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Abstract: Over recent years, frequent earthquakes have caused huge losses in human life and
property. Rapid and automatic earthquake detection plays an important role in earthquake warning
systems and earthquake operation mechanism research. Temporal convolution networks (TCNs)
are frameworks that use expansion convolution and expansion, which have large and temporal
receptive fields and can adapt to time series data. Given the excellent performance of temporal
convolution networks using time series data, this paper proposes a deep learning framework based
on the temporal convolution network model, which can be used to detect and obtain the accurate
start times of seismic phases. In addition, a convolutional neural network (CNN) was added to the
temporal convolution network model to automatically extract the deep features of seismic waves
and the expansion convolution of each level was added to optimize its structure, which not only
reduced the experimental parameters but also produced high-precision seismic phase detection
results. Finally, the model was compared to the TCN, CNN-LSTM, SELD-TCN and the traditional
AR-AIC methods. Our experimental results showed that the S-TCN method demonstrated great
advantages in the accuracy and performance of seismic phase detection.

Keywords: seismic phase recognition; time-domain convolutional network; expansion convolution;
earthquake early warning system

1. Introduction

At present, artificial intelligence (AI) methods are widely used within the field of
geophysical research and have achieved great results using deep neural networks. AI
can be used to process massive amounts of seismic data by improving deep network
generalization to provide more effective data for the inversion of the geological structures
in existing seismic catalogs. Due to the improvements in seismic observation methods over
recent years, the rapid and high-precision automatic detection of seismic data has become
the focus of research.

Over recent years, deep learning has also developed rapidly and more and more
seismologists have begun to use deep neural networks to obtain information from seismic
data, such as seismic phase identification, earthquake location detection, seismic phase
mechanism solutions, aftershock searches, earthquake early warning systems and fore-
casts. Yu et al. (2018) trained a 17-layer inception deep network model to detect the start
times of near-seismic P and S wave phases [1] (P and S waves are two kinds of seismic
waves: P waves are longitudinal waves, i.e., vertical shaking, and S waves are transverse
waves, i.e., horizontal shaking; P waves are also faster than S waves). During the training
process, the authors considered the addition of noise to the label data, the regularization
of the output results from the convolutional layers, the dropout operation and training
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methods based on noise stepping, which improved the generalization ability of their neural
network. This method could directly output the start time of a seismic phase with better
stability than the traditional method and it could adapt to seismic signals with different
signal-to-noise ratios. Ross et al. (2018) trained a convolutional neural network (CNN)
classifier using more than 4.8 million seismograms from Southern California, USA, that
were manually labeled with P wave start times and polarities and achieved the automated
high-precision measurement of P wave start times and initial motion polarities [2]. Since
the network structures of CNN convolution and filtering effectively learn features directly
from data, thereby avoiding model construction and other tasks, deep neural networks can
achieve great results in seismic phase detection research. Zhu et al. (2019) used U-Net and
probability distribution methods to automatically detect earthquake phases in Southern
California for the first time, which provided a novel way for image segmentation structures
to detect earthquake phases [3] and achieved good results. On this basis, Zhao et al. (2019)
redesigned a U-shaped network algorithm to create the Unet_cea structure. They used
more than 80,000 seismic data points from earthquakes of different magnitudes and signal-
to-noise ratios that were recorded during Wenchuan aftershocks and from the Metropolitan
Seismic Network for training and testing. During their testing, the automatic identification
and timely detection of seismic phases were realized and a high level of accuracy was also
obtained [4]. The U-shaped network had a significantly higher hit rate and a lower root
mean square error than the STA/LTA and kurtosis analysis automatic detection methods.

With the development of deep neural networks, forming fusion structures using differ-
ent structures has gradually become the new trend. Zhou et al. (2019) designed a CNN and
recurrent convolutional network tandem structure to detect P and S waves in continuous
seismic waveforms [5]. They used an eight-layer CNN to distinguish between seismic
signals and noise data and then input a two-layer bidirectional recurrent neural network
(RNN) structure to extract the start times of the P and S waves. Their results showed that
this method could achieve an extremely small error rate and high accuracy. Liu et al. (2020)
designed an improved U-Net model that could use AI to capture competition and Hi-net
data training, which achieved accurate time extraction from continuous waveforms [6].

Li et al. (2020) designed a joint loss function for classification and regression and
demonstrated the excellent performance of deep neural networks in seismic phase de-
tection by building a multitask convolutional neural network model [7]. Yu et al. (2020)
introduced a cascaded classification and regression framework for seismic phase detec-
tion, named the classification and regression phase net (CRPN), which contained two
convolutional neural network models with different complexities to meet the accuracy and
efficiency requirements [8]. Guo et al. (2022) revealed the spatial and temporal distribution
characteristics of earthquake sequences and the geometry of seismogenic faults by building
a high-resolution earthquake catalog [9]. Liao et al. (2021) processed continuous seismic
waveform data and dense seismic sequences in real time and offline by designing a real-
time seismic processing system based on artificial intelligence. Scientific research provided
important technical support [10].

Recent findings have shown that temporal convolution networks (TCNs) [11,12]
outperform baseline recurrent architectures in a wide range of sequence modeling tasks,
including action segmentation [13], speech analysis and synthesis tasks [11,14]. The research
results that were published by Yan et al. (2020) [15] on the use of TCNs for weather
forecasting tasks showed that TCNs performed well in prediction tasks using time series
data. Guirguis et al. (2020) [16] proposed an SELD-TCN architecture based on the sound
event localization and detection (SELD) and TCN methods. By applying a short-time
Fourier transform, the SELD-TCN method could extract the phases and magnitudes of the
spectrum and stack them as separate input features, then connect the convolutional and
recurrent blocks (bidirectional GRUs) and finally connect the fully connected blocks. The
outputs of SELD-Net were sound event detection (SED) and the direction of arrival (DOA).
Since the dilated convolutions enabled the network to handle a variety of inputs, deeper
networks (which suffer from unstable gradients during backpropagation) could be required.
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The authors overcame this challenge by adopting a WaveNet [17]. They showed that SELD
tasks did not require a recurrent layer and they successfully detected the start and end times
of active sound events. Since earthquake phases are sets of time-correlated time series data,
TCNs not only achieve a better performance but also reduce the computational costs of
training compared to RNNs and their variants, without exploiting repetitive architectures.

In view of the above analysis, this paper proposes an S-TCN model based on temporal
convolutional neural networks, which could improve the model by using dilated convolu-
tions and dilation frameworks. We also added a convolution module to extract the deep
features of seismic waves to obtain accurate seismic phase detection and provide new ideas
for earthquake early warning systems.

2. Data
2.1. Dataset

Since the quality of datasets directly affects the results of network training, this study
used the Global Seismic Signals Dataset (STEAD) [18], which was provided by the Seismo-
logical Laboratory of Stanford University, to ensure that there were sufficient training data
and to ensure the generalization of the network structure. Most of the seismic records in
this dataset were recorded in the United States and Europe. The STEAD dataset includes
two categories of seismic and non-seismic signals, which were recorded using seismic
instruments with 2613 receivers (seismographs) worldwide, as shown in Figure 1. These
receivers were located at local distances, i.e., within 350 km of the earthquakes. The non-
seismic category currently only contains one subcategory (seismic noise), which includes
about 100,000 samples. The locations of the instruments that recorded the noise waveforms
are shown in Figure 2.

Figure 1. A distribution map of the seismic instruments (the dark blue triangles show the locations
of the seismic instruments that recorded the earthquakes).
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Figure 2. A distribution map of the stations (the dark blue triangles show the locations of the stations
that recorded the seismic noise).

Figure 3 shows the magnitude distribution of the recorded earthquakes. Small earth-
quakes (less than magnitude 2.5) make up the majority of the dataset. All seismic data
have three components: the vertical, east–west and north–south directions. The sampling
rate of the data is 100 Hz and the length of the seismic data is 60 s. Each data window
contains longitudinal and shear waves, from the longitudinal waves (P waves) that occur
5–10 s before the start of the earthquakes to at least 5 s after the arrival of the shear waves
(S waves). Additionally, all waveforms were detrended, de-averaged and band-pass filtered.

Figure 3. A distribution map of the earthquake magnitudes.
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We selected a total of 100,000 data points from the STEAD dataset. We then processed
the data are as follows:

(1) The waveforms were cut according to the first arrival sampling points of the P
waves and the first arrival sampling points of the S waves, which were provided by the
data tags. First, they were cut 3–5 s before the arrival of the P waves as the starting points of
the waveforms and 10 s after the arrival of the S waves as the end points of the waveforms,
then they were cut it into waveform data with a length of 30 s. When the length after
cropping was less than 30 s, the data were randomly supplemented with zero values before
and after the cropped data. Then, the data were cut from 60 s to 30 s, with a sampling
rate of 100 Hz and a segment length of 3000. We filtered the 30 s data to ensure that they
contained the arrival points of the P and S waves, which left us with 97132 data points.

(2) We then evenly distributed the P waves over intervals of 200–600 by performing
translation processing on the data. The distributions of the data before and after processing
are shown in Figure 4. After processing, a min–max normalization was performed, which
left us with 65,000 data points. Then, we randomly scrambled the data.

Figure 4. The data distributions before and after data processing (the gray bars show the data
distribution before processing and the blue bars show the data distribution after processing).

(3) Next, we divided the processed dataset to obtain a training set with 52,000 data
points, a validation set with 6500 data points and a testing set with 6500 data points (8:1:1).

(4) Since the network output length was 371 when one-hot processing was performed
on the labels, the labels were processed as one-hot labels with a length of 371. The labeling
positions comprised 40 time steps before and after the manual labeling, with a one-hot
label length of 11. The original data and the labeled data that corresponded to the labels
are shown in Figure 5.
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Figure 5. Data distribution before and after data processing ((a,c) are the original data, (b,d) are the
label data after manual labeling.The red vertical line represents the arrival of the P-wave, the blue
vertical line represents the arrival of the S wave, the purple box represents the label range of the
P-wave, and the green box represents the label range of the S wave) .

2.2. Data Preprocessing

Data preprocessing is of great significance in the training of neural networks as
preprocessing processes directly affect the model convergence effect. The original data
in this study comprised continuous waveform segments with a time window length of
30 s and a data frequency of 100 Hz, so the data format was a two-dimensional matrix
of 3000 × 3. Due to the existence of low-frequency long-term background disturbances
and high-frequency noise in the waveform data, our model received too many useless
signal features during the training process, which reduced the fitting effect. Therefore, the
band-pass filtering method was first performed during the data processing on [0.1, 20] of
the original data. A continuous wavelet transform was then used to decompose the signals
into components at different scales [19–22]. Finally, the amplitude differences between the
time steps in the seismic data were too large, so to reduce the variations in the data and
make the convergence process of the loss function smoother, it was necessary to normalize
each component of the waveform data using the following calculation formula:

Ai =
Ai

max(|Ai|)
(1)
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where Ai is the amplitude of the i-th sampling point in each track component. An example
original waveform is shown in Figure 6, where the red vertical line represents the arrival
time of the P wave and the blue vertical line represents the arrival of the S wave (which
were manually marked by seismological researchers).

Figure 6. An original waveform (the red vertical line represents the arrival of the P wave and the
blue vertical line represents the arrival of the S wave).

3. Neural Network Structure

In this section, we introduce our improved seismic phase detection model (S-TCN),
which was based on traditional TCNs. The specific parts of our model are discussed
in the following subsections: the first subsection introduces the traditional time-domain
convolutional network principle and the second subsection introduces the improved S-
TCN model.

3.1. Temporal Convolutional Network

Traditional time series neural networks, such as RNNs, long short-term memory
(LSTM) and other models, have certain problems, such as being time-consuming, poor
parallelism and long-term dependencies. However, TCNs can solve these problems. TCNs,
which is short for temporal convolutional networks, consist of dilated and causal 1D
convolutional layers that have the same input and output lengths.

The design of TCNs is based on two principles: (1) the input and output of the network
are the same length; (2) there is no “leakage” of past information. To achieve the same input
length, TCNs use 1D fully convolutional networks (1D FCNs), in which each hidden layer
is the same length as the input layer. Then, zero-padding (kernel size 1) is added to ensure
that all of the layers have the same length. To achieve the same output length, TCNs use
causal convolution, in which the output at time t is only convolved with earlier elements
from time t and the previous layer. In a nutshell, TCNs = 1D FCNs + causal convolution.
Dilated convolution is also used in TCNs. The advantage of using dilated convolution is an
increase in the receptive fields without a loss of information in the pooling operations, so
each convolution output contains a large range of information. The structure of a generic
TCN is shown in Figure 7.

Figure 7. A structure diagram of a generic TCN network: (a) the expansion coefficients d = 1, 2 and 4
and the dilated convolution with a kernel size k = 3 enable the receptive field to cover all of the values
in the input sequence; (b) the TCN residual block (when residual inputs and outputs have different
dimensions, a 1 × 1 convolution is added); (c) an example of residual connections (the blue line
shows the convolution kernel in the residual function and the green line represents the identity map).
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By analyzing Figure 7, it can be seen that TCNs utilize the 1D FCN structure and
that TCNs have a stronger ability to retain long-term historical information than LSTM.
To maintain the same time step, the input and output of each hidden layer have the same
length. Specifically, in the first hidden layer, when the input is n time steps, then the output
is also n time steps, regardless of the kernel size and dilation. Similarly, the input and
output time steps of other hidden layers are all n, which is very similar to the structure in
RNNs. No matter the layer, the input of each time step has a corresponding output.

TCNs use causal convolution. Causal convolution for the output data at time t means
that the input can be t or the time before t. This structure is shown in Figure 8. For filter F =
(f1, f2, . . ., fK) and sequence X = (x1, x2, . . ., xT), the causal convolution at xt is defined as:

(F ∗ X)(xt) = ∑K
k=1 fkx(t−K+k) (2)

For filter F = (f1 ,f2, . . ., fK) and sequence X = (x1, x2, . . ., xT), the dilated convolution at
xt with a dilation factor d is defined as:

(F ∗ dX)(xt) = ∑K
k=1 fkx(t−(K−k)d) (3)

Dilated convolution enables networks to process various inputs, so deeper networks
are required. To solve the problem of deeper networks potentially causing gradient disap-
pearance, dilated convolution uses a difference block structure, similar to the structure in
ResNet [23], through which TCNs can gain a higher generalization ability. As shown in
Figure 7c, the residual structure replaces the simple connections between the TCN layers.
Since the number of channels in x and F(x) is different, a 1 × 1 Conv has been designed to
enable a simple transformation of x, so that the transformed x and F(x) can be added.

Figure 8. A schematic diagram of causal convolution.

3.2. Improved S-TCN Structure Based on TCNs

Our S-TCN model mainly included four modules (the structure is shown in Figure 9):
(a) Input representation: seismic waves that were sampled at 100 Hz were input

into the network after data preprocessing using the linear band-pass filtering (continuous
wavelet transform) normalization step;

(b) Convolution block: to learn the inter- and intra-channel features, three consecutive
1D convolution blocks were input into the model. The size of the convolution kernel was
set to 6*1 and the number of convolution kernels was set to 16, 32 or 64 to extract features
at different scales. In addition, the output was batch normalized and the rectified linear
unit (ReLU) activation function was used. The block dropout operation was used in the
last convolution block;
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(c) TCN block: to learn the contextual information of the seismic phases, the output of
the convolution block was reshaped into 1D and then sent to three consecutive TCN blocks.
The TCN blocks could utilize the full context of the input sequence;

(d) Time distributed module: the output of the TCN blocks was fed into two parallel
branches of the time distributed module, each of which consisted of its own time distributed
module, which performed the final phase identification and detection.

Figure 9. A network structure diagram of our S-TCN model.

Unlike neuron networks, which attempt to learn the underlying structures in se-
quences using dilated convolution, non-neuron networks can handle a wider range of
inputs. In general, when d = 1, normal convolution is performed. On the other hand, the
higher the inflation factor, the larger the receptive field, so the kernels expand over a more
comprehensive input area. To obtain such a large exponential receptive field for TCNs,
deeper networks are required, which suffer from unstable gradients during backpropaga-
tion. To overcome this limitation, residual connections are used to learn the modifications
to the identity maps. Generally, TCNs utilize causal convolution, in which the output at
time t depends on current and past elements. This step can be achieved using zero-padding.
However, in this study, convolution within the TCN blocks was modified to be non-causal,
with batch normalization employed immediately after dilated convolution to mimic the
use of future knowledge by bidirectional neural networks. Next, the normalized output
was passed to the ReLU function for activation. Finally, a dropout function with a loss rate
of 0.5 was used for correction.

4. Experiments
4.1. Training Process

In our experiments, we used the Tensorflow framework to train the network. The loss
function used binary_crossentropy. The initial learning rate was 0.01 and was set to decay.
The adaptive moment estimate (ADAM) algorithm was used for optimization [24].

Once 20 consecutive epochs did not drop, the loss function training stopped with a
total of trained 302 epochs. A loss function graph of the training set is shown in Figure 10
and a loss graph of the testing set is shown in Figure 11.
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Figure 10. A loss function graph of the training set.

Figure 11. A loss function graph of the testing set.

4.2. Evaluation Standards

The mean error refers to the arithmetic mean of the random errors from all values
that have been measured using measurements of equal precision. It is a measure of the
expected value of the square of the difference between the parameter estimate and the true
value of the parameter. The calculation formula is as follows:

η =
1
n ∑n

i=1|xi − x̄| (4)

The mean errors can also be identified manually using the following error calculation
formula:

Error = ||Model predicted time−Manual measuring time|| (5)
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From Tables 1 and 2, it can be seen that the average error of S-TCN was smaller than
that of the traditional TCN. On the testing set and for the arrival of P waves, the proportion
of S-TCN results with errors that were less than 0.2 s was 69.27%, which was higher than
that of the TCN (63.13%), and the proportion of S-TCN results with errors that were less
than 0.5 s was 97.76%, which was also higher than that of the TCN (72.07%). For the
arrival of S waves, the proportion of S-TCN results with errors that were less than 0.2 s was
50.84%, which was 5.03% higher than that of the TCN, the proportion of S-TCN results with
errors that were less than 0.5 s was 74.86%, which was also higher than that of the TCN
(12.85%). This comparison showed that the S-TCN model exhibited a similar performance
to that of human experts in detecting the arrival of P and S waves, with the automatic
detection results being well within the acceptable error range. The detection error for S
waves was larger than the loss error of P waves, probably because seismic S waves are
more complicated as they are disturbed by P wave coda, reflected waves, etc. Figure 12
shows examples of successful and failed seismic phase detection.

Table 1. A comparison of the detection of P and S waves between the TCN and the SELD-TCN models.

Model
P Wave Detection S Wave Detection

Average Error Error within 0.2 s Error within 0.5 s Average Error Error within 0.2 s Error within 0.5 s

TCN 1.25 s 75% 81.90% 4.01 s 17.30% 29.80%
SELD-TCN-1 0.29 s 57.50% 96.20% 0.84 s 46.10% 79.20%
SELD-TCN-2 0.34 s 74.40% 94.60% 0.91 s 50.30% 76.9%

Table 2. A comparison of errors in the detection of P and S waves between the TCN and the
SELD-TCN models.

Model Dataset
P Wave Detection S Wave Detection

Average Error Error within 0.2 s Error within 0.5 s Average Error Error within 0.2 s Error within 0.5 s

TCN Training 2.257 s 56.94% 64.95% 6.029 s 6.75% 13.26%
Testing 1.844 s 63.13% 72.07% 5.699 s 5.03% 12.85%

S-TCN Training 0.266 s 70.01% 86.01% 1.089 s 49.08% 76.25%
Testing 0.204s 69.27% 97.76% 1.866 s 50.84% 74.86%

AR-AIC Testing 1.269 s 60.39% 73.82% 1.498 s 56.61% 68.49%

It can be seen from Table 3 that when the 6084 data points were tested, the er-
ror increased as more and more P and S waves were identified. The average error of
this model was less than 0.1 s and it took 15 s to identify all of the test data under
RTX2080Ti, which showed the superiority of this model in terms of recognition accuracy
and recognition speed.

Table 3. The different testing set error rates.

Error within 0.1 s Error within 0.2 s Error within 0.3 s Error within 0.4 s Error within 0.5 s Average Error

P Wave Detection 5847 5900 5928 5946 5956 0.08824
S Wave Detection 5611 5731 5818 5868 5910 0.09821

It can be seen from Figure 12 that the detection performance of our S-TCN model
was better than that of the TCN, but there were examples of detection failures from both
networks. From these detection failures, we observed that the signal-to-noise ratio was
too low and too much noise was the main cause of the detection failures. Therefore, the
efficiency of the current model could be improved by optimizing the noise reduction
module, which could be the next scientific research direction.
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Figure 12. Examples of detection success and failures: (a,c,e) represent the detection results from our
S-TCN model; (b,d,f) represent the detection results from the TCN.

5. Conclusions

Reliable seismic signal detection is at the heart of observational seismology. While
improving the sensitivity and robustness of current algorithms is still an active area of
research, improving efficiency has become the center of attention over recent years due to
the significant increase in data volume. Good detection algorithms should be sensitive to
events with various small and weak waveform shapes, robust to background noise and non-
seismic signals and efficient in processing large volumes of data. This paper proposed an
S-TCN model based on time-domain convolutional neural networks, which could learn the
time–frequency characteristics of the main phases of seismic signals from three-component
data that were recorded at a single station and was trained with 100,000 seismic wave data
points. By expanding the convolution and expansion framework, the receptive field could
be enlarged. We also added a CNN module to extract the deep features of the seismic waves



Appl. Sci. 2022, 12, 9547 13 of 14

to obtain accurate seismic phase start times. Our improved model used fewer parameters
and shorter test times, meaning that it could provide a novel approach for earthquake
warning systems.
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