrimaryKey: boolean

- isNotNull: boolean

- isUnique: boolean

DataAttributeType

DataAttributeTypeOriginal DataEnumeration

ForeignKey

«enumeration»

DataAttributeTypeOriginal

 Integer

 Double

 Boolean

 Currency

 Datetime

 String

 File

 Image

+type

+toField

+foreignKey

+targetEntity

+type

*1

0..*

1

0..* 1

0..*

1

Figure 4. Partial ASL metamodel with data entities-related constructs (UML notation).

Spec. 1 shows a partial ASL specification of data entities that support the IMS system,
considering some of the usual properties an invoice (and invoice lines) shall include.

On the other hand, Figure 5 shows a fragment of Genio’s metamodel focusing on data
entities and related constructs based on Genio’s terminology. A Table aggregates a set of
TableFields and WriteConditions. TableFields are similar to ASL’s DataAttributes, repre-
senting a data value with a particular data type. However, Genio supports the specification
of different types of formulas, which allow these values to be automatically computed.
TableFields can also reference Enumerations, which aggregate a set of Enumeration el-
ements uniquely identified by their id and include a user-friendly description. Finally,
WriteConditions are logical expressions that can be defined to enforce business rules at the
Table level. For instance, considering the data attribute “Value Without VAT” of the data

Appl. Sci. 2022, 12, 9556 7 of 26

entity “Invoice”, a WriteCondition can be employed to validate if this value is greater than
or equal to zero. If the condition is not met, the record cannot be updated.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 26

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

DataEntity e_Invoice “Invoice” : Document [
attribute ID “Invoice ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute customerID “Customer ID” : Integer [constraints (NotNull ForeignKey(e_Customer))]
attribute dateCreation “Creation Date” : Date [defaultValue “today” constraints (NotNull)]
attribute dateApproval “Approval Date”: Date
attribute datePaid “Payment Date” : Date
attribute dateDeleted “Delete Date” : Date
attribute isApproved “Is Approved” : Boolean [defaultValue “False”]
attribute totalValueWithoutVAT “Total Value Without VAT” : Decimal(16.2) [constraints

(NotNull)]
attribute totalValueWithVAT “Total Value With VAT” : Decimal(16.2) [constraints (NotNull)]
attribute totalInvoiceLines “Total invoice lines”: Integer
]

DataEntity e_InvoiceLine “InvoiceLine” : Document [
attribute ID “InvoiceLine ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute invoiceID “Invoice ID” : Integer [constraints (NotNull ForeignKey(e_Invoice))]
attribute productID “Product ID” : Integer [constraints (NotNull ForeignKey(e_Product))]
attribute order “InvoiceLine Order” : Integer [constraints (NotNull)]
attribute valueWithoutVAT “Value Without VAT” : Decimal
attribute valueWithVAT “Value With VAT”: Decimal
]

Spec. 1. ASL specification of the “Invoice” and “InvoiceLine” data entities (IMS example).

On the other hand, Figure 5 shows a fragment of Genio’s metamodel focusing on

data entities and related constructs based on Genio’s terminology. A Table aggregates a

set of TableFields and WriteConditions. TableFields are similar to ASL’s DataAttributes,

representing a data value with a particular data type. However, Genio supports the spec-

ification of different types of formulas, which allow these values to be automatically com-

puted. TableFields can also reference Enumerations, which aggregate a set of Enumera-

tion elements uniquely identified by their id and include a user-friendly description. Fi-

nally, WriteConditions are logical expressions that can be defined to enforce business

rules at the Table level. For instance, considering the data attribute “Value Without VAT”

of the data entity “Invoice”, a WriteCondition can be employed to validate if this value is

greater than or equal to zero. If the condition is not met, the record cannot be updated.

Figure 5. Partial Genio metamodel with data entities-related constructs (UML notation).

class Basic Class Diagram with Attributes

Table

- id: text

- designation: text

- designationPlural: text

Table Field

- id: text

- designation: text

- order: number

- isPrimaryKey: logical

- isNotNull: logical

- isUnique: logical

- humanKey: number

- formula: text

Enumeration

- id: text

- designation: text

«enumeration»

Type

 Primary key

 Foreign key

 Text

 Number

 Date

 Logical

 Enumeration

 Document

Enumeration

Element

- id: text

- order: number

- caption: text

«enumeration»

Formula Type

 Arithmetic

 Linked Sum

Write Condition

- condition: text

- message: text

When the type of

the field is

"Enumeration"

When the type of the field

is "Foreign Key"

+enum

+related

Table

1..*

1

+formulaType

+type

0..*

1

0..*

+relatedField

Spec. 1. ASL specification of the “Invoice” and “InvoiceLine” data entities (IMS example).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 26

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

DataEntity e_Invoice “Invoice” : Document [
attribute ID “Invoice ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute customerID “Customer ID” : Integer [constraints (NotNull ForeignKey(e_Customer))]
attribute dateCreation “Creation Date” : Date [defaultValue “today” constraints (NotNull)]
attribute dateApproval “Approval Date”: Date
attribute datePaid “Payment Date” : Date
attribute dateDeleted “Delete Date” : Date
attribute isApproved “Is Approved” : Boolean [defaultValue “False”]
attribute totalValueWithoutVAT “Total Value Without VAT” : Decimal(16.2) [constraints

(NotNull)]
attribute totalValueWithVAT “Total Value With VAT” : Decimal(16.2) [constraints (NotNull)]
attribute totalInvoiceLines “Total invoice lines”: Integer
]

DataEntity e_InvoiceLine “InvoiceLine” : Document [
attribute ID “InvoiceLine ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute invoiceID “Invoice ID” : Integer [constraints (NotNull ForeignKey(e_Invoice))]
attribute productID “Product ID” : Integer [constraints (NotNull ForeignKey(e_Product))]
attribute order “InvoiceLine Order” : Integer [constraints (NotNull)]
attribute valueWithoutVAT “Value Without VAT” : Decimal
attribute valueWithVAT “Value With VAT”: Decimal
]

Spec. 1. ASL specification of the “Invoice” and “InvoiceLine” data entities (IMS example).

On the other hand, Figure 5 shows a fragment of Genio’s metamodel focusing on

data entities and related constructs based on Genio’s terminology. A Table aggregates a

set of TableFields and WriteConditions. TableFields are similar to ASL’s DataAttributes,

representing a data value with a particular data type. However, Genio supports the spec-

ification of different types of formulas, which allow these values to be automatically com-

puted. TableFields can also reference Enumerations, which aggregate a set of Enumera-

tion elements uniquely identified by their id and include a user-friendly description. Fi-

nally, WriteConditions are logical expressions that can be defined to enforce business

rules at the Table level. For instance, considering the data attribute “Value Without VAT”

of the data entity “Invoice”, a WriteCondition can be employed to validate if this value is

greater than or equal to zero. If the condition is not met, the record cannot be updated.

Figure 5. Partial Genio metamodel with data entities-related constructs (UML notation).

class Basic Class Diagram with Attributes

Table

- id: text

- designation: text

- designationPlural: text

Table Field

- id: text

- designation: text

- order: number

- isPrimaryKey: logical

- isNotNull: logical

- isUnique: logical

- humanKey: number

- formula: text

Enumeration

- id: text

- designation: text

«enumeration»

Type

 Primary key

 Foreign key

 Text

 Number

 Date

 Logical

 Enumeration

 Document

Enumeration

Element

- id: text

- order: number

- caption: text

«enumeration»

Formula Type

 Arithmetic

 Linked Sum

Write Condition

- condition: text

- message: text

When the type of

the field is

"Enumeration"

When the type of the field

is "Foreign Key"

+enum

+related

Table

1..*

1

+formulaType

+type

0..*

1

0..*

+relatedField

Figure 5. Partial Genio metamodel with data entities-related constructs (UML notation).

By examining how common concepts are expressed in both languages, we can con-
clude the similarity between these two metamodels. For instance, some aspects, such as
identifiers, titles, or constraints, are described similarly in both languages. However, con-
cepts like a field’s type are not directly translatable, requiring additional mapping between
the representations in both languages. Finally, some minor aspects (such as the plural form
of a field’s title) can be defined in Genio but not in ASL, and there are some limitations in
Genio specifications when compared to ASL, such as the character limit imposed on the
definition of data entity and data attribute identifiers.

Still, performing an in-depth analysis focused on data attributes reveals key differences
between them that our solution shall take into consideration:

Appl. Sci. 2022, 12, 9556 8 of 26

Primary keys. In ASL, the concept of a primary key is defined as a constraint of the
data attribute, whereas Genio implements it as a data attribute type. In ASL, it is possible
to specify different data entities that use distinct data attribute types for their primary
key data attributes, while Genio enforces that the same data attribute type is used for all
primary keys. This is a limitation in Genio, as the optimal data attribute type to be used as
a data entity’s primary key depends on its most common use cases. For instance, using
integer primary keys reduces the size of the database, while using GUID primary keys
improves the generation of random new keys.

Data enumerations. Regarding the definition of data enumerations, ASL can be
improved since it allows only the text values to be specified, while Genio data enumerations
have keys associated with the values. For example, the value “Invoice” of data enumeration
“Document type” could have an additional key such as “I”. These keys could be used
for internal use only (never exposed to the application users), such as to reduce the size
of the data stored in the database or to uniquely identify the selected value when using
multi-language systems.

Formulas. ASL supports the definition of whether a data attribute’s value is derived
but offers no practical way of specifying how to compute it. In Genio, a field is implicitly
derived when its value is computed using a formula. Formulas are expressions (written
using Genio’s general purpose expression language) evaluated at different moments of the
application runtime. Commonly used types of formulas are arithmetic formulas, which
can evaluate logical expressions to compute a field value.

Write conditions. As discussed, Genio supports the specification of write conditions,
which are business rules written in the form of logical expressions (using Genio’s general
purpose expression language) that must be enforced when modifying the value of a given
record. These expressions are commonly present in Genio data models. ASL, on the other
hand, currently does not support the definition of such conditions.

Human-readable keys. Genio uses a property called “human key” to mark a field
of a given table as one of the most suitable to represent the record on the user interface
(there may be multiple fields marked as human keys). For instance, a primary key is an
adequate field to uniquely identify a record during internal operations. Still, it does not
provide much information to the application users when displayed on the screen. For that
purpose, Genio uses fields that are marked as human keys. For example, the fields “Name”
or “Fiscal ID” are potential candidates to be marked as a human key for the table “Person”.
In ASL, this type of specification is not yet possible.

3.2. UI Elements

Business software applications depend on user input to support data management
tasks that build most of the knowledge of these systems. UI elements, such as menus and
forms, are commonly defined to support CRUD (i.e., short for “create, read, update, and
delete”) and other related operations [38,39].

For the specification of UI elements, ASL follows the IFML terminology, in which the
UI structure is defined with UI containers, UI components, and UI parts. The rules for
expressing such elements are based on the IFML (Interaction Flow Modeling Language) [34].
UI components supported by ASL include lists, details, forms, dialogues, and menus [3,35].
Figure 6 shows a fragment of ASL’s metamodel with a focus on UI components and other
constructs directly related to them. A UIContainer aggregates a set of UIComponents, and
a UIComponent is bound to a given DataEntity and aggregates UIComponentParts. A
UIComponentPart is bound to a given DataAttribute and can be defined as a field (i.e.,
a part that is visible to the user, may trigger events, and may receive values through
parameter passing) or a slot (i.e., a value placeholder that is not visible to the user).

Appl. Sci. 2022, 12, 9556 9 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 26

[3,35]. Figure 6 shows a fragment of ASL’s metamodel with a focus on UI components and

other constructs directly related to them. A UIContainer aggregates a set of UICompo-

nents, and a UIComponent is bound to a given DataEntity and aggregates UIComponent-

Parts. A UIComponentPart is bound to a given DataAttribute and can be defined as a field

(i.e., a part that is visible to the user, may trigger events, and may receive values through

parameter passing) or a slot (i.e., a value placeholder that is not visible to the user).

Figure 6. Partial ASL metamodel with UI elements (UML notation).

As suggested by the UIComponentType enumeration, a UIComponent can be used

to specify diverse types of UI elements, such as Forms or Lists, which are both directly

offered by Genio. Spec. 2 shows an example specification of a Form and a List bound to

the “Invoice” DataEntity.

3.2.1. UI Forms

Information systems often use forms to support CRUD operations on data entities.

Figure 7 shows a fragment of Genio’s metamodel focused on forms and other related con-

structs. For instance, it shows that Forms shall be bound to a given Table and aggregate a

set of Form fields, each bound to a given Table field. In Genio, as suggested in Figure 7, a

Form supports the definition of the minimum access level (MAL) required to read and

update the record. This means that when a user attempts to open a form to perform a

certain action (for example, to update a record), the system verifies if the user’s access

level is greater or equal to the minimum access level allowed for the corresponding task

(in this case, to update the record).

Regarding Genio Forms, we can create a direct mapping to ASL. In particular, ASL’s

UIComponent may be directly used to represent a Genio form’s key concepts without

requiring any expansion. For example, the form itself may be defined as a UIComponent,

and its fields each as a UIComponentPart.

class Basic Class Diagram with Attributes

UIComponent

- name: string

- nameAlias: string

UIComponentPart

- name: string

- nameAlias: string

«enumeration»

UIComponentType

 List

 Details

 Form

 Dialog

 Menu

«enumeration»

UIComponentPartType

 Field

 Slot

 Other

UIContainer

DataEntity

DataAttribute

«enumeration»

UIContainerType

 Window

 Menu

 Other

+dataAttributeBinding

* 0..1

+type

+type

1

0..*

1

0..*

1

+type

1

+dataBinding

* 0..1

0..*

1

Figure 6. Partial ASL metamodel with UI elements (UML notation).

As suggested by the UIComponentType enumeration, a UIComponent can be used
to specify diverse types of UI elements, such as Forms or Lists, which are both directly
offered by Genio. Spec. 2 shows an example specification of a Form and a List bound to the
“Invoice” DataEntity.

3.2.1. UI Forms

Information systems often use forms to support CRUD operations on data entities.
Figure 7 shows a fragment of Genio’s metamodel focused on forms and other related
constructs. For instance, it shows that Forms shall be bound to a given Table and aggregate
a set of Form fields, each bound to a given Table field. In Genio, as suggested in Figure 7,
a Form supports the definition of the minimum access level (MAL) required to read and
update the record. This means that when a user attempts to open a form to perform a
certain action (for example, to update a record), the system verifies if the user’s access level
is greater or equal to the minimum access level allowed for the corresponding task (in this
case, to update the record).

Regarding Genio Forms, we can create a direct mapping to ASL. In particular, ASL’s
UIComponent may be directly used to represent a Genio form’s key concepts without
requiring any expansion. For example, the form itself may be defined as a UIComponent,
and its fields each as a UIComponentPart.

3.2.2. UI Lists

Like Forms, Lists are UI components commonly found in information systems op-
timised for data reading, searching, and filtering purposes. Lists usually show data in
tabular views and help users deal with large amounts of data.

In Genio, lists are implemented as a type of menu entry. Additionally, Genio supports
the definition of lists as form fields, allowing them to be rendered inside forms, which helps
list-related records. Figure 8 shows a fragment of Genio’s metamodel focusing on menu
pages and other related constructs.

Appl. Sci. 2022, 12, 9556 10 of 26Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 26

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

UIContainer Invoices “Invoices”: Window [
component InvoiceList : List : List_Table [
dataBinding e_Invoice [orderBy e_Invoice.dateCreation DESC]

part uip_Customer “Customer” : Field : Field_Output
[dataAttributeBinding e_Customer.customerName]
part uip_dateCreation “Creation Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateCreation]
part uip_dateApproval “Approval Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateApproval]
part uip_datePaid “Payment Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.datePaid]
part uip_dateDeleted “Delete Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateDeleted]
part uip_totalValueWithoutVAT “Total Value Without VAT” : Field : Field_Output
[dataAttributeBinding e_Invoice.totalValueWithoutVAT]
part uip_totalValueWithVAT “Total Value With VAT” : Field : Field_Output
[dataAttributeBinding e_Invoice.totalValueWithVAT]
]

component uiCo_Filter_Invoice : Details [dataBinding e_Invoice]
component uiCo_Search_Invoice : Details [dataBinding e_Invoice]

component uiCo_Actions : Menu [
event ev_read “View Invoice” : Submit : Submit_Read [navigationFlowTo uiCt_InvoiceReader]
]
]

UIContainer uiCt_InvoiceReader : Window [
component uiCo_ReadInvoice “Consult Invoice” : Form [
dataBinding e_Invoice

part customer “Customer” : Field : Field_Output
[dataAttributeBinding e_Customer.customerName]
part dateCreation “Creation Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateCreation]
part dateApproval “Approval Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateApproval]
part datePaid “Payment Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.datePaid]
part dateDeleted “Delete Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateDeleted]
part totalValueWithoutVAT “Total Value Without VAT” : Field : Field_Output
[dataAttributeBinding e_Invoice.totalValueWithoutVAT]
part totalValueWithVAT “Total Value With VAT” : Field : Field_Output
[dataAttributeBinding e_Invoice.totalValueWithVAT]
]

event ev_cancel “Back” : Submit : Submit_Back [navigationFlowTo Invoices]
]

Spec. 2. ASL specification of a Form and a List for the “Invoice” data entity (IMS example).

Figure 7. Partial Genio metamodel with form-related constructs (UML notation).

class Basic Class Diagram with Attributes

Form

- id: text

- designation: text

Form Field

- id: text

- designation: text

«enumeration»

Form type

 Normal

 Popup

Table

Table Field

Access Level

- levelCode: string

- description: string

e.g., Manager,

Operator, Customer

0..*

1

0..*

1

+baseArea+type

+MAL for

update

+field

+MAL for

read

Spec. 2. ASL specification of a Form and a List for the “Invoice” data entity (IMS example).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 26

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

UIContainer Invoices “Invoices”: Window [
component InvoiceList : List : List_Table [
dataBinding e_Invoice [orderBy e_Invoice.dateCreation DESC]

part uip_Customer “Customer” : Field : Field_Output
[dataAttributeBinding e_Customer.customerName]
part uip_dateCreation “Creation Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateCreation]
part uip_dateApproval “Approval Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateApproval]
part uip_datePaid “Payment Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.datePaid]
part uip_dateDeleted “Delete Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateDeleted]
part uip_totalValueWithoutVAT “Total Value Without VAT” : Field : Field_Output
[dataAttributeBinding e_Invoice.totalValueWithoutVAT]
part uip_totalValueWithVAT “Total Value With VAT” : Field : Field_Output
[dataAttributeBinding e_Invoice.totalValueWithVAT]
]

component uiCo_Filter_Invoice : Details [dataBinding e_Invoice]
component uiCo_Search_Invoice : Details [dataBinding e_Invoice]

component uiCo_Actions : Menu [
event ev_read “View Invoice” : Submit : Submit_Read [navigationFlowTo uiCt_InvoiceReader]
]
]

UIContainer uiCt_InvoiceReader : Window [
component uiCo_ReadInvoice “Consult Invoice” : Form [
dataBinding e_Invoice

part customer “Customer” : Field : Field_Output
[dataAttributeBinding e_Customer.customerName]
part dateCreation “Creation Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateCreation]
part dateApproval “Approval Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateApproval]
part datePaid “Payment Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.datePaid]
part dateDeleted “Delete Date” : Field : Field_Output
[dataAttributeBinding e_Invoice.dateDeleted]
part totalValueWithoutVAT “Total Value Without VAT” : Field : Field_Output
[dataAttributeBinding e_Invoice.totalValueWithoutVAT]
part totalValueWithVAT “Total Value With VAT” : Field : Field_Output
[dataAttributeBinding e_Invoice.totalValueWithVAT]
]

event ev_cancel “Back” : Submit : Submit_Back [navigationFlowTo Invoices]
]

Spec. 2. ASL specification of a Form and a List for the “Invoice” data entity (IMS example).

Figure 7. Partial Genio metamodel with form-related constructs (UML notation).

class Basic Class Diagram with Attributes

Form

- id: text

- designation: text

Form Field

- id: text

- designation: text

«enumeration»

Form type

 Normal

 Popup

Table

Table Field

Access Level

- levelCode: string

- description: string

e.g., Manager,

Operator, Customer

0..*

1

0..*

1

+baseArea+type

+MAL for

update

+field

+MAL for

read

Figure 7. Partial Genio metamodel with form-related constructs (UML notation).

Appl. Sci. 2022, 12, 9556 11 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 26

3.2.2. UI Lists

Like Forms, Lists are UI components commonly found in information systems opti-

mised for data reading, searching, and filtering purposes. Lists usually show data in tab-

ular views and help users deal with large amounts of data.

In Genio, lists are implemented as a type of menu entry. Additionally, Genio sup-

ports the definition of lists as form fields, allowing them to be rendered inside forms,

which helps list-related records. Figure 8 shows a fragment of Genio’s metamodel focus-

ing on menu pages and other related constructs.

Figure 8. Partial Genio metamodel with list-related constructs (UML notation).

In Genio, a support form is a form that is used to perform CRUD operations of a

given table in the context of a specific list. As shown in Figure 8, Genio’s user interface

makes it easy to specify which form should be used for this purpose. This is possible since,

during code generation, Genio automatically creates the appropriate buttons in the user

interface to support this behaviour. We can specify the necessary buttons and their proper

actions to achieve similar ASL results.

3.3. Actors and Use Cases

ASL supports the specification of actors and use cases. Actors represent the entities

that interact with the system, namely user roles and external systems [31,34]. Use cases

represent a sequence of actions performed by the system’s actors, such as CRUD opera-

tions, as well as other specific actions (e.g., approve, export) [31,34]. Figure 9 shows a frag-

ment of ASL’s metamodel with a focus on actors and use cases. For instance, it shows that:

(1) UseCase aggregates a set of UCActions, operates around a given DataEntity, and has

a primary Actor; (2) the primary Actor of the UseCase can either be a user of the system

or an external system; (3) a UseCase can be classified as a certain UseCaseType and each

UCAction as an ActionType.

class Basic Class Diagram with Attributes

Menu Entry

- id: text

- title: text

List Column

- order: number

- title: text

«enumeration»

Menu Entry Type

 List

 N:N List

 Open Web Page

 Dashboard

 Manual Routine

Table

Form

Table Field

0..*

1

+supportForm

+field

+table+type

Figure 8. Partial Genio metamodel with list-related constructs (UML notation).

In Genio, a support form is a form that is used to perform CRUD operations of a given
table in the context of a specific list. As shown in Figure 8, Genio’s user interface makes it
easy to specify which form should be used for this purpose. This is possible since, during
code generation, Genio automatically creates the appropriate buttons in the user interface
to support this behaviour. We can specify the necessary buttons and their proper actions to
achieve similar ASL results.

3.3. Actors and Use Cases

ASL supports the specification of actors and use cases. Actors represent the entities
that interact with the system, namely user roles and external systems [31,34]. Use cases
represent a sequence of actions performed by the system’s actors, such as CRUD operations,
as well as other specific actions (e.g., approve, export) [31,34]. Figure 9 shows a fragment
of ASL’s metamodel with a focus on actors and use cases. For instance, it shows that: (1)
UseCase aggregates a set of UCActions, operates around a given DataEntity, and has a
primary Actor; (2) the primary Actor of the UseCase can either be a user of the system
or an external system; (3) a UseCase can be classified as a certain UseCaseType and each
UCAction as an ActionType.

Spec. 3 shows a partial ASL specification of actors (e.g., aU_Operator and aU_Customer)
and use cases (e.g., uc_CreateInvoice and uc_PrintInvoice). For instance, the use case
uc_CreateInvoice defines the actor aU_Operator, who initiates it, and the involved data
entity e_Invoice.

As defined in ASL, the concept of actor partially exists in Genio, but only the equivalent
of ASL’s actors of type “User” can be defined. The concept of use case is supported in
ASL but not in Genio. Instead, Genio supports the definition of access levels and access
rights. Access levels can be assigned to the end-users (e.g., “Manager”, “Customer”), while
access rights define types of CRUD operations on data entities. For example, users with the
access level “Customer” may read or consult invoices, and only users with the access level
“Manager” may update invoices. Use cases are not explicitly supported in Genio but are an
implicit aspect resulting from the combination of access levels with access rights, as shown
in Figure 7.

Appl. Sci. 2022, 12, 9556 12 of 26Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 26

Figure 9. Partial ASL metamodel focused on actors and use cases (UML notation).

Spec. 3 shows a partial ASL specification of actors (e.g., aU_Operator and aU_Cus-

tomer) and use cases (e.g., uc_CreateInvoice and uc_PrintInvoice). For instance, the use

case uc_CreateInvoice defines the actor aU_Operator, who initiates it, and the involved

data entity e_Invoice.

1
2
3
4
5
6
7
8
9
10
11
12
13

Actor aU_Operator “Operator”: User [description “Operator manages Invoices and Customers”]
Actor aU_Customer “Customer” : User [description “Customer receives Invoices to pay”]

UseCase uc_CreateInvoice “Create Invoice” : EntityCreate [
actorInitiates aU_Operator
dataEntity e_Invoice
actions aCreate
]
UseCase uc_PrintInvoice “Print Invoice” : EntityReport [
actorInitiates aU_Customer
dataEntity e_Invoice
actions aRead
]

Spec. 3. Example specification of actors and use cases in ASL.

As defined in ASL, the concept of actor partially exists in Genio, but only the equiv-

alent of ASL’s actors of type “User” can be defined. The concept of use case is supported

in ASL but not in Genio. Instead, Genio supports the definition of access levels and access

rights. Access levels can be assigned to the end-users (e.g., “Manager”, “Customer”),

while access rights define types of CRUD operations on data entities. For example, users

with the access level “Customer” may read or consult invoices, and only users with the

access level “Manager” may update invoices. Use cases are not explicitly supported in

Genio but are an implicit aspect resulting from the combination of access levels with ac-

cess rights, as shown in Figure 7.

4. ASL Extensions

This research identified concepts supported by ASL and Genio languages, which our

transformation tool can convert directly. However, the study also identified some con-

cepts that ASL did not include at the beginning of this work. This section presents the

extensions added to ASL to improve its alignment with Genio’s metamodel and its flexi-

bility as a platform-independent specification language. Figure 10 shows the extended

ASL metamodel focusing on the proposed changes.

class Basic Class Diagram with Attributes

Actor

- name: string

- nameAlias: string

- description: string

UseCase

- name: string

- nameAlias: string

- description: string

«enumeration»

ActorType

 User

 ExternalSystem

«enumeration»

UseCaseType

 EntityCreate

 EntityRead

 EntityUpdate

 EntityDelete

 EntitiesBrowse

 EntitiesSearch

 Other

DataEntity

UCAction«enumeration»

ActionType

 aCreate

 aRead

 aUpdate

 aDelete

+type

+type

+type

0..*

1

+dataEntity

+primaryActor

Figure 9. Partial ASL metamodel focused on actors and use cases (UML notation).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 26

Figure 9. Partial ASL metamodel focused on actors and use cases (UML notation).

Spec. 3 shows a partial ASL specification of actors (e.g., aU_Operator and aU_Cus-

tomer) and use cases (e.g., uc_CreateInvoice and uc_PrintInvoice). For instance, the use

case uc_CreateInvoice defines the actor aU_Operator, who initiates it, and the involved

data entity e_Invoice.

1
2
3
4
5
6
7
8
9
10
11
12
13

Actor aU_Operator “Operator”: User [description “Operator manages Invoices and Customers”]
Actor aU_Customer “Customer” : User [description “Customer receives Invoices to pay”]

UseCase uc_CreateInvoice “Create Invoice” : EntityCreate [
actorInitiates aU_Operator
dataEntity e_Invoice
actions aCreate
]
UseCase uc_PrintInvoice “Print Invoice” : EntityReport [
actorInitiates aU_Customer
dataEntity e_Invoice
actions aRead
]

Spec. 3. Example specification of actors and use cases in ASL.

As defined in ASL, the concept of actor partially exists in Genio, but only the equiv-

alent of ASL’s actors of type “User” can be defined. The concept of use case is supported

in ASL but not in Genio. Instead, Genio supports the definition of access levels and access

rights. Access levels can be assigned to the end-users (e.g., “Manager”, “Customer”),

while access rights define types of CRUD operations on data entities. For example, users

with the access level “Customer” may read or consult invoices, and only users with the

access level “Manager” may update invoices. Use cases are not explicitly supported in

Genio but are an implicit aspect resulting from the combination of access levels with ac-

cess rights, as shown in Figure 7.

4. ASL Extensions

This research identified concepts supported by ASL and Genio languages, which our

transformation tool can convert directly. However, the study also identified some con-

cepts that ASL did not include at the beginning of this work. This section presents the

extensions added to ASL to improve its alignment with Genio’s metamodel and its flexi-

bility as a platform-independent specification language. Figure 10 shows the extended

ASL metamodel focusing on the proposed changes.

class Basic Class Diagram with Attributes

Actor

- name: string

- nameAlias: string

- description: string

UseCase

- name: string

- nameAlias: string

- description: string

«enumeration»

ActorType

 User

 ExternalSystem

«enumeration»

UseCaseType

 EntityCreate

 EntityRead

 EntityUpdate

 EntityDelete

 EntitiesBrowse

 EntitiesSearch

 Other

DataEntity

UCAction«enumeration»

ActionType

 aCreate

 aRead

 aUpdate

 aDelete

+type

+type

+type

0..*

1

+dataEntity

+primaryActor

Spec. 3. Example specification of actors and use cases in ASL.

4. ASL Extensions

This research identified concepts supported by ASL and Genio languages, which
our transformation tool can convert directly. However, the study also identified some
concepts that ASL did not include at the beginning of this work. This section presents
the extensions added to ASL to improve its alignment with Genio’s metamodel and its
flexibility as a platform-independent specification language. Figure 10 shows the extended
ASL metamodel focusing on the proposed changes.

4.1. Data Attribute’s Formulas

The first extension added to ASL was the support for specifying formulas defined at
the data attribute level. Formulas are expressions that are evaluated at different moments of
the application’s runtime (e.g., when a record is saved in the database) to compute a value
of a corresponding data attribute (or field) based on the value(s) of other data attribute(s).

As shown in Figure 4, Genio supports the specification of different types of formulas.
Upon analysis, we proposed two types of formulas: arithmetic and details formulas.

Arithmetic formula. An arithmetic formula supports the specification of basic arith-
metic operations (e.g., addition, subtraction, multiplication, or division) to compute the
value of its associated data attribute. For instance, considering a data attribute “Value With
VAT” of the data entity “InvoiceLine”, an arithmetic formula defined by “formula arith-
metic (e_InvoiceLine.valueWithoutVAT * e_Product.VATValue)” can be used to calculate
the value (including VAT) of the invoice line.

Details formula. A details formula allows the specification of operations on related
data entities of a given data entity. For example, considering a data attribute “Total

Appl. Sci. 2022, 12, 9556 13 of 26

lines” of the data entity “Invoice”, a details formula defined by “formula details: count
(e_InvoiceLine)” can be used to calculate the total number of lines of an invoice.

To implement the rigorous definition of such formulas, we add a simple yet flexible ex-
pression language [19]. The syntax of this language is similar to other expression languages,
such as the one in Microsoft Excel [40]. Spec. 4 shows an example usage of this expression
language to specify both arithmetic and details formulas in an improved specification of
the “Invoice” data entity.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 26

Figure 10. Partial ASL metamodel with the proposed extensions (UML notation).

4.1. Data Attribute’s Formulas

The first extension added to ASL was the support for specifying formulas defined at

the data attribute level. Formulas are expressions that are evaluated at different moments

of the application’s runtime (e.g., when a record is saved in the database) to compute a

value of a corresponding data attribute (or field) based on the value(s) of other data at-

tribute(s).

As shown in Figure 4, Genio supports the specification of different types of formulas.

Upon analysis, we proposed two types of formulas: arithmetic and details formulas.

Arithmetic formula. An arithmetic formula supports the specification of basic arith-

metic operations (e.g., addition, subtraction, multiplication, or division) to compute the

value of its associated data attribute. For instance, considering a data attribute “Value

With VAT” of the data entity “InvoiceLine”, an arithmetic formula defined by “formula

arithmetic (e_InvoiceLine.valueWithoutVAT * e_Product.VATValue)” can be used to

calculate the value (including VAT) of the invoice line.

Details formula. A details formula allows the specification of operations on related

data entities of a given data entity. For example, considering a data attribute “Total lines”

of the data entity “Invoice”, a details formula defined by “formula details: count (e_In-

voiceLine)” can be used to calculate the total number of lines of an invoice.

To implement the rigorous definition of such formulas, we add a simple yet flexible

expression language [19]. The syntax of this language is similar to other expression lan-

guages, such as the one in Microsoft Excel [40]. Spec. 4 shows an example usage of this

expression language to specify both arithmetic and details formulas in an improved spec-

ification of the “Invoice” data entity.

class ASL Extensions

DataAttribute

- name: string

- nameAlias: string

Formula

ArithmeticFormula DetailsFormula

DataAttributeType

DataEnumeration

DataEnumerationElement

- shortName: string

- name: string

Expression UIComponentPart

+type

* 1

+formula

10..1

+blockIf

0..1

0..*

1+expression

+showIf

0..1

+dataAttributeBinding

*

0..1

+expression

Figure 10. Partial ASL metamodel with the proposed extensions (UML notation).
Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 26

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

DataEntity e_Invoice “Invoice” : Document [
attribute ID “Invoice ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute customerID “Customer ID” : Integer [constraints (NotNull ForeignKey(e_Customer))]
attribute dateCreation “Creation Date” : Date [defaultValue “today” constraints (NotNull)]
attribute dateApproval “Approval Date”: Date
attribute datePaid “Payment Date” : Date
attribute dateDeleted “Delete Date” : Date
attribute isApproved “Is Approved” : Boolean [defaultValue “False”]
attribute totalValueWithoutVAT “Total Value Without VAT” : Decimal(16.2) [
formula details : sum (e_InvoiceLine.valueWithoutVAT)
constraints (NotNull)
]
attribute totalValueWithVAT “Total Value With VAT” : Decimal(16.2) [
formula details : sum (e_InvoiceLine.valueWithVAT)
constraints (NotNull)
]
attribute totalInvoiceLines “Total invoice lines”: Integer [
formula details : count (e_InvoiceLine)
]
]

DataEntity e_InvoiceLine “InvoiceLine” : Document [
attribute ID “InvoiceLine ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute invoiceID “Invoice ID” : Integer [constraints (NotNull ForeignKey(e_Invoice))]
attribute productID “Product ID” : Integer [constraints (NotNull ForeignKey(e_Product))]
attribute order “InvoiceLine Order” : Integer [constraints (NotNull)]
attribute valueWithoutVAT “Value Without VAT” : Decimal
attribute valueWithVAT “Value With VAT” : Decimal [
formula arithmetic (e_InvoiceLine.valueWithoutVAT * e_Product.VATValue)
]
]

Spec. 4. Example usage of formulas for the ASL specification of the “Invoice” data entity.

4.2. UI Elements’ Expressions

Using the same general purpose expression language initially added to ASL to sup-

port the specification of formulas at the data attribute level, it is possible to define other

types of expressions, such as conditions that can help shape the user interface. To this end,

we propose two additional usages of expressions at the UIComponentPart level: ShowIf

and BlockIf conditions.

ShowIf condition. A ShowIf condition is an expression associated with a UICompo-

nentPart that determines whether it should be displayed in the user interface or not. For

instance, considering a Form field “Customer Name” with the ShowIf condition defined

by “showIf (e_Invoice.customerID !=““)”, the ShowIf condition specifies that the field

shall be hidden if the value of the data attribute e_Invoice.customerID is empty.

BlockIf condition. A BlockIf condition is similar to a ShowIf condition as both are

expressions specified at the UIComponentPart level to manipulate the user interface. Un-

like a ShowIf condition, a BlockIf condition determines whether the part should be visible

but blocked from accepting user input rather than being completely removed from the

user interface. For example, considering a Form field “Customer Name” with the BlockIf

condition defined by “blockIf (e_Invoice.customerID !=““)”, the BlockIf condition

specifies that the field shall be blocked if the value of the data attribute e_Invoice.cus-

tomerID is empty.

4.3. Extended Data Enumerations

Another extension added to ASL is the support of key/value pairs of strings to define

data enumerations. Previously, ASL only supported the specification of data enumera-

tions with values (without an associated unique identifier). As discussed in Section 3.1,

using this unique identifier for the data enumeration element brings some advantages.

For example, it makes it possible to uniquely identify an element in multi-language sys-

tems where the associated value is translated according to the user’s preferred language.

Additionally, it contributes to keeping the size of databases as low as possible since the

keys are potentially significantly smaller than their associated values.

Spec. 5 shows an example specification of the data enumeration “Document Type”,

using the newly added unique identifiers.

Spec. 4. Example usage of formulas for the ASL specification of the “Invoice” data entity.

4.2. UI Elements’ Expressions

Using the same general purpose expression language initially added to ASL to support
the specification of formulas at the data attribute level, it is possible to define other types
of expressions, such as conditions that can help shape the user interface. To this end, we

Appl. Sci. 2022, 12, 9556 14 of 26

propose two additional usages of expressions at the UIComponentPart level: ShowIf and
BlockIf conditions.

ShowIf condition. A ShowIf condition is an expression associated with a UICompo-
nentPart that determines whether it should be displayed in the user interface or not. For
instance, considering a Form field “Customer Name” with the ShowIf condition defined by
“showIf (e_Invoice.customerID !=““)”, the ShowIf condition specifies that the field shall be
hidden if the value of the data attribute e_Invoice.customerID is empty.

BlockIf condition. A BlockIf condition is similar to a ShowIf condition as both are
expressions specified at the UIComponentPart level to manipulate the user interface. Unlike
a ShowIf condition, a BlockIf condition determines whether the part should be visible but
blocked from accepting user input rather than being completely removed from the user
interface. For example, considering a Form field “Customer Name” with the BlockIf
condition defined by “blockIf (e_Invoice.customerID !=““)”, the BlockIf condition specifies
that the field shall be blocked if the value of the data attribute e_Invoice.customerID
is empty.

4.3. Extended Data Enumerations

Another extension added to ASL is the support of key/value pairs of strings to define
data enumerations. Previously, ASL only supported the specification of data enumerations
with values (without an associated unique identifier). As discussed in Section 3.1, using this
unique identifier for the data enumeration element brings some advantages. For example,
it makes it possible to uniquely identify an element in multi-language systems where the
associated value is translated according to the user’s preferred language. Additionally, it
contributes to keeping the size of databases as low as possible since the keys are potentially
significantly smaller than their associated values.

Spec. 5 shows an example specification of the data enumeration “Document Type”,
using the newly added unique identifiers.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 26

1
2
3
4
5
6

DataEnumeration DocumentType “Document Type” values (
SI “Standard Invoice”,
CI “Credit Invoice”,
DI “Debit Invoice”,
MI “Mixed Invoice”
)

Spec. 5. Example specification of the data enumeration “Document Type”.

5. ASL2Genio Transformation

The ASL2Genio transformation is another extension to ASL (namely, to ASL’s code

generator), which makes it available in any software tool offered within the ITLingo eco-

system that supports ASL specifications. For Eclipse-based development environments

(ITLingo-Studio) [41], the artefacts are continuously generated as the user changes the

source specification file. These artefacts are available locally in the user’s Eclipse work-

space. Complementary and for Web/Cloud-based editors (ITLingo-Cloud), the user may

click a generation button to start this task when needed. In that case, the server generates

the artefacts and packages them as a zip file so the user can download and use them later

in the scope of the “Import Genio Project” task.

Since Genio’s import and export mechanism is designed to represent Genio projects

in XML format and with a specific directory structure, the proposed generator must meet

these requirements. For instance, some concepts, such as data enumerations, must be gen-

erated within the same XML file, while others, such as data entities, are expected to be

placed in separate files (one file per data entity). Table 1 overviews the expected file and

folder structure of the generated artefacts.

As mentioned above, the ASL2Genio transformation extends to ASL’s code genera-

tor. This code generator is built using the Xtend framework [42] and handles the initial

parsing of an ASL specification file. Then, based on the requested target platform (cur-

rently, the Genio platform), the generator instantiates the appropriate extension.

Figure 11 shows the involved tasks to transform an ASL specification into a Genio

project, including the ASL2Genio transformation and the creation of the Genio project

using the generated XML files.

Table 1. Overview of the structure of Genio XML files.

ASL Element Genio Element Folder File Name (.xml)

DataEntities Tables GENTABEL {Data entity name}

UIComponent Forms GENFORMS {Form name}

UIComponent Menus GENMENUS {Menu name}

- Modules GENMODUL {Module name}

DataEnumerations Enumerations - GENARRS

Actors + UseCases Access levels - GENNIVAC

As discussed in Section 1, this research focuses on designing and implementing the

ASL2Genio transformation. Spec. 6 shows the pseudo-code of the generate method of

ASL’s Genio extension, which was implemented based on the aspects discussed in Section

3 and according to the structure outlined in Table 1.

Spec. 5. Example specification of the data enumeration “Document Type”.

5. ASL2Genio Transformation

The ASL2Genio transformation is another extension to ASL (namely, to ASL’s code
generator), which makes it available in any software tool offered within the ITLingo
ecosystem that supports ASL specifications. For Eclipse-based development environments
(ITLingo-Studio) [41], the artefacts are continuously generated as the user changes the
source specification file. These artefacts are available locally in the user’s Eclipse workspace.
Complementary and for Web/Cloud-based editors (ITLingo-Cloud), the user may click
a generation button to start this task when needed. In that case, the server generates the
artefacts and packages them as a zip file so the user can download and use them later in
the scope of the “Import Genio Project” task.

Since Genio’s import and export mechanism is designed to represent Genio projects
in XML format and with a specific directory structure, the proposed generator must meet
these requirements. For instance, some concepts, such as data enumerations, must be
generated within the same XML file, while others, such as data entities, are expected to be
placed in separate files (one file per data entity). Table 1 overviews the expected file and
folder structure of the generated artefacts.

As mentioned above, the ASL2Genio transformation extends to ASL’s code generator.
This code generator is built using the Xtend framework [42] and handles the initial parsing
of an ASL specification file. Then, based on the requested target platform (currently, the
Genio platform), the generator instantiates the appropriate extension.

Appl. Sci. 2022, 12, 9556 15 of 26

Figure 11 shows the involved tasks to transform an ASL specification into a Genio
project, including the ASL2Genio transformation and the creation of the Genio project
using the generated XML files.

Table 1. Overview of the structure of Genio XML files.

ASL Element Genio Element Folder File Name (.xml)

DataEntities Tables GENTABEL {Data entity name}
UIComponent Forms GENFORMS {Form name}
UIComponent Menus GENMENUS {Menu name}

- Modules GENMODUL {Module name}
DataEnumerations Enumerations - GENARRS
Actors + UseCases Access levels - GENNIVAC

As discussed in Section 1, this research focuses on designing and implementing the
ASL2Genio transformation. Spec. 6 shows the pseudo-code of the generate method of
ASL’s Genio extension, which was implemented based on the aspects discussed in Section 3
and according to the structure outlined in Table 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 26

Figure 11. Proposed approach: Combining ASL with the Genio platform (BPMN notation).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

def void generate() {
// Create a new Genio project
this.createNewProject()

//Normalises identifiers to accommodate Genio constraints
this.normalizeIdentifiers()

// Generate data enumerations (target: GENARRS.xml)
fileSystem.generateFile(“/GENARRS.xml”, this.getEnumerations().compile())

// Generate access levels (NIVAC and NIVMO) (target: GENNIVAC.xml)
fileSystem.generateFile(“/GENNIVAC.xml”, this.getAccessLevels().compile())

// Generate data entities (target: GENTABEL/*.xml)
for (tabel : this.getTables()) {
fileSystem.generateFile(“/GENTABEL/” + table.name + “.xml”, table.compile())
}

// Generate forms (target: GENFORMS/*.xml)
for (form : this.getForms()) {
fileSystem.generateFile(“/GENFORMS/” + form.name + “.xml”, form.compile())
}

// Generate default module (target: GENMODUL/*.xml)
var module = this.getDefaultModule()
fileSystem.generateFile(“/GENMODUL/” + module.Codiprog + “.xml”, module.compile())

// Generate menu entries (target: GENMENU/*.xml)
for (menu : this.getMenus()) {
fileSystem.generateFile(“/GENMENUS/” + menu.name + “.xml”, menu.compile())
}
}

Spec. 6. Pseudo-code of the generate method of ASL’s Genio extension.

6. Case Study: Invoice Management System

This section presents a case study based on the fictitious “Invoice Management Sys-

tem” (IMS). A summary of the informal requirements of IMS is introduced in Section 3.

This case study refers to the specification and development of the IMS application based

on the proposed approach.

BPEL Package1

IT
Li

ng
o-

St
ud

io
G

en
io

Application

Definitions Database

Import Genio

Project

Author Genio

Project

Generate Code

App Spec

(ASL)

Genio Project (XML

export files)

Author ASL Spec Check ASL Spec
Generate Genio

Project

(ASL2Genio

Transformation)
Can

generate?

Source Code

Start Iterate? End

Start End

Yes
YesNo

No

Figure 11. Proposed approach: Combining ASL with the Genio platform (BPMN notation).

Appl. Sci. 2022, 12, 9556 16 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 26

Figure 11. Proposed approach: Combining ASL with the Genio platform (BPMN notation).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

def void generate() {
// Create a new Genio project
this.createNewProject()

//Normalises identifiers to accommodate Genio constraints
this.normalizeIdentifiers()

// Generate data enumerations (target: GENARRS.xml)
fileSystem.generateFile(“/GENARRS.xml”, this.getEnumerations().compile())

// Generate access levels (NIVAC and NIVMO) (target: GENNIVAC.xml)
fileSystem.generateFile(“/GENNIVAC.xml”, this.getAccessLevels().compile())

// Generate data entities (target: GENTABEL/*.xml)
for (tabel : this.getTables()) {
fileSystem.generateFile(“/GENTABEL/” + table.name + “.xml”, table.compile())
}

// Generate forms (target: GENFORMS/*.xml)
for (form : this.getForms()) {
fileSystem.generateFile(“/GENFORMS/” + form.name + “.xml”, form.compile())
}

// Generate default module (target: GENMODUL/*.xml)
var module = this.getDefaultModule()
fileSystem.generateFile(“/GENMODUL/” + module.Codiprog + “.xml”, module.compile())

// Generate menu entries (target: GENMENU/*.xml)
for (menu : this.getMenus()) {
fileSystem.generateFile(“/GENMENUS/” + menu.name + “.xml”, menu.compile())
}
}

Spec. 6. Pseudo-code of the generate method of ASL’s Genio extension.

6. Case Study: Invoice Management System

This section presents a case study based on the fictitious “Invoice Management Sys-

tem” (IMS). A summary of the informal requirements of IMS is introduced in Section 3.

This case study refers to the specification and development of the IMS application based

on the proposed approach.

BPEL Package1

IT
Li

ng
o-

St
ud

io
G

en
io

Application

Definitions Database

Import Genio

Project

Author Genio

Project

Generate Code

App Spec

(ASL)

Genio Project (XML

export files)

Author ASL Spec Check ASL Spec
Generate Genio

Project

(ASL2Genio

Transformation)
Can

generate?

Source Code

Start Iterate? End

Start End

Yes
YesNo

No

Spec. 6. Pseudo-code of the generate method of ASL’s Genio extension.

6. Case Study: Invoice Management System

This section presents a case study based on the fictitious “Invoice Management System”
(IMS). A summary of the informal requirements of IMS is introduced in Section 3. This
case study refers to the specification and development of the IMS application based on the
proposed approach.

6.1. ASL Specification

The process of transforming rigorous requirements into a software business application
starts with their specification. The entire ASL specification of the Invoice Management
System can be consulted in [43]. However, Appendix A presents key aspects that define
the IMS application based on the following views: data (data entities and enumerations),
user interface (UI elements), and use case view (actors and use cases elements).

6.2. Genio Model

Taking the ASL specification as input, we use the ASL2Genio generator to create the
Genio model in XML. Then, we use Genio to import the XML files and create a new project.
Figure 12 shows the table “Invoice” definition, initially specified in ASL. Similarly, the
transformation engine converted any other ASL concepts mapped to Genio, such as data
enumerations, forms, menus, and roles.

The correctness of the transformation rules can be extensively checked by the vast
number of validations that Genio performs on project definitions. These validations check
the specifications for inconsistencies, such as invalid relationships between tables, helping

Appl. Sci. 2022, 12, 9556 17 of 26

to reveal any problems in the ASL2Genio transformation. However, defining a set of unit
tests in ASL could provide more assurance of the reliability of these transformations.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 26

6.1. ASL Specification

The process of transforming rigorous requirements into a software business applica-

tion starts with their specification. The entire ASL specification of the Invoice Manage-

ment System can be consulted in [43]. However, Appendix A presents key aspects that

define the IMS application based on the following views: data (data entities and enumer-

ations), user interface (UI elements), and use case view (actors and use cases elements).

6.2. Genio Model

Taking the ASL specification as input, we use the ASL2Genio generator to create the

Genio model in XML. Then, we use Genio to import the XML files and create a new pro-

ject. Figure 12 shows the table “Invoice” definition, initially specified in ASL. Similarly,

the transformation engine converted any other ASL concepts mapped to Genio, such as

data enumerations, forms, menus, and roles.

The correctness of the transformation rules can be extensively checked by the vast

number of validations that Genio performs on project definitions. These validations check

the specifications for inconsistencies, such as invalid relationships between tables, helping

to reveal any problems in the ASL2Genio transformation. However, defining a set of unit

tests in ASL could provide more assurance of the reliability of these transformations.

Figure 12. Definition of table “Invoice” in Genio.

6.3. Software Business Application

To conclude the process of transforming a rigorous requirements specification into a

software business application, we use Genio’s code generation capabilities. Genio sup-

ports source code generation to different target platforms and technologies, such as

Backoffice C++, ASP.NET MVC, or REST Webservices [8]. Genio’s default generation tar-

get for Web Applications is ASP.NET MVC [44]. Figure 13 illustrates the process of gen-

erating the source code for the project.

Once the code generation task is finished, the steps to compile and deploy the appli-

cation are the same as if the code had been written manually, i.e., as in traditional ap-

proaches. Figure 14 shows a menu page of the Invoice Management System—the list of

registered products.

The user may also perform CRUD operations on the invoices, supported by the “In-

voice” form, as shown in Figure 15.

Figure 12. Definition of table “Invoice” in Genio.

6.3. Software Business Application

To conclude the process of transforming a rigorous requirements specification into a
software business application, we use Genio’s code generation capabilities. Genio supports
source code generation to different target platforms and technologies, such as Backoffice
C++, ASP.NET MVC, or REST Webservices [8]. Genio’s default generation target for Web
Applications is ASP.NET MVC [44]. Figure 13 illustrates the process of generating the
source code for the project.

Once the code generation task is finished, the steps to compile and deploy the ap-
plication are the same as if the code had been written manually, i.e., as in traditional
approaches. Figure 14 shows a menu page of the Invoice Management System—the list of
registered products.

The user may also perform CRUD operations on the invoices, supported by the
“Invoice” form, as shown in Figure 15.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 26

Figure 13. Generating the code for the IMS project in Genio.

Figure 14. List of registered products in the Invoice Management System.

Figure 15. Invoice form (with attributes and invoice lines).

7. Related Work

The recent interest in using low-code platforms to develop software applications has

attracted attention from both the industry and the scientific community. Some studies

have been conducted to work out common limitations expressed by customers of almost

Figure 13. Generating the code for the IMS project in Genio.

Appl. Sci. 2022, 12, 9556 18 of 26

Figure 14. List of registered products in the Invoice Management System.

Figure 15. Invoice form (with attributes and invoice lines).

7. Related Work

The recent interest in using low-code platforms to develop software applications has
attracted attention from both the industry and the scientific community. Some studies
have been conducted to work out common limitations expressed by customers of almost
every low-code platform and opportunities for combining model-driven with low-code
development approaches. This section presents the related work involving the following
aspects: languages and architectural views, model-driven tool interoperability, and low-
code platforms’ interoperability.

Appl. Sci. 2022, 12, 9556 19 of 26

7.1. Languages and Architectural Views

IT organisations have used system and software architecture descriptions to improve
communication among stakeholders and enable them to work more comprehensively and
consistently [45,46]. The ISO/IEC/IEEE 42010:2011 standard defines software engineering
architecture description based on the following concepts [47]: the “architecture” encom-
passes key ideas or characteristics of a system included in its parts, relationships, and
principles of its design and development; the “architecture view” shows the architecture of
a system from a specific perspective; and the “architecture description” is a work product
used to express an architecture.

In the scope of software development, Kruchten discusses software architecture
blueprints based on the “4+1 view model” that encompasses the following architectural
views based on the UML usage: scenarios (or use case), logical, development, process, and
physical views [48]. More recently, Górski proposes the “1+5 architectural views model”
(also based on UML and UML extensions) for the design of cooperating information systems
and especially blockchain solutions [49].

However, based on the ASL and Genio languages, the architectural views discussed
in our paper are just focused on data, user interface, and use case views. The “data view”
and “use case view” are relatively aligned with, respectively, the “logical view” and the
“scenarios view” as proposed by the “4+1 view model” and “1+5 view model”. On the
other hand, these architecture models (as well as modelling languages like UML or SysML)
do not include the “user interface view” as discussed in this paper, as well as found in
languages and MDE tools like WebRatio [50], XIS-Mobile [51], XIS-Web [52], Enterprise
WAE [53], or Kroki [54].

The design of ASL language was strongly influenced by the architecture of modelling
languages like XIS-Mobile and XIS-Web (despite being defined as UML profiles while
ASL is a textual controlled-natural language). However, none of these approaches has
proposed to combine its MDE features with low-code platforms as proposed and discussed
in this research.

7.2. Model-Driven Tool Interoperability

Several pieces of research have addressed interoperability in software engineering
since the 1980s [55]. Depending on the problem addressed, different approaches have been
proposed, operating at distinct levels that achieve different degrees of interoperability. We
analyse existing research on how tool interoperability can be achieved using model-driven
approaches [14].

Bézivin et al. discuss how model-driven engineering approaches can be employed to
solve practical engineering problems [56]. Much like ours, their approach to this challenge
is to use small DSLs with well-focused metamodels, rather than large, generic modelling
languages like UML 2.0. In their work, the authors propose a tool that makes it possible to
perform model transformations to convert the specifications of one tool to another. Addi-
tionally, they identify a series of necessary steps to develop such a tool. This information,
along with the general lessons and conclusions outlined towards the end of the paper, is
valuable to our work.

Markus Voelter and Eelco Visser investigate using domain-specific languages to repre-
sent variability [57]. The authors believe that DSLs can be used to bridge the gap observed
between current and future models and programming languages. A very similar problem is
observed between different low-code platforms, which represents the primary motivation
of our work. Similarly, we employ a DSL to address this problem.

Appl. Sci. 2022, 12, 9556 20 of 26

Brunelière et al. discuss that approaches that operate at the API level are often too
limited to achieve real data interoperability [58]. This issue is the primary motivation for
their work, which proposes the construction of a metamodel-level bridge, similar to the
one we suggest, to achieve interoperability between tools with variable metamodels. The
authors identify a series of four main steps involved in the creation of such a bridge between
distinct metamodels: (1) transcription, (2) syntactic translation, (3) semantic alignment, and
(4) data interchange.

7.3. Low-Code Platforms’ Interoperability

The industry and scientific community’s interest in using low-code platforms to de-
velop software applications has attracted attention. Consequently, several studies have been
conducted to identify or solve common limitations expressed by customers and practitioners.

To our knowledge, no studies have addressed low-code platforms’ interoperability
with concrete solutions. However, we identified some studies that use DSL approaches to
address certain limitations of low-code platforms.

Bragança et al. discuss how SPL engineering can be supported in low-code platforms
using a DSL approach [59]. The proposed solution involves a model-to-model transforma-
tion, which takes as input a representation of the low-code model, such as a JSON file, and
generates its corresponding low-code metamodel. However, the authors classify this task as
semi-automatic; an expert on the low-code platform verifies the generated metamodel. In
our work, the low-code metamodel is not automatically generated. We propose a tool that
has prior knowledge of the low-code platforms’ metamodels that it supports. Naturally,
this approach requires active maintenance to support the latest versions of each low-code
platform, but it allows the transformation process to be completely automatic.

8. Conclusions

This article proposes an end-to-end model-driven approach that aims to accelerate
the development of software business applications by combining rigorous specifications
with common features provided by emerging low-code platforms. In particular, this paper
discusses a concrete application of this approach based on the ASL language and the
Genio platform. Moreover, it discusses the model-to-model transformation, i.e., from
ASL specifications into Genio projects (the ASL2Genio transformation). It then leverages
the code generation capabilities of Genio to generate source code for concrete software
applications (the Genio2Code transformation).

The experience of applying this approach (with the supported tools) to write and
transform the Invoice Management System’s ASL specification into a Genio project allowed
us to identify some benefits and limitations. A key benefit of this approach is that it allows
developers to write rigorous specifications in a platform-independent language without
sacrificing the code generation capabilities of low-code platforms. As the tool gains support
for more low-code platforms, developers can test their code generation capabilities without
necessarily learning them first. Additionally, because ASL specifications are platform-
independent, this could promote interoperability between low-code applications.

On the other hand, a limitation of this approach could be the difficulty of maintaining
the solution. Currently, the transformation mechanism only supports the transformation
of ASL specifications into Genio projects, which could be challenging to maintain. As
other low-code platforms would be supported, this could become complex to manage.
Despite this issue, the proposed approach can also increase the quality of requirements
specifications and accelerate the development of business applications by digital-savvy
citizen developers.

For future work, we aim to explore the combination of ASL with other low-code
platforms and research their reverse transformations (in this case, from Genio projects
into ASL specifications). If paired, these two developments could represent a promising
step towards achieving interoperability between low-code platforms and, consequently,
a higher level of independence from vendor-specific solutions. Following the work de-

Appl. Sci. 2022, 12, 9556 21 of 26

veloped recently [32,37,60], we also intend to research linguistics patterns and practical
guidelines to better specify business applications, in particular, those most related to the
user interface aspects. Furthermore, we plan to research intra- and inter-dependencies
between ASL constructs and related languages [61,62], considering the minimisation of
their combinatorial effects [63]. Finally, we intend to explore additional concepts and
transformations to increase the overall quality and productivity of the proposed approach,
for instance, considering emerging areas of blockchain and smart contracts [49,64], robotic
process automation [62,65,66], and hyperautomation applications [67].

Author Contributions: Conceptualization, P.G. and A.R.d.S.; Investigation, P.G.; Writing—original
draft, P.G.; Writing—review & editing, A.R.d.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. ASL Specification of the IMS Application

This appendix includes the ASL specification for the IMS (Invoice Management Sys-
tem) application used throughout this paper to support the explanation and discussion of
the proposed approach.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 26

ASL specifications). If paired, these two developments could represent a promising step

towards achieving interoperability between low-code platforms and, consequently, a

higher level of independence from vendor-specific solutions. Following the work devel-

oped recently [32,37,60], we also intend to research linguistics patterns and practical

guidelines to better specify business applications, in particular, those most related to the

user interface aspects. Furthermore, we plan to research intra- and inter-dependencies be-

tween ASL constructs and related languages [61,62], considering the minimisation of their

combinatorial effects [63]. Finally, we intend to explore additional concepts and transfor-

mations to increase the overall quality and productivity of the proposed approach, for

instance, considering emerging areas of blockchain and smart contracts [49,64], robotic

process automation [62,65,66], and hyperautomation applications [67].

Author Contributions: Conceptualization, P.G. and A.R.d.S.; Investigation, P.G.; Writing—original

draft, P.G.; Writing—review & editing, A.R.d.S. All authors have read and agreed to the published

version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. ASL Specification of the IMS Application

This appendix includes the ASL specification for the IMS (Invoice Management Sys-

tem) application used throughout this paper to support the explanation and discussion of

the proposed approach.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

/* ASL specification of the Invoice Management System (IMS) */

Package ims

/**
System definition
***/

System IMS “Invoice Management System”: Application : Application_Web

/**
Data view: Data Entities
***/

DataEntity e_VAT “VAT Category” : Reference [
attribute VATCode “VAT code” : String [constraints (PrimaryKey NotNull Unique)]
attribute VATName “VAT name”: String
attribute VATValue “VAT value”: String
]

DataEntity e_Product “Product” : Master [
attribute ID “Product ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute vatCode “VAT code” : Integer [constraints (NotNull ForeignKey(e_VAT))]
attribute productName “Name” : String(100)
attribute valueWithoutVAT “Value Without VAT” : Decimal(16.2) [constraints (NotNull)]
attribute valueWithVAT “Value With VAT” : Decimal(16.2) [constraints (NotNull)]
attribute VATValue “VAT value” : Decimal [formula arithmetic (e_VAT.VATValue)]
]

DataEntity e_Customer “Customer” : Master [
attribute ID “Customer ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute customerName “Name” : String(100)
attribute fiscalID “Fiscal ID” : String(9)
attribute logoImage “Logo image” : Image
attribute address “Address” : String(200)
attribute IBAN “IBAN”: String(34)
attribute SWIFT “SWIFT” : String(8)
]

DataEntity e_CustomerVIP “CustomerVIP” : Master [
attribute ID “CustomerVIP ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute customerID “Customer ID” : Integer [constraints (NotNull ForeignKey(e_Customer))]

Appl. Sci. 2022, 12, 9556 22 of 26Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 26

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

attribute discountRate “Discount rate” : Integer
]

DataEntity e_Invoice “Invoice” : Document [
attribute ID “Invoice ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute type “Type” : DataEnumeration enum_DocumentType
attribute customerID “Customer ID” : Integer [constraints (NotNull ForeignKey(e_Customer))]
attribute dateCreation “Creation Date” : Date [defaultValue “today” constraints (NotNull)]
attribute dateApproval “Approval Date”: Date
attribute datePaid “Payment Date” : Date
attribute dateDeleted “Delete Date” : Date
attribute isApproved “Is Approved” : Boolean [defaultValue “False”]
attribute totalValueWithoutVAT “Total Value Without VAT” : Decimal(16.2) [
formula details : sum (e_InvoiceLine.valueWithoutVAT)
constraints (NotNull)
]
attribute totalValueWithVAT “Total Value With VAT” : Decimal(16.2) [
formula details : sum (e_InvoiceLine.valueWithVAT)
constraints (NotNull)
]
attribute totalInvoiceLines “Total invoice lines”: Integer [
formula details : count (e_InvoiceLine)
]
]

DataEntity e_InvoiceLine “InvoiceLine” : Document [
attribute ID “InvoiceLine ID” : Integer [constraints (PrimaryKey NotNull Unique)]
attribute invoiceID “Invoice ID” : Integer [constraints (NotNull ForeignKey(e_Invoice))]
attribute productID “Product ID” : Integer [constraints (NotNull ForeignKey(e_Product))]
attribute order “InvoiceLine Order” : Integer [constraints (NotNull)]
attribute valueWithoutVAT “Value Without VAT” : Decimal
attribute valueWithVAT “Value With VAT” : Decimal [
formula arithmetic (e_InvoiceLine.valueWithoutVAT * e_Product.VATValue)
]
]

/**
Data view: Data enumerations
***/

DataEnumeration enum_DocumentType “Document Type” values (
SI “Standard Invoice”,
CI “Credit Invoice”,
DI “Debit Invoice”,
MI “Mixed Invoice”
)

/**
User interface view: Forms
***/

// “Invoice” Form

component uiCo_InvoiceForm “Invoice” : Form [
dataBinding e_Invoice

part customer “Customer” : Field : Field_Input
[dataAttributeBinding e_Customer.customerName]
part dateCreation “Creation Date” : Field : Field_Input
[dataAttributeBinding e_Invoice.dateCreation]
part dateApproval “Approval Date” : Field : Field_Input
[showIf (e_Invoice.dateCreation != ““) dataAttributeBinding e_Invoice.dateApproval]
part datePaid “Payment Date” : Field : Field_Input
[showIf (e_Invoice.dateApproval != ““) dataAttributeBinding e_Invoice.datePaid]
part dateDeleted “Delete Date” : Field : Field_Input
[dataAttributeBinding e_Invoice.dateDeleted]
part totalValueWithoutVAT “Total Value Without VAT” : Field : Field_Input
[dataAttributeBinding e_Invoice.totalValueWithoutVAT]
part totalValueWithVAT “Total Value With VAT” : Field : Field_Input
[dataAttributeBinding e_Invoice.totalValueWithVAT]
]

UIContainer uiCt_InvoiceCreator : Window [
component uiCo_InvoiceForm

event ev_cancel “Back”: Submit: Submit_Back [navigationFlowTo Invoices]
event ev_save “Save”: Submit: Submit_Create [navigationFlowTo Invoices]
]

UIContainer uiCt_InvoiceReader : Window [
component uiCo_InvoiceForm

event ev_cancel “Back” : Submit : Submit_Back [navigationFlowTo Invoices]
]

UIContainer uiCt_InvoiceEditor : Window [

Appl. Sci. 2022, 12, 9556 23 of 26
Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 26

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

component uiCo_InvoiceForm

event ev_cancel “Back” : Submit : Submit_Back [navigationFlowTo Invoices]
event ev_save “Save” : Submit : Submit_Update [navigationFlowTo Invoices]
]

// “Customer” Form

component uiCo_CustomerForm “Customer” : Form [
dataBinding e_Customer

part customerName “Name” : Field
[dataAttributeBinding e_Customer.customerName]
part fiscalID “Fiscal ID” : Field
[dataAttributeBinding e_Customer.fiscalID]
part logoImage “Logo Image” : Field
[dataAttributeBinding e_Customer.logoImage]
part address “Address”: Field
[dataAttributeBinding e_Customer.address]
part IBAN “IBAN”: Field
[dataAttributeBinding e_Customer.IBAN]
part SWIFT “SWIFT” : Field
[dataAttributeBinding e_Customer.SWIFT]
]

UIContainer uiCt_CustomerCreator : Window [
component uiCo_CustomerForm
event ev_cancel “Back” : Submit : Submit_Back [navigationFlowTo Customers]
event ev_save “Save” : Submit : Submit_Create [navigationFlowTo Customers]
]

UIContainer uiCt_CustomerReader : Window [
component uiCo_CustomerForm
event ev_cancel “Back” : Submit : Submit_Back [navigationFlowTo Customers]
]

UIContainer uiCt_CustomerEditor : Window [
component uiCo_CustomerForm
event ev_cancel “Back” : Submit : Submit_Back [navigationFlowTo Invoices]
event ev_save “Save” : Submit : Submit_Update [navigationFlowTo Invoices]
]

/**
Use case view: Actors & Use Cases
***/

Actor aU_TechnicalAdmin “TechnicalAdmin” : User [description “Admin manage Users, VAT, etc.”]
Actor aU_Operator “Operator”: User [description “Operator manages Invoices and Customers”]
Actor aU_Manager “Manager”: User [description “Manager approves Invoices, etc.”]
Actor aU_Customer “Customer” : User [description “Customer receives Invoices to pay”]
Actor aS_ERP “ERP” : ExternalSystem [description “ERP receives info of paid invoices”]

// TechnicalAdmin

UseCase uc_Manage_Products “Manage Products” : EntitiesManage [
 actorInitiates aU_TechnicalAdmin
 dataEntity e_Product
 actions aCreate, aRead, aUpdate, aDelete
]

UseCase uc_Manage_VAT_Categories “Manage VAT Categories” : EntitiesManage [
 actorInitiates aU_TechnicalAdmin
 dataEntity e_VAT
 actions aCreate, aRead, aUpdate, aDelete
]

// Operator

UseCase uc_Manage_Customers “Manage Customers” : EntitiesManage [
 actorInitiates aU_Operator
 dataEntity e_Customer
 actions aCreate, aRead, aUpdate, aDelete
]

UseCase uc_Manage_Invoices “Manage Invoices” : EntitiesManage [
 actorInitiates aU_Operator
 dataEntity e_Invoice
 actions aCreate, aRead, aUpdate, aDelete
]

// Manager

UseCase uc_ConsultInvoicesToApprove “Consult Invoices to approve” : EntitiesBrowse [
 actorInitiates aU_Manager
 dataEntity e_Invoice

Appl. Sci. 2022, 12, 9556 24 of 26Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 26

215
216
217
218
219
220
221
222
223
224
225
226

 actions aRead
 extensionPoints aApprove
]

// Customer

UseCase uc_Consult_MyInvoices “Consult My Invoices” : EntitiesBrowse [
 actorInitiates aU_Customer
 dataEntity e_Invoice
 actions aRead
 extensionPoints aPay
]

References

1. Shah, T.; Patel, S.V. A Review of Requirement Engineering Issues and Challenges in Various Software Development Methods.

Int. J. Comput. Appl. 2014, 99, 36–45.

2. Al-Fedaghi, S. Developing Web Applications. Int. J. Softw. Eng. Its Appl. 2011, 5, 57–68.

3. Gamito, I.; Silva, A.R. From Rigorous Requirements and User Interfaces Specifications into Software Business Applications.

2020. In Proceedings of the 13th International Conference on the Quality of Information and Communications Technology

(QUATIC’2020), Braga, Portugal, 8–11 September 2020.

4. Bock, A.C.; Frank, U. Low-code platform. Bus. Inf. Syst. Eng. 2021, 63, 733–740.

5. Frank, U.; Maier, P.; Bock, A. Low Code Platforms: Promises, Concepts and Prospects: A Comparative Study of Ten Systems; ICB-

Research Report No. 70; Universität Duisburg-Essen, Institut für Informatik und Wirtschaftsinformatik (ICB): Essen, Germany,

2021. https://doi.org/10.17185/duepublico/75244.

6. Overeem, M. Evolution of Low-Code Platforms. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2022.

7. Di Ruscio, D.; Kolovos, D.; de Lara, J.; Pierantonio, A.; Tisi, M.; Wimmer, M. Low-code development and model-driven engi-

neering: Two sides of the same coin? Softw. Syst. Model. 2022, 21, 437–446.

8. PLATFORM—Genio by Quidgest. Available online: https://genio.quidgest.com/platform (accessed on 13 October 2021).

9. OutSystems Evaluation Guide. Available online: https://www.outsystems.com/evaluation-guide (accessed on 13 October 2021).

10. Mendix Evaluation Guide. Available online: https://www.mendix.com/evaluation-guide (accessed on 13 October 2021).

11. Business Apps|Microsoft Power Apps. Available online: https://powerapps.microsoft.com (accessed on 22 August 2022).

12. Google AppSheet|Build Apps with No Code. Available online: https://www.appsheet.com (accessed on 22 August 2022).

13. Build a Better Way to Work|Amazon Honeycode. Available online: https://www.honeycode.aws (accessed on 22 August 2022).

14. Silva, A.R. Model-driven engineering: A survey supported by the unified conceptual model. Comput. Lang. Syst. Struct. 2015,

43, 139–155.

15. Cabot, J. Positioning of the low-code movement within the field of model-driven engineering. In Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings (MOD-

ELS’ 20), New York, NY, USA, 16–23 October 2020.

16. PROJECTS—Genio by Quidgest. Available online: https://genio.quidgest.com/projects-2 (accessed on 8 July 2022).

17. Silva, A.R. ITLingo Research Initiative in 2022. arXiv 2022, arXiv:1804.00344.

18. Deursen, A.V.; Klint, P.; Visser, J. Domain-specific languages. ACM Sigplan Not. 2000, 35, 26–36.

19. Kosar, T.; Oliveira, N.; Mernik, M.; Pereira, V.J.M.; Črepinšek, M.; Da, C.D.; Henriques, R.P. Comparing General-Purpose and

Domain-Specific Languages: An Empirical Study. Comput. Sci. Inf. Syst. 2010, 438, 247–264.

20. HTML: HyperText Markup Language. Available online: https://developer.mozilla.org/en-US/docs/Web/HTML (accessed on 20

June 2022).

21. CSS: Cascading Style Sheets. Available online: https://developer.mozilla.org/en-US/docs/Web/CSS (accessed on 20 June 2022).

22. LaTeX—A Document Preparation System. Available online: https://www.latex-project.org (accessed on 20 June 2022).

23. Kurtev, I.; Bézivin, J.; Jouault, F.; Valduriez, P. Model-based DSL frameworks. In Proceedings of the Companion to the 21st

ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications—OOPSLA’06, Portland,

OR, USA, 22–26 October 2006.

24. Sanchis, R.; García-Perales, Ó.; Fraile, F.; Poler, R. Low-Code as Enabler of Digital Transformation in Manufacturing Industry.

Appl. Sci. 2020, 10, 12.

25. How Enterprise-Grade Low-Code Speeds up Time to Market. Available online: https://www.nearpartner.com/2021/02/how-

enterprise-grade-low-code-speeds-up-time-to-market (accessed on 20 October 2021).

26. Gartner Says the Majority of Technology Products and Services Will Be Built by Professionals Outside of IT by 2024. Available

online: https://www.gartner.com/en/newsroom/press-releases/2021-06-10-gartner-says-the-majority-of-technology-products-

and-services-will-be-built-by-professionals-outside-of-it-by-2024 (accessed on 20 October 2021).

27. Danilchenko, Y.B. Automatic Code Generation Using Artificial Intelligence; ProQuest/UMI: Ann Arbor, MI, USA, 2012.

28. Event Sourcing. Available online: https://martinfowler.com/eaaDev/EventSourcing.html (accessed on 23 August 2022).

29. What Is API Management? Available online: https://www.redhat.com/en/topics/api/what-is-api-management (accessed on 23

August 2022).

30. Evolutionary Architecture: Supporting Constant Change. Available online: https://www.sqli.nl/en/blog/evolutionary-architec-

ture (accessed on 23 August 2022).

References
1. Shah, T.; Patel, S.V. A Review of Requirement Engineering Issues and Challenges in Various Software Development Methods. Int.

J. Comput. Appl. 2014, 99, 36–45. [CrossRef]
2. Al-Fedaghi, S. Developing Web Applications. Int. J. Softw. Eng. Its Appl. 2011, 5, 57–68.
3. Gamito, I.; Silva, A.R. From Rigorous Requirements and User Interfaces Specifications into Software Business Applications. In

Proceedings of the 13th International Conference on the Quality of Information and Communications Technology (QUATIC’2020),
Braga, Portugal, 8–11 September 2020.

4. Bock, A.C.; Frank, U. Low-code platform. Bus. Inf. Syst. Eng. 2021, 63, 733–740. [CrossRef]
5. Frank, U.; Maier, P.; Bock, A. Low Code Platforms: Promises, Concepts and Prospects: A Comparative Study of Ten Systems; ICB-Research

Report No. 70; Universität Duisburg-Essen, Institut für Informatik und Wirtschaftsinformatik (ICB): Essen, Germany, 2021.
[CrossRef]

6. Overeem, M. Evolution of Low-Code Platforms. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2022.
7. Di Ruscio, D.; Kolovos, D.; de Lara, J.; Pierantonio, A.; Tisi, M.; Wimmer, M. Low-code development and model-driven

engineering: Two sides of the same coin? Softw. Syst. Model. 2022, 21, 437–446. [CrossRef]
8. PLATFORM—Genio by Quidgest. Available online: https://genio.quidgest.com/platform (accessed on 13 October 2021).
9. OutSystems Evaluation Guide. Available online: https://www.outsystems.com/evaluation-guide (accessed on 13 October 2021).
10. Mendix Evaluation Guide. Available online: https://www.mendix.com/evaluation-guide (accessed on 13 October 2021).
11. Business Apps|Microsoft Power Apps. Available online: https://powerapps.microsoft.com (accessed on 22 August 2022).
12. Google AppSheet|Build Apps with No Code. Available online: https://www.appsheet.com (accessed on 22 August 2022).
13. Build a Better Way to Work|Amazon Honeycode. Available online: https://www.honeycode.aws (accessed on 22 August 2022).
14. Silva, A.R. Model-driven engineering: A survey supported by the unified conceptual model. Comput. Lang. Syst. Struct. 2015, 43,

139–155.
15. Cabot, J. Positioning of the low-code movement within the field of model-driven engineering. In Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings (MODELS’
20), New York, NY, USA, 16–23 October 2020.

16. PROJECTS—Genio by Quidgest. Available online: https://genio.quidgest.com/projects-2 (accessed on 8 July 2022).
17. Silva, A.R. ITLingo Research Initiative in 2022. arXiv 2022, arXiv:1804.00344.
18. Deursen, A.V.; Klint, P.; Visser, J. Domain-specific languages. ACM Sigplan Not. 2000, 35, 26–36. [CrossRef]
19. Kosar, T.; Oliveira, N.; Mernik, M.; Pereira, V.J.M.; Črepinšek, M.; Da, C.D.; Henriques, R.P. Comparing General-Purpose and

Domain-Specific Languages: An Empirical Study. Comput. Sci. Inf. Syst. 2010, 438, 247–264. [CrossRef]
20. HTML: HyperText Markup Language. Available online: https://developer.mozilla.org/en-US/docs/Web/HTML (accessed on

20 June 2022).
21. CSS: Cascading Style Sheets. Available online: https://developer.mozilla.org/en-US/docs/Web/CSS (accessed on 20 June 2022).
22. LaTeX—A Document Preparation System. Available online: https://www.latex-project.org (accessed on 20 June 2022).
23. Kurtev, I.; Bézivin, J.; Jouault, F.; Valduriez, P. Model-based DSL frameworks. In Proceedings of the Companion to the 21st ACM

SIGPLAN Conference on Object-oriented Programming Systems, Languages and Applications—OOPSLA’06, Portland, OR, USA,
22–26 October 2006.

24. Sanchis, R.; García-Perales, Ó.; Fraile, F.; Poler, R. Low-Code as Enabler of Digital Transformation in Manufacturing Industry.
Appl. Sci. 2020, 10, 12. [CrossRef]

25. How Enterprise-Grade Low-Code Speeds up Time to Market. Available online: https://www.nearpartner.com/2021/02/how-
enterprise-grade-low-code-speeds-up-time-to-market (accessed on 20 October 2021).

26. Gartner Says the Majority of Technology Products and Services Will Be Built by Professionals Outside of IT by 2024. Available
online: https://www.gartner.com/en/newsroom/press-releases/2021-06-10-gartner-says-the-majority-of-technology-products-
and-services-will-be-built-by-professionals-outside-of-it-by-2024 (accessed on 20 October 2021).

27. Danilchenko, Y.B. Automatic Code Generation Using Artificial Intelligence; ProQuest/UMI: Ann Arbor, MI, USA, 2012.
28. Event Sourcing. Available online: https://martinfowler.com/eaaDev/EventSourcing.html (accessed on 23 August 2022).
29. What Is API Management? Available online: https://www.redhat.com/en/topics/api/what-is-api-management (accessed on

23 August 2022).

http://doi.org/10.5120/17451-8370
http://doi.org/10.1007/s12599-021-00726-8
http://doi.org/10.17185/duepublico/75244
http://doi.org/10.1007/s10270-021-00970-2
https://genio.quidgest.com/platform
https://www.outsystems.com/evaluation-guide
https://www.mendix.com/evaluation-guide
https://powerapps.microsoft.com
https://www.appsheet.com
https://www.honeycode.aws
https://genio.quidgest.com/projects-2
http://doi.org/10.1145/352029.352035
http://doi.org/10.2298/CSIS1002247K
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.latex-project.org
http://doi.org/10.3390/app10010012
https://www.nearpartner.com/2021/02/how-enterprise-grade-low-code-speeds-up-time-to-market
https://www.nearpartner.com/2021/02/how-enterprise-grade-low-code-speeds-up-time-to-market
https://www.gartner.com/en/newsroom/press-releases/2021-06-10-gartner-says-the-majority-of-technology-products-and-services-will-be-built-by-professionals-outside-of-it-by-2024
https://www.gartner.com/en/newsroom/press-releases/2021-06-10-gartner-says-the-majority-of-technology-products-and-services-will-be-built-by-professionals-outside-of-it-by-2024
https://martinfowler.com/eaaDev/EventSourcing.html
https://www.redhat.com/en/topics/api/what-is-api-management

Appl. Sci. 2022, 12, 9556 25 of 26

30. Evolutionary Architecture: Supporting Constant Change. Available online: https://www.sqli.nl/en/blog/evolutionary-
architecture (accessed on 23 August 2022).

31. Silva, A.R. Rigorous Specification of Use Cases with the RSL Language. In Proceedings of the 28th International Conference on
Information Systems Development (ISD’2019), Toulon, France, 28–30 August 2019.

32. Silva, A.R.; Savić, D. Linguistic Patterns and Linguistic Styles for Requirements Specification: Focus on Data Entities. Appl. Sci.
2021, 11, 4119. [CrossRef]

33. Silva, A.R. Linguistic Patterns and Linguistic Styles for Requirements Specification (I): An Application Case with the Rig-
orous RSL/Business-level Language. In Proceedings of the 22nd European Conference on Pattern Languages of Programs
(EuroPLOP’2017), Irsee, Germany, 12–16 July 2017.

34. Silva, A.R. Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications: Focus on Use Cases and Scenarios.
IEEE Access 2021, 9, 143506–143530. [CrossRef]

35. Flow Modeling Language Specification Version 1.0. Available online: https://www.omg.org/spec/IFML/1.0 (accessed on
21 October 2021).

36. GENIO: Xtreme Low-Code Platform. Available online: https://quidgest.com/en/about-quidgest/genio-platform (accessed on
20 October 2021).

37. Ribeiro, A.; Silva, A.; Silva, A.R. Data Modeling and Data Analytics: A Survey from a Big Data Perspective. J. Softw. Eng. Appl.
2015, 8, 617–634. [CrossRef]

38. Nielsen, J. Usability Engineering; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1994.
39. O’Hara, J.M.; Fleger, S. Human-System Interface Design Review Guidelines; Technical Report; Brookhaven National Lab (BNL):

Upton, NY, USA, 2020.
40. Overview of Formulas. Available online: https://support.microsoft.com/en-us/office/overview-of-formulas-34519a4e-1e8d-4f4

b-84d4-d642c4f63263 (accessed on 5 July 2022).
41. Eclipse Foundation. Available online: https://www.eclipse.org (accessed on 25 June 2022).
42. Xtend. Available online: https://www.eclipse.org/xtend (accessed on 4 January 2022).
43. Invoice Management System (IMS) Specified in the ITLingo ASL Language. Available online: https://github.com/pgalhardo/ims

(accessed on 25 June 2022).
44. ASP. NET MVC Pattern. Available online: https://dotnet.microsoft.com/en-us/apps/aspnet/mvc (accessed on 25 June 2022).
45. Medvidovic, N.; Taylor, R.N. A classification and comparison framework for software architecture description languages. IEEE

Trans. Softw. Eng. 2000, 26, 70–93. [CrossRef]
46. Hasselbring, W. Software Architecture: Past, Present, Future. In The Essence of Software Engineering, 1st ed.; Gruhn, V., Striemer, R.,

Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 169–184.
47. ISO/IEC/IEEE 42010:2011; Systems and Software Engineering—Architecture Description. ISO: Geneva, Switzerland, 2011.
48. Kruchten, P. The 4 + 1 View Model of Software Architecture. IEEE Softw. 1995, 12, 42–50. [CrossRef]
49. Górski, T. The 1 + 5 Architectural Views Model in Designing Blockchain and IT System Integration Solutions. Symmetry 2021,

13, 2000. [CrossRef]
50. Brambilla, M.; Fraternali, P. Large-scale Model-Driven Engineering of web user interaction: The WebML and WebRatio experience.

Sci. Comput. Program 2014, 89, 71–87. [CrossRef]
51. Ribeiro, A.; da Silva, A.R. Evaluation of XIS-Mobile, a domain specific language for mobile application development. J. Softw.

Eng. Appl. 2014, 7, 906–919. [CrossRef]
52. Seixas, J.; Ribeiro, A.; da Silva, A.R. A Model-Driven Approach for Developing Responsive Web Apps. In Proceedings of the

ENASE, Heraklion, Greece, 4–5 May 2019.
53. Cortés, H.; Navarro, A. Enterprise WAE: A Lightweight UML Extension for the Characterisation of the Presentation Tier of

Enterprise Applications with MDD-Based Mockup Generation. Int. J. Softw. Eng. Knowl. Eng. 2017, 27, 1291–1331.
54. Filipović, M.; Vuković, Ž.; Dejanović, I.; Milosavljević, G. Rapid Requirements Elicitation of Enterprise Applications Based on

Executable Mockups. Appl. Sci. 2021, 11, 7684. [CrossRef]
55. Wicks, M.N.; Dewar, R.G. A new research agenda for tool integration. J. Syst. Softw. 2007, 80, 1569–1585.
56. Bézivin, J.; Bruneliere, H.; Jouault, F.; Kurtev, I. Model Engineering Support for Tool Interoperability. In Proceedings of the Workshop

in Software Model Engineering (WiSME’2005)—A MODELS 2005 Satellite Event, Montego Bay, Jamaica, 2–7 October 2005.
57. Voelter, M.; Visser, E. Product Line Engineering Using Domain-Specific Languages. In Proceedings of the 15th International

Software Product Line Conference, Munich, Germany, 21–26 August 2011.
58. Brunelière, H.; Cabot, J.; Clasen, C.; Jouault, F.; Bézivin, J. Towards Model Driven Tool Interoperability: Bridging Eclipse and

Microsoft Modeling Tools. In Modelling Foundations and Applications; ECMFA; Springer: Berlin/Heidelberg, Germany, 2010.
59. Bragança, A.; Azevedo, I.; Bettencourt, N.; Morais, C.; Teixeira, D.; Caetano, D. Towards supporting SPL engineering in low-

code platforms using a DSL approach. In Proceedings of the 20th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, Chicago, IL, USA, 17–18 October 2021.

60. Ferreira, A.; Silva, A.R.; Paiva, A.C. Towards the Art of Writing Agile Requirements with User Stories, Acceptance Criteria, and
Related Constructs. In Proceedings of the International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE’2022), Online, 25–26 April 2022.

https://www.sqli.nl/en/blog/evolutionary-architecture
https://www.sqli.nl/en/blog/evolutionary-architecture
http://doi.org/10.3390/app11094119
http://doi.org/10.1109/ACCESS.2021.3120004
https://www.omg.org/spec/IFML/1.0
https://quidgest.com/en/about-quidgest/genio-platform
http://doi.org/10.4236/jsea.2015.812058
https://support.microsoft.com/en-us/office/overview-of-formulas-34519a4e-1e8d-4f4b-84d4-d642c4f63263
https://support.microsoft.com/en-us/office/overview-of-formulas-34519a4e-1e8d-4f4b-84d4-d642c4f63263
https://www.eclipse.org
https://www.eclipse.org/xtend
https://github.com/pgalhardo/ims
https://dotnet.microsoft.com/en-us/apps/aspnet/mvc
http://doi.org/10.1109/32.825767
http://doi.org/10.1109/52.469759
http://doi.org/10.3390/sym13112000
http://doi.org/10.1016/j.scico.2013.03.010
http://doi.org/10.4236/jsea.2014.711081
http://doi.org/10.3390/app11167684

Appl. Sci. 2022, 12, 9556 26 of 26

61. Paiva, A.C.; Maciel, D.; Silva, A.R. From Requirements to Automated Acceptance Tests with the RSL Language. In Communications
in Computer and Information Science; Springer: Cham, Switzerland, 2020; Volume 1172.

62. Correia, C.M.; Silva, A.R. Platform-Independent Specifications for Robotic Process Automation. In Proceedings of the International
Conference on Model-Driven Engineering and Software Development (MODELSWARD’2022), Online, 6–8 February 2022.

63. Verelst, J.; Silva, A.R.; Mannaert, H.; Ferreira, D.A.; Huysmans, P. Identifying Combinatorial Effects in Requirements Engineering.
In Proceedings of the Third Enterprise Engineering Working Conference (EEWC 2013), Luxembourg, 13–14 May 2013.

64. Górski, T.; Bednarski, J. Applying model-driven engineering to distributed ledger deployment. IEEE Access 2020, 8, 118245–118261.
[CrossRef]

65. Ivančić, L.; Suša Vugec, D.; Bosilj Vukšić, V. Robotic Process Automation: Systematic Literature Review. In Proceedings of the
17th International Conference on Business Process Management (BPM 2019), Vienna, Austria, 1–6 September 2019.

66. Enríquez, J.G.; Jiménez-Ramírez, A.; Domínguez-Mayo, F.J.; Garcia-Garcia, J.A. Robotic process automation: A scientific and
industrial systematic mapping study. IEEE Access 2020, 8, 39113–39129. [CrossRef]

67. Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Hyperautomation for the enhancement of automation in industries. Sens.
Int. 2021, 2, 100124. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3005519
http://doi.org/10.1109/ACCESS.2020.2974934
http://doi.org/10.1016/j.sintl.2021.100124

	Introduction
	Background
	Domain-Specific Languages for Business Apps
	Low-Code Development Platforms
	ITLingo ASL
	Quidgest Genio

	Comparison of ASL and Genio Languages
	Data Entities
	UI Elements
	UI Forms
	UI Lists

	Actors and Use Cases

	ASL Extensions
	Data Attribute’s Formulas
	UI Elements’ Expressions
	Extended Data Enumerations

	ASL2Genio Transformation
	Case Study: Invoice Management System
	ASL Specification
	Genio Model
	Software Business Application

	Related Work
	Languages and Architectural Views
	Model-Driven Tool Interoperability
	Low-Code Platforms’ Interoperability

	Conclusions
	Appendix A
	References

