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Abstract: Savings on transportation costs provide an important incentive for shared mobility models
in smart cities. Therefore, the problem of maximizing cost savings has been extensively studied in the
ridesharing literature. Most studies on ridesharing focus on the maximization of the overall savings
on transportation costs. However, the maximization of the overall savings on transportation costs
may satisfy users’ expectations for cost savings. For people to adopt ridesharing as a means to reduce
costs, a minimal expected cost savings discount must be offered. There is obviously a gap between
the existing studies and the real problems faced by service providers. This calls for the development
of a study to formulate a ridesharing model that guarantees the satisfaction of a minimal expected
cost savings discount. In this paper, we considered a discount-guaranteed ridesharing model that
ensures the provision of a minimal expected cost savings discount to ridesharing participants to
improve users’ satisfaction with the ridesharing service in terms of cost savings. The goal was
to maximize the overall cost savings under certain capacity, spatial, and time constraints and the
constraint that the discount offered to ridesharing participants could be no lower than the minimal
expected cost savings discount. Due to the complexity of the optimization problem, we adopted
two evolutionary computation approaches, differential evolution and particle swarm optimization,
to develop ten algorithms for solving the problem. We illustrated the proposed method by an
example. The results indicated that the proposed method could guarantee that the discount offered
to ridesharing participants was greater than or equal to the minimal expected cost savings discount.
We also conducted two series of experiments to assess the performance and efficiency of the different
solution algorithms. We analyzed the results to provide suggestions for selecting the appropriate
solution algorithm based on its performance and efficiency.

Keywords: shared mobility; ridesharing; differential evolution; particle swarm optimization;
multi-agent system

1. Introduction

Under the pressure of environmental protection and global warming, transporta-
tion service providers have evolved from providing dedicated rides to offering shared
rides for travelers/customers in the sharing economy era. A variety of shared mobility
transport models have appeared in the past decade. For transport policy makers and
service providers, an important issue is formulating shared mobility transport models
that are accepted by users in order to reduce energy consumption and the emission of
greenhouse gases.

There are several factors influencing the acceptance of shared mobility transport
models [1–5]. These include economic factors such as cost savings and non-economic
factors such as safety and trust. As transportation costs constitute a large part of industry
and daily-life expenses, savings on transportation costs provide an important incentive for
shared mobility models in smart cities. In a ridesharing system, the ridesharing participants
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include drivers and passengers. If a driver travels alone without ridesharing, the travel
cost will be paid by the driver. Similarly, a passenger traveling alone without ridesharing
also has to pay the travel cost by him/herself. Suppose the itineraries of a driver and
a set of passengers are spatially and temporarily similar: the driver may share the ride
with the set of passengers. If the overall costs of the shared ride are less than the overall
travel costs of the driver and the set of passengers, cost savings are achieved. Based on the
above reasoning, most studies on ridesharing attempt to maximize the overall cost savings.
Therefore, the problem of maximizing coast savings has been extensively studied in the
ridesharing literature [6,7].

Most studies on ridesharing focus on the maximization of the overall savings on
transportation costs. However, the maximization of the overall savings on transportation
costs may not lead to the satisfaction of users’ expectation for cost savings. Ridesharing is
attractive for drivers and passengers only if the portion of cost savings allocated to each of
them is no lower than their expectations. In this study, to describe drivers’ and passengers’
expectations of cost savings, we used “minimal expected cost savings discount” to refer to
the reduction in costs expected by drivers and passengers. If drivers’ and passengers’ mini-
mal expected cost savings discounts are not met, ridesharing is not attractive. Therefore,
ridesharing models must satisfy participants’ minimal expected cost savings discounts, as
they are directly related to participants’ acceptance of and satisfaction with ridesharing. For
people to adopt ridesharing as a means to reduce costs, a minimal expected cost savings
discount must be offered. There is obviously a gap between the existing studies and the real
problems faced by service providers. This calls for the development of a decision model to
formulate a ridesharing system that meets users’ expectations for cost savings. In this paper,
we introduce the concept of the minimal expected cost savings discount and formulate
a discount-guaranteed ridesharing model that maximizes the overall cost savings under
the constraint that the cost savings discount for users cannot be lower than the minimal
expected cost savings discount.

As a ridesharing system typically consist of drivers, passengers, and a service provider,
it can be modeled as a multi-agent system (MAS) [8,9]. In a MAS, an agent is a cooperative,
autonomous, and intelligent entity working to achieve certain goals. MASs have been
applied to a variety of complex problems. By representing drivers, passengers, and the
service provider as agents, the MAS paradigm can be used to model a ridesharing system.
In this paper, we adopted the MAS concept to model a ridesharing system. Our MAS
included driver agents, passenger agents, and a service provider agent. The driver agents
and passenger agents submit bids to the system, and the service provider agent must
determine the winning bids. The operation of the MAS is very similar to auctions [10].
Modeling transportation systems with combinatorial auctions in a MAS was studied in [11].
The problem setting of ridesharing systems is more complex due to the presence of many
transportation constraints on the side of both the driver agents and the passenger agents.
Therefore, although the operation of a ridesharing system is similar to that of combinatorial
double auctions in a MAS, the constraints on ridesharing systems are different to those on
classic combinatorial double auctions. These differences pose a challenge for determining
the winning bids for ridesharing systems. Applying combinatorial double auctions in
a MAS to model ridesharing system has been studied in [12]. In this paper, we follow
the double auction model of [12] and extend the additional constraints to incorporate the
discount guarantee aspect of our ridesharing system. Due to exponential growth of the
solution space and the number of solutions, finding a solution for classical combinatorial
double auctions is already challenging from a computational point of view [13,14]. A
general combinatorial double auction is known to be an NP-hard problem in terms of com-
putational complexity [14]. The constraints related to the issue of the guaranteed discount
introduced additional complexity and posed a new challenge. Due to the complexity of
the optimization problem, we adopted two evolutionary computation approaches [15,16]
to solve the problem. Ten algorithms were developed, and we illustrated the proposed
method by an example. The results indicated that the proposed method could guarantee
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that the cost savings discount for users was no lower than the minimal expected cost
savings discount. We compared the performance and efficiency of the ten algorithms
proposed in this study by conducting two series of experiments and analyzing the results.
Our findings provide insight into the selection of an appropriate algorithm to solve the
discount-guaranteed ridesharing problem.

The contributions of this paper are threefold:

1. First, we propose a decision problem that offers a minimal cost savings discount for
drivers and passengers. The ability to offer a minimal cost savings discount to users
is essential for incentivizing participants to accept a ridesharing model. However, the
existing literature and our previous paper only focused on the maximization of the
overall savings or benefits. The issue of guaranteeing a minimal cost savings discount
in ridesharing systems has not been addressed in the literature. Hence, the problem
addressed and the decision model proposed in this paper are different from those
discussed in our previous studies and the existing literature, in that we focus on the
discount-guaranteed ridesharing problem.

2. Second, ten solution algorithms are proposed in this study to provide decision support
tools for finding a set of users for whom the minimal cost savings discount can be
guaranteed and the total cost savings achieved can be optimized.

3. Third, we compare the proposed algorithms by analyzing the results of several test
cases to provide a guideline for selecting an appropriate solution algorithm.

The organization of the rest of this paper is as follows. A review of the rideshar-
ing literature is provided in Section 2. Following the literature review, the details of the
discount-guaranteed ridesharing problem are described and formulated in Section 3. Sev-
eral approaches to solving the discount-guaranteed ridesharing problem are proposed in
Section 4. The experiments carried out based on the proposed methods are reported in
Section 5, which consists of two subsections: an example for the verification of the proposed
solution method is illustrated in Section 5.1, and a comparison of the ten algorithms is
performed in Section 5.2. In Section 6, we analyze and discuss the results. Finally, we draw
our conclusions in Section 7.

2. Literature Review

Ridesharing is a shared mobility transport mode that enables travelers or drivers/passengers
with similar itineraries to share rides and enjoy cost savings. In addition to cost savings,
the potential benefits of reduced fuel consumption, vehicles numbers, air pollution, and
traffic congestion have made ridesharing an attractive transport mode for pursuing sustain-
ability. Studies have examined the factors affecting peoples’ intentions to use other types of
information systems, such as distance learning systems [17]. The adoption of ridesharing
systems is also influenced by several factors [18]. Due to the potential benefits of rideshar-
ing, many studies have been conducted to assess the drivers, barriers, and determinants
for ridesharing [2–4]. In [5], Mitropoulos et al. provide a literature review of ridesharing
platforms, focusing on the user factors and barriers to ridesharing. Shared transportation
has economic benefits for users, companies, and societies [19]. In particular, cost and conve-
nience are two important factors affecting ridesharing [20]. The early work of [21] focused
on studying the determinants of employee ridesharing. The authors indicated that a long
commute tends to encourage ridesharing more than a short commute. This is primarily
because a more extensive portion of the route is usually shared between commuters in
a longer commute, leading to greater cost savings and hence encouraging ridesharing.
Ridesharing is not limited to sharing rides using private cars. Recently, the ridesharing
concept has also been applied to the planning of buses to improve their ridesharing success
rate [22].

The importance and challenges of ridesharing problems have driven academic re-
searchers and industry practitioners to study the diversified issues of ridesharing systems.
Relevant studies on ridesharing can be found in several survey papers in the literature.
Early studies on ridesharing can be found in [6,7]. Reference [1] provides discussions on the
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benefits and challenges of shared mobility services. Many issues related to ridesharing have
been studied in the literature. These issues include cost savings, [23], the allocation of cost
savings [24,25], social awareness [26], enjoyability [27], trust [28], empty-car routing [29],
unreliability [30], car placement problems [31], passenger matching problems [32], and
the adoption of dynamic ridesharing systems [18]. Ridesharing relies on the discovery of
similar itineraries among travelers or drivers/passengers, leading to the sharing of rides
and reduced costs. The process of effectively matching the demands of travelers and the
cars of drivers is essential in ridesharing systems. The optimization of overall cost savings
has been studied extensively in the literature. Discussions of many studies and issues
related to decision models and algorithms for the optimization of shared mobility systems
can be found in [33,34].

In the literature, many problem formulations and models have been proposed for
ridesharing systems. The formulation of a ridesharing problem depends on the objectives
to be achieved. As cost savings and reductions in travel distance are some of the most
significant economic benefits of ridesharing, the problem of maximizing cost savings has
been extensively studied in the ridesharing literature. For example, Agatz et al. adopted
an optimization-based approach to minimize the total system-wide vehicle miles [35] and
maximize the system travel distance savings [36] while matching drivers and riders. The
results indicated that the use of sophisticated optimization methods improved the perfor-
mance of ride-sharing systems. In the work of Nourinejad and Roorda [37], optimization
algorithms were formulated based on an agent model to match passengers and drivers
and maximize the vehicle-kilometers-traveled savings. The results showed that higher
vehicle-kilometers-traveled savings could be achieved when multi-passenger rides were
allowed. A problem was formulated in [12] with the goal of maximizing cost savings
subject to capacity constraints for cars and timing constraints for drivers and passengers.
In [38], Sun et al. considered a ridesharing problem under the premise that the matching
agency was a not-for-profit organization. They formulated a set packing problem with the
objective of maximizing the societal benefits of ridesharing systems. The results indicated
that the proposed methods could generate near-optimal solutions for the test cases in real
time. In [39], a one-to-one ride-matching problem with the objective of maximizing the total
vehicle-miles-traveled savings was considered by Tafreshian and Masoud. They proposed a
method for decomposing the original graph into multiple sub-graphs in order to reduce the
overall computational complexity and provide high-quality solutions. In [40], a problem
was formulated to improve the incentives for ridesharing through a monetary incentive
performance indicator.

Most studies on ridesharing focus on the maximization of the overall savings on
transportation costs. However, the maximization of the overall savings on transportation
costs may not lead to the satisfaction of users’ expectations for cost savings. For people to
adopt ridesharing as a means to reduce costs, a minimal expected cost savings discount
must be offered. There is obviously a gap between the existing studies and the real
problems faced by service providers. This calls for the development of a decision model
to formulate a ridesharing system that meets users’ expectations for cost savings. In
this paper, we introduce the concept of the minimal expected cost savings discount and
formulate a discount-guaranteed ridesharing problem to maximize the overall cost savings
of ridesharing under the constraint that the cost savings discount for users could be no
lower than the minimal expected cost savings discount. The issue addressed in this paper
was ensuring a cost savings discount for users, which is a novel focus and differentiates
our study from those discussed in review papers [6,7,33,34] and other works [35–39], as
all these papers focused on the maximization of the overall cost savings or benefits. The
objective function and constraints considered in this paper are also different from those
considered in our previous papers [12,24,25,28,40].

Shared mobility systems can be divided into two categories: free-floating and station-
based. In station-based systems, the pick-up and drop-off points of vehicles are limited to
specific locations called stations [41]. In free-floating systems, the pick-up and drop-off
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locations of vehicles may be anywhere in a city, depending on riders’ needs [42]. In this
study, we considered free-floating ridesharing. Typically, a ridesharing system consists of
several types of entities, including drivers, passengers, and the service provider. These
entities are cooperative and autonomous and interact with each other in the ridesharing
system to achieve individual goals through ridesharing. Since a multi-agent system (MAS)
is a paradigm for capturing the operation and interaction of multiple autonomous, co-
operative, and intelligent agents, we adopted the MAS approach to model a ridesharing
system in this paper. Ensuring that the agents accomplish their goals is an interesting issue.
There are several approaches that can be applied to ensure that agents accomplish their
goals. These include automated planning and scheduling [43], contracting [44], partial
global planning [45], and collaborative problem solving [46]. In this paper, we modeled a
ridesharing system using the MAS approach. The agents in a ridesharing system include
the driver agents, the passenger agents, and the service provider agent. Driver agents and
passenger agents submit bids to the system, and the service provider agent must determine
the winning bids. To optimize the performance of the ridesharing MAS, an optimization
approach had to be developed.

Ridesharing is a mode of collaborative transportation. Just like other collaborative
transportation modes, the costs or benefits must be allocated to ridesharing participants
properly. A review of cost allocation methods in collaborative transportation can be found
in [47]. In the literature, several methods for allocating cost savings have been proposed.
The Shapley value [48], nucleolus [49], and proportional methods [50] are well-known
approaches in cooperative game theory for allocating costs or cost savings to agents in
a MAS. As the Shapley value and nucleolus approaches pose a computation complexity
challenge [51,52], proportional methods are usually applied. Proportional methods are the
simplest way of allocating cost savings among ridesharing participants. Several different
proportional methods for allocating cost savings were analyzed in [23]. In this paper, we
adopted a proportional method for allocating cost savings in the decision model. In the
literature, there are two approaches to formulating an optimization model: the single-
criterion and multi-criteria approaches [53]. In this paper, we adopted a single-criterion
approach, as the problem formulation aimed to optimize the total cost savings subject to
the constraint that the cost savings discount received had to be greater than or equal to
the minimal cost savings discount expected by users (in addition to the other constraints
related to the transportation requirements of users).

Due to the highly coupled, nonlinear, and discrete characteristics of the discount-
guaranteed ridesharing problem, the assumptions of classical optimization methods did
not hold. Therefore, classical optimization methods could not be applied. Many evolution-
ary computation methods, such as the genetic algorithm [54], differential evolution [15],
and particle swarm optimization [16], could be applied to solve the discount-guaranteed
ridesharing problem. Differential evolution [15] and particle swarm optimization [16] are
two well-known evolutionary computation methods for solving optimization problems
with highly coupled, nonlinear, and discrete decision variables. In this study, we develop
seven DE-based algorithms and three PSO-based algorithms [16,55,56] to solve the cost-
savings-satisfaction ridesharing problem. The seven DE-based algorithms included the
discrete version of standard DE with six different mutation strategies and the discrete
version of DE with a neighborhood search algorithm [57].

The differences between the seven DE-based algorithms were due to the mutation
strategies used, whereas the differences between the three PSO-based algorithms were
due to the velocity-update strategies used in the solution-finding processes. The large
number of constraints in the discount-guaranteed ridesharing problem posed a challenge
for the development of solution algorithms. An effective method to tackle these constraints
had to be applied. In the evolutionary computation literature, the methods for dealing
with constraints can be divided into three approaches: (1) maintaining the feasibility
of solutions [58], (2) penalizing infeasible solutions [59], and (3) discriminating feasible
from infeasible solutions [60]. The first approach uses complex mechanisms to search for
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solutions in the feasible region. The second approach attempts to add penalty costs to
reflect the violation of constraints and relies on the proper setting of penalty coefficients.
The approach of discriminating feasible from infeasible solutions is an effective method
that can work without relying on parameter setting. Therefore, we adopted this method to
deal with the constraints in the discount-guaranteed ridesharing problem.

3. Discount-Guaranteed Ridesharing Problem

As cost saving is one of the most important incentives for ridesharing, most studies
on ridesharing focus on the problem of optimizing overall cost savings. However, the
optimization of overall cost savings may not lead to satisfactory results for individual users.
This is due to the fact that the cost savings offered to ridesharing users may not meet their
cost saving expectations, even if the overall cost savings are optimized. To overcome this
problem, we introduced the concept of the minimal expected cost savings discount into the
decision model to guarantee the minimal cost savings discount that would be offered to
the ridesharing users.

The basic setting of the problem addressed in this paper was similar to that of the
problems addressed in the literature. For example, the origin location, destination location,
earliest departure time, latest arrival time, and car capacity were all considered in this
study. In addition, the factor of cost savings discount expectation was considered in
this paper to define and formulate the discount-guaranteed ridesharing problem. With
regard to the minimal expected cost savings discount, the decision model needed to
determine ridesharing routes such that the cost savings discount offered to each ridesharing
participant would be greater than or equal to the minimal expected cost savings discount.
To formulate this problem, we introduced the notations and symbols listed in Table 1.

Table 1. Notations of symbols, variables, and parameters.

Variable Meaning

P Total no. of passengers.
D Total no. of drivers.
p The index of a passenger and the corresponding passenger agent, where p ∈ {1, 2, 3, . . . P}.
d The index of a driver and the corresponding driver agent, where d ∈ {1, 2, 3, . . . , D}.
k The index of a location, k ∈ {1, 2, . . . , K}.
Jd Total no. of bids submitted by driver agent d ∈ {1, 2, . . . , D}.
j The index of the j− th bid placed by a driver agent with j ∈ {1, 2, . . . , Jd}.

DBdj

DBdj = (qdj1, qdj2, qdj3, . . . , qdjP, odj, cdj): the j-th bid of driver agent d, where
qdjp is the available seats to serve passenger p,
odj is the original cost when the driver travels alone, and
cdj is the travel cost of the bid.

q1
djp The number of seats for picking up passengers at the pick− up location of passenger p, q1

djp= qdjp.
q2

djp The number of seats released after dropping the passengers at the drop− off location of passenger p, q2
djp= qdjp.

PBp

PBp = (Sp1, Sp2, Sp3, . . . , SpK, fp): the bid of passenger agent p, where
Spk is the number of seats requested by passenger p for location k and
fp is the cost of passenger p without ridesharing.

s1
pk No. of seats requested by passenger p at the pick− up location of passenger p, s1

pk = { spp i f k = p
0 otherwise .

s2
pk No. of seats requested by passenger pat the drop− off location of passenger p, s2

pk = { spp i f k = p
0 otherwise .

xdj A decision variable: xdj = 1 if the j-th bid of driver d is a winning bid and xdj = 0 otherwise.
yp A binary decision variable: yp = 1 if the bid of passenger p is a winning bid and yp = 0 otherwise.
rD Minimal expected cost savings discount for drivers.
rP Minimal expected cost savings discount for passengers.

H(x,y)
The total cost savings objective function,

H(x, y) =

(
P
∑

p=1
yp

(
fp

))
+

(
D
∑

d=1

Jd
∑

j=1
xdjodj

)
−
(

D
∑

d=1

Jd
∑

j=1
xdjcdj

)
.

Γdj The set of passengers on the ride corresponding to the j-th bid submitted by driver d.

Hdj(x,y)
The cost savings of the j-th bid submitted by driver d

Hdj(x, y) =

[(
∑

p∈Γdj

yp fp

)
+ xdjodj−

(
xdjcdj

)]
.

cfpdj Travel cos t for passenger p on the ride corresponding to the j− th bid submitted by driver d, where p ∈ Γdj.
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As a ridesharing system typically consists of three entities, namely drivers, passengers,
and a service provider, it can be modeled as a multi-agent system (MAS) [8,9]. In a MAS,
an agent is a cooperative, autonomous, and intelligent entity working to achieve certain
goals. In this paper, we adopted the MAS concept to model a ridesharing system. The
ridesharing MAS includes driver agents, passenger agents, and the service provider agent.
Driver agents and passenger agents submit bids to the system, and the service provider
agent must determine the winning bids by matching driver agents and passenger agents
based on the bids submitted. The operation of the ridesharing MAS is very similar to an
auction [10]. Let us denote the requirements of passenger p as Rp = (Lop, Lep, ωe

p, ωl
p, np),

where Rp is defined by the start location Lop, end location Lep, earliest departure time ωe
p,

latest arrival time ωl
p, and number of seats requested np. The driver’s requirements are

represented by Rd = (Lod, Led, ωe
d, ωl

d, ad, τd, Γd), where Rd is defined by the start location
Lod, end location Led, earliest departure time ωe

d, latest arrival time ωl
d, number of seats

available ad, and maximum detour ratio τd. That is, Rd = (Lod, Led, ωe
d, ωl

d, ad, τd). The bids
for passenger agents and driver agents could be generated by a bid generation procedure,
such as that used in [12]. The bids generated by the bid generation procedure in [12]
satisfied the spatial and temporal constraints of drivers and passengers and the capacity
constraints of individual cars. All the other constraints were formulated and handled in
the discount-guaranteed ridesharing problem introduced below.

The bid of passenger agent p is denoted by PBp = (Sp1, Sp2, Sp3, . . . , SpK, fp), where Spk
is the number of seats requested by passenger agent p for location k and fp is the cost for
passenger agent p without ridesharing. For a driver agent’s bid, we used DBdj = (qdj1, qdj2,
qdj3, . . . , qdjP, odj, cdj) to represent the j-th bid of driver agent d, where qdjp is the available
seats to serve passenger agent p, odj is the original cost when the driver travels alone, and
cdj is the travel cost of the bid.

Based on the bids submitted by the passenger agents and driver agents,
PBp∀p ∈ {1, 2, 3, . . . P} and DBdj∀d ∈ {1, 2, . . . , D}, respectively, the ridesharing ser-
vice agent must determine the winning bids such that the cost savings discount for all
the winners is no less than the minimal expected cost savings discount. A discount-
guaranteed ridesharing problem was formulated to describe this optimization problem, as
described below.

Just like the existing studies that focus on cost-saving optimization in ridesharing
problems, the discount-guaranteed ridesharing problem considered in this paper had to
satisfy several constraints. These constraints included the supply and demand constraints,
the positive cost savings constraint, the single winning bid constraint for drivers, and the
cost savings discount constraints for drivers and passengers. The potential drivers and
passengers submit bids to the ridesharing system according to their transport requirements
with the bid generation software tool. The bid generation software tool generates bids that
satisfy the timing and capacity constraints. The winning bids are determined by solving
the discount-guaranteed ridesharing problem, as formulated below.

Different ways of allocating cost savings to ridesharing participants have been pro-
posed in the literature and applied in practice. To formulate the discount-guaranteed
ridesharing problem, we used the proportional allocation scheme to allocate cost savings
to ridesharing participants. Under the proportional allocation scheme, the cost savings are
allocated according to the costs for each ridesharing participant. The total cost savings can

be calculated by H(x, y) =

(
P
∑

p=1
yp

(
fp

))
−
(

D
∑

d=1

Jd
∑

j=1
xdj(cdj − odj)

)
.

Let us define the set of passengers in the ride corresponding to the j-th bid submitted
by driver d as Γdj. Let cfpdj be the travel cost for passenger p on the ride of the j-th bid
submitted by driver d, where p ∈ Γdj.

The portion of cost savings allocated to driver d, where d ∈ {1, 2, 3, . . . D}, is
cdj Hdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
if xdj > 0. The cost savings discount for the j-th bid of driver agent d
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is
Hdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
if xdj > 0. For the discount-guaranteed ridesharing problem, the cost sav-

ings discount
Hdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
for driver d must satisfy the cost savings discount constraint.

That is, xdj(
Hdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
− rD) must be greater than or equal to zero.

The portion of the cost savings allocated to passenger p, where p ∈ {1, 2, 3, . . . P}, is
c fpdj Hdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
if yp > 0. The cost savings discount for winning passenger p with yp > 0 is

Hdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
.

For the discount-guaranteed ridesharing problem, the cost savings discount
Hdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
for passenger p must satisfy the cost savings discount constraint. That is,

yp(
Hdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
− rP) must be greater than or equal to zero.

Based on the objective function and the constraints defined above, we formulated the
discount-guaranteed ridesharing problem as follows.

Discount-guaranteed ridesharing problem:

max
x,y

H(x, y) (1)

D

∑
d=1

Jd

∑
j=1

xdjq1
djk = yps1

pk∀p ∈ {1, 2, . . . , P} ∀k ∈ {1, 2, . . . , P} (2)

D

∑
d=1

Jd

∑
j=1

xdjq2
djk = yps2

pk∀p ∈ {1, 2, . . . , P} ∀k ∈ {1, 2, . . . , P} (3)

P

∑
p=1

yp fp +
D

∑
d=1

Jd

∑
j=1

xdjodj ≥
D

∑
d=1

Jd

∑
j=1

xdjcdj (4)

Jd

∑
j=1

xdj ≤ 1∀d ∈ {1, . . . , D} (5)

xdj(
Hdj(x, y)

∑
p∈Γdj

ypc fpdj + xdjcdj
− rD) ≥ 0 (6)

yp(
Hdj(x, y)

∑
p∈Γdj

ypc fpdj + xdjcdj
− rP) ≥ 0 (7)

where xdj ∈ {0, 1} ∀d ∈ {1, 2, . . . , D} ∀j ∈ {1, 2, . . . , Jd} and yp ∈ {0, 1} ∀p ∈ {1, 2, . . . , P}.
The constraints considered in the above formulation of the discount-guaranteed

ridesharing problem included: the supply/demand constraints at pick-up (Equation (2))
and drop-off (Equation (3)) locations, the non-negative cost savings constraint
(Equation (4)), the single winning bid constraint for drivers (Equation (5)), and the cost
savings discount constraints for drivers (Equation (6)) and passengers (Equation (7)).

Note that the constraints represented by Equations (6) and (7) are not considered in
the existing studies on ridesharing, such as those reported in [12,28,40].

We analyzed the costs for passengers and drivers under the decision model of the
above discount-guaranteed ridesharing problem. In the optimization model, the cost for
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passenger p without ridesharing, fp, is related to the transportation costs of alternative
transport modes. It provides a reference for assessing the cost savings for passengers. The
cost savings allocated to passenger p on the ride corresponding to the j-th bid submitted

by driver d, where p ∈ Γdj, is
c fpdj Hdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
=

c fpdj

 ∑
p∈Γdj

yp fp

+xdjodj− (xdjcdj)


∑

p∈Γdj
ypc fpdj+xdjcdj

. The

cost for passenger p on the ride corresponding to the j-th bid submitted by driver d is

c fpdj −
c fpdj

 ∑
p∈Γdj

yp fp

+xdjodj− (xdjcdj)


∑

p∈Γdj
ypc fpdj+xdjcdj

. Our decision model ensures that if the detour for

passengers on a shared ride is close to zero, the passengers will be better off. If the detour
for passengers on a shared ride is close to zero, cfpdj will be close to fp for each p ∈ Γdj. If

cfpdj is close to fp for each p ∈ Γdj, c fpdj −
c fpdj

 ∑
p∈Γdj

yp fp

+xdjodj− (xdjcdj)


∑

p∈Γdj
ypc fpdj+xdjcdj

will be close to

fp−
fp

 ∑
p∈Γdj

yp fp

+xdjcdj− (xdjcdj)


∑

p∈Γdj
yp fp+xdjcdj

=
(xdjcdj)

∑
p∈Γdj

yp fp+xdjcdj
fp < fp. As the cost for each passenger

p ∈ Γdj is less than the original cost fp when he/she travels alone, each passenger is better
off under our decision model. If there is only one passenger on the shared ride, usually
there will be no detour for the passenger. In this case, the above situation will hold and the
decisions made by our model ensure that the passenger on the shared ride is better off.

We analyzed the cost for the driver similarly. The cost for driver d on the ride cor-

responding to the j-th bid submitted by driver d is cdj −
cdj

 ∑
p∈Γdj

yp fp

+xdjodj− (xdjcdj)


∑

p∈Γdj
ypc fpdj+xdjcdj

.

Following a similar path of reasoning, if the detour for passengers on a shared ride is close
to zero, the driver will be better off. It follows from the above reasoning that the property
below holds.

Property 1. If the detour for passengers on a shared ride is close to zero, the driver
and the passengers on the shared ride will be better off under the proposed decision model.

4. Solution Approach

The discount-guaranteed ridesharing problem formulated in this paper belongs to a
class of discrete, constrained, and nonlinear optimization problems. Finding an optimal
solution in the discrete, constrained solution space is a challenging issue in optimization
theory. Many approaches have been developed to guide solutions and move toward a
feasible solution space while in the process of optimizing an objective function. These
approaches commonly incorporate the concept of penalties. A solution is penalized if it
is outside the feasible region of the solution space. The degree of the penalty depends on
the patterns of constraint violation. In such penalty methods, penalty terms are multiplied
by weighting factors and added to the objective function to evaluate the feasibility of a
solution found in the optimization process. In typical penalty-based methods, users need
to set the weighting factors for the penalty terms. The improper setting of the weighting
factors for the penalty terms in penalty methods usually leads to poor performance.

To avoid the problems arising from the improper setting of the weighting factors
when applying a penalty method, we adopted a penalty method from [60] that does not
require explicit weighting factors for the penalty terms. The details of this method are
described below.
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The penalty method used in this paper determined the objective function value
S f min = min

(x,y)∈S f

H(x, y) of the worst feasible solution in the current population, where

S f is the set of all feasible solutions in the current population. The functions for the penalty
method are defined in Equation (8) through (14):

U(x, y) = S f min + U1(x, y) + U2(x, y) + U3(x, y) + U4(x, y) + U5(x, y) (8)

U1(x, y) = −
(

P

∑
p=1

K

∑
k=1

(

∣∣∣∣∣ D

∑
d=1

Jd

∑
j=1

xdjq
\1
djk − yps1

pk

∣∣∣∣∣+
∣∣∣∣∣ D

∑
d=1

Jd

∑
j=1

xdjq2
djk − yps2

pk

∣∣∣∣∣)
)

(9)

U2(x, y) = min(
P

∑
p=1

yp fp −
D

∑
d=1

Jd

∑
j=1

xdj(cdj − odj), 0.0) (10)

U3(x, y) =
D

∑
d=1

Jd

∑
j=1

min(1−
Jd

∑
j=1

xdj, 0.0) (11)

U4(x, y) =
D

∑
d=1

Jd

∑
j=1

xdjmin((
Hdj(x, y)

∑
p∈Γdj

ypc fpdj + xdjcdj
)− rD, 0.0) (12)

U5(x, y) =
P

∑
p=1

ypmin((
Hdj(x, y)

∑
p∈Γdj

ypc fpdj + xdjcdj
)− rP, 0.0) (13)

The fitness function H1(x, y) for the penalty method is defined in (14):

H1(x, y) =

{
H(x, y) i f (x, y) is f easible

U(x, y) otherwise
(14)

Evolutionary approaches could be used to solve the discount-guaranteed ridesharing
problem. The issue addressed in this paper is novel in relation to all existing evolutionary
approaches. The high degree of coupling among the decision variables and the nonlinearity
of the constraints posed challenges for finding solutions. Although many evolutionary
approaches have been proposed in recent decades, the effectiveness of applying existing
evolutionary approaches to a new problem should be evaluated. However, it is impossible
to develop an algorithm by applying all existing evolutionary approaches to solve a new
problem in a short period of time. Particle swarm optimization is a population-based
approach relying on the collective intelligence of multiple solution finders called particles.
Only the best particles, i.e., the personal best and global best, can transmit information to
the other particles to improve the solution found. It is easy to implement a particle swarm
optimization algorithm, as no mutation calculation is required. Differential evolution is
another population-based approach. Differential evolution attempts to improve the quality
of individual candidate solutions in the population through mutation, crossover, and
selection with a few control parameters. It achieves fast convergence for many problems.
For the above reasons, we selected these two well-known and widely used approaches,
particle swarm optimization and differential evolution, to solve the discount-guaranteed
ridesharing problem. Seven DE-based algorithms and three variants of the PSO algorithm
were considered as the candidate solvers to find the solutions for the discount-guaranteed
ridesharing problem. The seven DE-based algorithms and the three variants of the PSO
algorithm are briefly described below.

Please refer to Table 2 for the notations and variables used in the seven DE-based
algorithms. The seven DE-based algorithms considered in this study all followed the
same three-step operation process: mutation, crossover, and selection. Figure 1 shows
the flow chart for the seven DE-based algorithms. The differences between the seven
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variants of the DE algorithm were the mutation strategies used. In this paper, we refer to
the seven mutation strategies used by the seven DE-based algorithms as m ∈ {1, . . . , 7}.
For convenience, we use DE-m to refer to the variant of the DE algorithm that used
mutation strategy m, m ∈ {1, . . . , 7}. We also refer to DE-7 as NSDE, as it was based on
neighborhood search.

Table 2. Notations of symbols, variables, and parameters used in the seven DE algorithms.

Variable Meaning

N Dimension of the problem, N =
D
∑

d=1
Jd + P.

m A mutation strategy.
NP Population size.
G Number of generations.
t The generation index.
zi The i–th candidate solution in the population.
Fi Scale factor of individual i.

CR Crossover rate of individual i.
vi A mutant vector.
ui A trial vector.
ui The transformed binary trial vector corresponding to ui.
zb The best candidate solution in the current population.

zr
A candidate solution randomly selected from the population, where r is a random integer between
1 and NP.

r1, r2, r3, r4, r5 Random integers between 1 and NP.

N(µ, σ2
1 )

A random variable with Gaussian distribution N(µ, σ2
1 ), where the mean is µ and the standard

deviation is σ1.

For a population of size NP, the set of candidate solutions in the population is
{zi, where zi = (zi1, zi2, zi3, . . . , ziN) and i ∈{1, 2, . . . , NP}}.

A mutation strategy was used to calculate a vector called a mutant vector,
vi = (vi1, vi2, vi3, . . . , viN), for each candidate solution in the population. The mutation
strategies used by the seven variants of the DE algorithm are defined in Equation (15)
through (21).

vin = zr1n + Fi(zr2n − zr3n), where Fi is fixed (15)

vin = zbn + Fi(zr2n − zr3n), where Fi is fixed (16)

vin = zr1n + Fi(zr2n − zr3n) + Fi(zr4n − zr5n), where Fi is fixed (17)

vin = zbn + Fi(zr1n − zr2n) + Fi(zr3n − zr4n), where Fi is fixed (18)

vin = zin + Fi(zbn − zin) + Fi(zr1n − zr2n), where Fi is fixed (19)

vin = zin + Fi(zbn − zin) + Fi(zr1n − zr2n) + Fi(zr3n − zr4n), where Fi is fixed (20)

vin = zr1n + Fi(zr2n − zr3n), where Fi = Ni(0.5, 0.5). (21)

Note that Fi = Ni(0.5, 0.5) in Equation (21) is randomly generated, and Ni(µ, σ2) is the
Gaussian distribution with mean µ and standard deviation σ.
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A crossover operation was applied to the mutant vector to create a potential candidate
solution called a trial vector. For the mutant vector vi and the candidate solution zi, the
crossover operation is defined for each n ∈ {1, 2, . . . , N} in (22).

uin = { vin i f Rand(0, 1) < CR
zin otherwise

(22)

After the crossover operation, the RealToBinary procedure in Appendix A was applied
to transform the trial vector ui to a binary vector uidg before evaluating its fitness function
value H1(ui).

The trial vector was selected to replace the current candidate solution if it was better
than the current candidate solution. That is, the current candidate solution zi was replaced
by the trial vector ui if H1(ui) ≥ H1(zi).

Algorithm 1 shows the Discrete Differential Evolution (DE) Algorithm with Mutation
Strategy m.
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Algorithm 1. Discrete Differential Evolution (DE) Algorithm with Mutation Strategy m

Step 0: Set parameters
Step 0-1: Set mutation strategy m
Step 0-2: Set parameters

Set G
Set NP
CR = 0.5
Set Fi for i ∈ {1, 2, . . . , NP}

Step 1: Initialization
Step 1-1:

Generate a population {zi, i ∈ {1, 2, . . . , NP}} randomly
Step 1-2:

Compute H1(zi)
Step 1-3:

t← 1
Step 2: Main Loop
While (t < G)

For i = 1 to NP
Step 2.1: Perform mutation operations

If (m = 1)
Perform mutation operation to compute mutant vector vi according to formula (15)

Else If (m = 2)
Perform mutation operation to compute mutant vector vi according to formula (16)

Else If (m = 3)
Perform mutation operation to compute mutant vector vi according to formula (17)

Else If (m = 4)
Perform mutation operation to compute mutant vector vi according to formula (18)

Else If (m = 5)
Perform mutation operation to compute mutant vector vi according to formula (19)

Else If (m = 6)
Perform mutation operation to compute mutant vector vi according to formula (20)

Else If (m = 7)
Generate Fi = Ni(0.5,0.5)
Perform mutation operation to compute mutant vector vi according to formula (21)

Step 2.2: Apply crossover operation to compute trial vector ui according to formula (22)
Step 2.3: Compute the binary vector associated with ui
Step 2.4: uin ←RealToBinary(uin) for n ∈ {1, 2, . . . , N}
Step 2.5: Update candidate i

If H1(ui) ≥ H1(zi)
zi = ui

End If
End For

t← t + 1
End While

Like the DE approach, PSO is also a population-based approach which maintains a
population of candidate solutions in the solution-finding process. In the PSO approach, a
candidate solution in the population is called a particle, and the population of particles is
called a swarm. The way to improve the quality of a particle in the PSO approach is based
on the sharing of information among the swarm of particles. More concretely, each particle
attempts to improve its solution quality by adjusting its velocity according to its historical
best solution (personal best), the global best of the swarm, or other relevant information
provided by the swarm of particles.

Please refer to Table 3 for the notations and variables used in the three variants
of the PSO algorithm. Figure 2 shows the flow chart for the three variants of the PSO
algorithm considered in this study. All three PSO-based algorithms followed the same
operation process to determine the personal best and global best and update the velocity.
The differences between the three variants of the PSO algorithm were the methods of
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updating the velocity. For the classical PSO algorithm, the velocity is updated according to
Equation (23).

vin ← ωvin + c1r1(Pzin − zin) + c2r2(Gzn − zin) (23)

Table 3. Notations of symbols, variables, and parameters used in the three PSO algorithms.

Variable Meaning

N The problem dimension, N =
D
∑

d=1
Jd + P.

m A mutation strategy.
NP Population size.
S The number of particles randomly selected from the population.
G Number of generations.
t The generation index.
zi The i-th candidate solution in the population.

Pzi
The personal best of particle i, where i ∈
{1, 2, . . . , NP}, and Pzin is the n− th element of the vector Pzi, where n ∈ {1, 2, . . . , N}.

GZ The global best, with Gzn being the n− th element of the vector GZ, where n ∈ {1, 2, . . . , N}.
vi The velocity of particle i; vin denotes the n-th element of the vector vi.

c1, c2, c3 Non-negative real parameters less than 1.
r1, r2, r3 Random variables with uniform distribution U(0,1).

For the CenPSO algorithm, the velocity was updated according to Equation (24):

vin ← vin + c1r1(Pzin − zin) + c2r2(Gzn − zin) + c3r3(Czn − zin) (24)

In Equation (24), Czn is defined by Equation (25) as follows:

Czn =

S
∑

i=1
zi

S
(25)

For the CLPSO algorithm, the velocity was updated in a more complicated manner
according to Equation (26) or (27), depending on the random value rp with uniform distri-
bution U(0,1). The velocity was updated by applying Equation (26) if rp > pc. Otherwise,
the better particle m of two randomly selected particles from the swarm was used to update
the velocity according to Equation (27).

vin ← vin + c1r1(Pzin − zin) + c2r2(Gzn − zin) (26)

vin ← vin + c1r1(Pzmn − zin) (27)
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Algorithm 2 shows the Discrete Particle Swarm Optimization Algorithm with Velocity
Updating Strategy.

Algorithm 2. Discrete Particle Swarm Optimization Algorithm with Velocity Updating Strategy

Step 0: Set parameters
Step 0-1: Set velocity updating strategy v
Step 0-2: Set parameters

Set G
Set NP

Step 1: Initialization
Step 1-1:

Generate a population {zi, i ∈ {1, 2, . . . , NP}} of particles randomly
Step 1-2:

Compute H1(zi)
Step 1-3:

t← 1
Step 2: Main Loop
While (t < G)

For each i ∈ {1, 2, . . . , NP}
For each n ∈ {1, 2, . . . , N}

Update the velocity of particle zi according to velocity updating strategy v
If (v = 1)

Generate a random variable r1 with uniform distribution U(0,1)
Generate a random variable r2 with uniform distribution U(0,1)
Update the velocity µi of particle zi according to formula (23)

Else If (v = 2)
Generate a random variable r1 with uniform distribution U(0,1)
Generate a random variable r2 with uniform distribution U(0,1)
Generate a random variable r3 with uniform distribution U(0,1)
Update the velocity µi of particle zi according to Formula (24) and
Formula (25)

Else
Generate a random variable rp with uniform distribution U(0,1)

If rp > pc
Generate a random variable r1 with uniform distribution U(0,1)
Generate a random variable r2 with uniform distribution U(0,1)
Update the velocity µi of particle zi according to Formula (26)

Else
Generate a random variable r1 with uniform distribution U(0,1)
Update the velocity µi of particle zi according to formula (27)

End If
End If

End For
Step 2.3: Compute the binary vector associated with µi

uin ←RealToBinary(µin) for n ∈ {1, 2, . . . , N}
Step 2.5:Update personal best and global best

If H1(ui) ≥ H1(Pzi)
Pzi=ui

End If
If H1(Pzi) ≥ H1(Gz)

Gz = Pzi
End If

End For
t← t + 1

End While

The structures of each of the ten algorithms had a common property: two nested loops.
The outer loop controls the generation to be produced and the inner loop updates the can-
didate solutions in the population. For each of the seven DE algorithms, we analyzed the
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complexity as follows. The two nested loops contain mutation operations, crossover opera-
tions, the transformation operation RealToBinary(), and the evaluation operation of H1(x,y)
for each generation. The most complex computation takes place when the function H1(x,y)
is computed. The complexity of computing H1(x,y) is O(

(
NP + DJP2 + DJ2). The com-

plexities of the mutation operations, crossover operations, and the RealToBinary() operation
are all O(N). Hence, the complexity of each generation is O(

(
NP + DJP2 + DJ2 + N

)
NP).

The overall complexity of executing G generations is O
(
G(NP + DJP2 + DJ2 + N)NP) .

For each of the three PSO algorithms, we analyzed the complexity as follows. The
two nested loops contain the operation for updating the velocity of the particles, the
transformation operation RealToBinary(), the evaluation operation of H1(x,y) for each gener-
ation, and the operation for updating the personal best and global best. The complexity
of the operation for updating the velocity of a particle is O(N). The complexity of the
transformation operation RealToBinary() is O(N). The complexity of computing H1(x,y) is
O(
(

NP + DJP2 + DJ2). Two operations are required for updating the personal best and
global best. Hence, the complexity of each generation is O(

(
NP + DJP2 + DJ2 + N

)
NP).

The overall complexity of executing G generations is O
(
G(NP + DJP2 + DJ2 + N)NP) .

Although the complexity of executing G generations with population size NP was the
same for all ten algorithms, the number of required generations generally differed. This
was why experiments were needed to compare the effectiveness of the ten algorithms.

5. Results

In this section, we present the results obtained by the ten algorithms developed in
this paper. Several experiments were performed to verify the solution methods based
on the proposed decision models. The purpose of the experiments was to compare the
performance and efficiency of applying the ten different solution algorithms to solve the
discount-guaranteed ridesharing problem. This section is divided into two subsections.
In Section 5.1, we use a small example to illustrate the inputs and results obtained by
the proposed method. In Section 5.2, we present the results of the experiments obtained
by applying the ten algorithms proposed in this paper and compare their performance
and efficiency.

5.1. A Small Example

In this subsection, a small example is introduced to illustrate the method proposed in
this paper.

The start locations and end locations of the driver and passengers in this example are
listed in Tables 4 and 5, respectively. For brevity, data regarding the time requirements of
the itineraries are not shown in the tables.

Table 4. Start locations and end locations of drivers.

Driver Start Location
(Latitude/Longitude)

Destination Location
(Latitude/Longitude)

Driver 1 24.23785/120.66993 24.11308/120.65914
Driver 2 24.1692536/120.6848233 24.20195/120.56815
Driver 3 24.13425/120.5539 24.14289/120.70549

The original data files associated with this example can be downloaded from the link
in [61].

The number of seats and the price information in the bids submitted by the drivers
are shown in Tables 6 and 7, respectively.
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Table 5. Start locations and end locations of passengers.

Driver Start Location
(Latitude/Longitude)

Destination Location
(Latitude/Longitude)

Passenger 1 24.21872/120.6469 24.12877/120.66223
Passenger 2 24.1790507/120.6657476 24.17369/120.61354
Passenger 3 24.0611/120.64342 24.1465287/120.6532456
Passenger 4 24.07962/120.69454 24.12438/120.66244
Passenger 5 24.19422/120.69538 24.15288/120.69704
Passenger 6 24.16048/120.69173 24.16359/120.65138
Passenger 7 24.0611/120.64342 24.11009/120.64146
Passenger 8 24.19422/120.69538 24.13046/120.7047
Passenger 9 24.13623/120.60693 24.13527/120.6571

Passenger 10 24.16429/120.68522 24.15345/120.65495

Table 6. The number of seats in the bids submitted by drivers.

Driver ID (d) j qdj1 qdj2 qdj3 qdj4 qdj5 qdj6 qdj7 qdj8 qdj9 qdj10 Γdj

1 1 0 0 0 0 1 0 0 0 0 0 { 5 }
2 1 0 0 0 0 0 0 0 0 0 1 { 10 }
3 1 0 0 0 0 0 0 0 0 1 0 { 9 }

Table 7. Price information in the bids submitted by drivers.

Driver ID (d) j odj cdj

1 1 50.4025 51.4975
2 1 36.745 41.1575
3 1 57.485 57.485

Table 8 shows the number of seats and price information in the bids submitted
by passengers.

Table 8. Bids submitted by passengers.

Passenger ID (p) sp1 sp2 sp3 sp4 sp4 sp4 sp4 sp4 sp4 sp4 fp

1 1 0 0 0 0 0 0 0 0 0 37.0475
2 0 1 0 0 0 0 0 0 0 0 18.3475
3 0 0 1 0 0 0 0 0 0 0 28.12
4 0 0 0 1 0 0 0 0 0 0 19.07
5 0 0 0 0 1 0 0 0 0 0 14.1675
6 0 0 0 0 0 1 0 0 0 0 12.25
7 0 0 0 0 0 0 1 0 0 0 17.1175
8 0 0 0 0 0 0 0 1 0 0 33.11
9 0 0 0 0 0 0 0 0 1 0 14.6925
10 0 0 0 0 0 0 0 0 0 1 9.645

For rD = rP = 0.1, the solution found is shown in Tables 9 and 10.

Table 9. Solution x for drivers when rD = rP = 0.1.

Driver Decision Variable x11 x21 x31

Value 1 1 1
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Table 10. Solution y for passengers when rD = rP = 0.1.

Passenger Decision
Variable y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Value 0 0 0 0 1 0 0 0 1 1

The above solution involved three shared rides. The cost savings discount for each of
the drivers and passengers in the shared rides could be calculated as follows.

For driver 1 and passenger 5 in the shared ride of bid (d,j) = (1,1) of driver 1,

F11(x, y) = o11 + f5 − c11 = 50.4025 + 14.1675− 51.4975 = 13.0625

c f511 = 14.1675

For driver 1 and passenger 5 in their shared ride, the cost savings discount is
F11(x,y)

c f511+c11
= 13.0725

14.1675+51.4975 = 13.0725
65.665 = 0.199. Hence, the cost savings discount for driver 1

and passenger 5 is greater than 0.1(=rD = rP).
The cost savings discount for driver 2 and passenger 10 in their shared ride can be

calculated similarly. For driver 2 and passenger 10, the cost savings discount is 0.103, which
is greater than 0.1(=rD = rP).

Similarly, for driver 3 and passenger 9, the cost savings discount is 0.204, which is also
greater than 0.1(=rD = rP).

Therefore, our proposed method generated a solution that satisfied the cost savings
discount constraints for this example.

The objective function value of the above solution is 32.998.
Figure 3 shows the three shared routes of the solution found by applying the NSDE

(DE-7) algorithm, as the area is located in Taiwan, there are some words on the map
in Chinese.
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The above example shows that our proposed method guaranteed that the cost savings
discount offered to each of the matched drivers and passengers was no lower than the
minimal expected cost savings discount.

5.2. Performance of Three PSO-Based Algorithms and Seven DE-Based Algorithms

In this subsection, the three PSO-based algorithms and seven DE-based algorithms are
applied to solve several instances of the discount-guaranteed ridesharing problem in order
to assess their performance and efficiency. To compare the performance and efficiency of
these variants of the PSO and DE algorithms, some of the common algorithmic parameters
were set to be the same, while other parameters were fixed.

As the variants of the PSO and DE algorithms proposed in Section 4 are population-
based evolutionary algorithms, they all share the population size (POP = NP) and number
of generations (Gen) parameters. For all the experiments, POP was set to 30 or 50 and
Gen was set to 1000. In addition to POP and Gen, there were parameters specific to each
algorithm. These algorithm-specific parameters are listed in Table 11.

Table 11. Parameters of each algorithm.

Algorithm Algorithm-Specific
Parameters

Common Parameter
Setting 1 Common Parameter Setting 2

PSO c1 = 0.4, c2 = 0.6, ω = 0.4 POP = 30, Gen = 1000 POP = 50, Gen = 1000

CLPSO c1 = 0.4, c2 = 0.6, ω = 0.4,
pc = 0.5 POP = 30, Gen = 1000 POP = 50, Gen = 1000

CenPSO c1 = 0.4, c2 = 0.6, c3 = 0.6,
ω = 0.4 POP = 30, Gen = 1000 POP = 50, Gen = 1000

DE-m
(m ∈ {1, 2, 3, 4, 5, 6} )

CR = 0.5
Fi: a value arbitrarily selected
from uniform (0, 2)

POP = 30, Gen = 1000 POP = 50, Gen = 1000

DE-7
(NSDE)

CR = 0.5; Fi = 0.5r1 + 0.5,
where r1 is a random value
with Gaussian distribution
N(0,1).

POP = 30, Gen = 1000 POP =50, Gen =1000

To compare the three variants of the PSO-based algorithm and the seven DE-based
algorithms, several test cases were used. The values of rD and rP were set to 0.1 for testing.

The data for the test cases were randomly generated from an area in Taichung City,
which is located in the central part of Taiwan. The travel distance for drivers was less than
30 km. The travel distance for passengers was less than 20 km. Although the test data were
generated from the selected area, the proposed algorithms can work for any area, as long
as the geographic information is available. The original data files associated with these test
cases can be downloaded from the link in [61].

Our experiments were divided into two common parameter settings, as shown in
Table 11. Hence, two series of experiments were conducted. The first series of experiments
were carried out using common parameter setting 1 (POP = 30), whereas the second series
of experiments were performed using common parameter setting 2 (POP = 50). A laptop
with Intel(R) Core(TM) i7 CPU, a base clock speed of 2.6 GHz, and 16GB of on-board memory
was used to perform all the experiments.

In each series of experiments, all ten algorithms proposed in this paper were applied
to find the solutions for each test case. We ran each algorithm ten times per test case and
recorded the results, including the fitness function values and the number of generations
required to find the best solutions for each run, which are presented in the tables below.

For clarity, we present the results for common parameter setting 1 (POP = 30) first and
the results for common parameter setting 2 (POP = 50) second. For each common parameter
setting, we first compare the performance and then the efficiency of the ten algorithms.

For common parameter setting 1, the population size (POP) was 30. The fitness func-
tion values obtained by applying the PSO, CLPSO, CenPSO, and DE-7 (NSDE) algorithms



Appl. Sci. 2022, 12, 9544 21 of 36

are listed in Table 12. Regarding the three PSO-based algorithms, the average fitness func-
tion value obtained by the PSO algorithm was the same as that of the CLPSO algorithm
and the CenPSO algorithm for Case 1. The average fitness function values obtained by
PSO outperformed those of the CLPSO and CenPSO algorithms for all other cases (Case 2
through Case 10) when the population size was 30.

Table 12. Fitness function values for discrete PSO, CLPSO, CenPSO, and DE-7 (NSDE) algorithms
with NP = 30; rD = rP = 0.1.

Case D P PSO CLPSO CenPSO DE-7
(NSDE)

1 3 10 32.998 32.998 32.998 32.998
2 5 11 63.615 57.1262 60.3706 63.615
3 5 12 41.2892 38.1928 36.6922 41.715
4 6 12 50.9085 50.9085 47.9958 51.11
5 7 13 28.4254 21.9635 25.482 30.063
6 8 14 70.2629 67.0561 62.0001 72.328
7 9 15 80.8106 67.7562 69.6551 89.03
8 10 16 44.0023 27.1189 26.1877 54.02
9 11 17 49.356 41.6211 37.5057 74.05

10 12 18 32.8349 15.6644 9.361 50.9

By comparing the average fitness function values obtained by applying the PSO
algorithm and the DE-7(NSDE) algorithm, we found that the average fitness function
values obtained by the DE-7(NSDE) algorithm were equal to those of the PSO algorithm
for Case 1 and Case 2. Moreover, the fitness function values obtained by the DE-7(NSDE)
algorithm were greater than those of the PSO algorithm for all other cases (Case 3 through
Case 10). This indicated that the performance of the DE-7(NSDE) algorithm was either as
good as the PSO algorithm or better than the PSO algorithm for all test cases when the
population size was 30.

When the population size was 30, the average fitness function values obtained by
applying the six DE algorithm variations are listed in Table 13. The average fitness function
values obtained by the DE-1 algorithm and the DE-3 algorithm were the same as those
obtained by the NSDE algorithm for all test cases.

Table 13. Fitness function values for six discrete DE algorithms with population size NP = 30;
rD = rP = 0.1.

Case D P DE-1 DE-2 DE-3 DE-4 DE-5 DE-6

1 3 10 32.998 32.998 32.998 32.4747 32.998 32.998
2 5 11 63.615 50.8922 63.615 63.615 63.615 61.9928
3 5 12 41.715 41.715 41.715 41.715 41.715 41.715
4 6 12 51.11 50.9085 51.11 51.11 50.141 50.9085
5 7 13 30.063 26.1379 30.063 30.063 28.4254 30.063
6 8 14 72.328 68.6614 72.328 72.328 72.328 72.328
7 9 15 89.03 86.9898 89.03 85.323 86.213 89.03
8 10 16 54.02 53.7046 54.02 53.2235 52.0531 52.1271
9 11 17 74.05 65.5666 74.05 74.05 69.4864 72.6228

10 12 18 50.0623 47.1623 50.9 40.9119 38.3571 49.5823

Although the average fitness function values of the DE-2, DE-4, DE-5, and DE-6
algorithms were not as good as those of the NSDE algorithm for all test cases, the average
fitness function values obtained by these four DE algorithms were close to those of the
NSDE algorithm for most test cases, with some exceptions. The DE-4 and DE-5 algorithms
performed poorly in Case 10. In short, the performance of the DE-7(NSDE) algorithm
was the same as that of the DE-1 algorithm and the DE-3 algorithm. In addition, the
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performances of the DE-1, DE-3, and DE-7(NSDE) algorithms were either as good as or
better than those of the DE-2, DE-4, DE-5, and DE-6 algorithms for all test cases when the
population size was 30.

Based on the analysis above, we found that the DE-1, DE-3, and DE-7(NSDE) algo-
rithms either performed as well as or better than the three variants of the PSO algorithm
and the other three DE-based algorithms when the population size was 30. Figure 4 shows
the bar chart based on the results listed in Tables 12 and 13.
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We also used the free software KEEL [62] to apply the Friedman test to obtain average
rankings for the ten algorithms proposed in this paper based on the results of the exper-
iments for POP = 30 and POP = 50. To perform the Friedman test for the results when
POP = 30, the data in Tables 12 and 13 were first transformed into rank data. Then, the
rank data were used as the inputs to perform the Friedman test. The average rankings of
the ten algorithms proposed in this paper are shown in Table 14. The results in Table 14
indicate that the best three algorithms were the NSDE, DE-3, and DE-1 algorithms. This
was consistent with our analysis. The Friedman statistics showed significant differences
between the algorithms, with a value of 48.103636 and a p-value = 0.

Table 14. Average rankings of the ten algorithms obtained by Friedman test for NP = 30.

Algorithm Ranking

PSO 6.85
CLPSO 8.55

CenPSO 9.1
NSDE 3
DE-1 3.15
DE-2 6.25
DE-3 3
DE-4 4.7
DE-5 5.75
DE-6 4.65

In addition to the comparison of performance based on the average fitness function
values, we also compared the efficiency of the ten algorithms. Tables 15 and 16 show
the average number of generations required to find the best solutions for all runs of
each algorithm when the population size was 30. Figure 5 shows the average number
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of generations in a bar chart based on the results listed in Tables 15 and 16. It can be
observed from Table 15 that the average number of generations required to find the best
solutions for the DE-7 (NSDE) algorithm was much lower than that of the PSO, CLPSO,
and CenPSO algorithms. The DE-7 (NSDE) algorithm was obviously more efficient than
the three variants of the PSO algorithm.

Table 15. Average number of generations for PSO, CLPSO, CenPSO, and DE-7 (NSDE) algorithms
with NP = 30; rD = rP = 0.1.

Case D P PSO CLPSO CenPSO DE-7
(NSDE)

1 3 10 64.6 132.5 222.7 15.6
2 5 11 299.6 392.6 134.9 29.1
3 5 12 394.5 477.9 333.4 43.3
4 6 12 320.9 411.9 320 44.1
5 7 13 304.1 364.4 363.7 37.3
6 8 14 375.6 394.9 462.5 39.6
7 9 15 553.6 505.1 482 70.7
8 10 16 447.5 513.6 612.6 59.5
9 11 17 580.7 533.3 382.3 64.2

10 12 18 489.3 397.8 421.9 94.3

Table 16. Average number of generations for six discrete DE algorithms with population size
NP = 30; rD = rP = 0.1.

Case D P DE-1 DE-2 DE-3 DE-4 DE-5 DE-6

1 3 10 16.6 16.7 19.8 11.9 16.4 32.9
2 5 11 32.2 108.5 36.9 91.3 18.6 65.3
3 5 12 39.7 26 47.6 33.9 101.9 64.6
4 6 12 43.8 28.3 50.3 34.3 231.2 32.6
5 7 13 31.8 48.5 44.1 32.7 88.7 33.7
6 8 14 48.3 274 67.8 40.3 169.1 45.5
7 9 15 101.4 82.9 135 144.8 90.3 122.9
8 10 16 61.3 77.2 78.6 101.1 139.7 69
9 11 17 59.7 103.3 65 80.1 154.3 140.8

10 12 18 136.8 121.1 146.3 229.7 268.6 140.2
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By comparing Table 15 with Table 16, it can be seen that the average number of
generations required to find the best solutions by the six DE-based algorithms was much
lower than that required by the PSO, CLPSO, and CenPSO algorithms. The six DE-based
algorithms were more efficient than the three variants of the PSO algorithms when the
population size was 30.

Figure A1 through Figure A10 in Appendix B show the convergence speeds of simula-
tion runs for each algorithm and each test case.

Based on the comparison above, the seven DE-based algorithms were more efficient
than the PSO, CLPSO, and CenPSO algorithms when the population size was 30.

For common parameter setting 2, the population size was 50. The average fitness
function values obtained by applying the PSO, CLPSO, CenPSO, and DE-7(NSDE) algo-
rithms are listed in Table 17. Regarding the three PSO-based algorithms, the average fitness
function value obtained by the PSO algorithm was the same as that of the CLPSO algorithm
and the CenPSO algorithm for Case 1. The average fitness function value obtained by the
PSO algorithm was also the same as that of the CLPSO algorithm and CenPSO algorithm for
Case 2. The average fitness function values obtained by the PSO algorithm were higher than
those of the CenPSO algorithm for Case 2. The average fitness function values obtained by
the PSO algorithm were higher than those of the CLPSO and CenPSO algorithms for all
other cases (Case 3 through Case 10).

Table 17. Fitness function values for discrete PSO, CLPSO, CenPSO, and DE-7 (NSDE) algorithms
with NP = 50; rD = rP = 0.1.

Case D P PSO CLPSO CenPSO DE-7
(NSDE)

1 3 10 32.998 32.998 32.998 32.998
2 5 11 63.615 63.615 58.7484 63.615
3 5 12 41.2892 40.2464 40.0118 41.715
4 6 12 51.11 49.2425 50.707 51.11
5 7 13 30.063 27.3001 26.7878 30.063
6 8 14 69.9483 65.5762 68.2854 72.328
7 9 15 80.5986 76.1522 75.207 89.03
8 10 16 46.8013 34.9718 34.544 54.02
9 11 17 55.9356 40.201 51.2736 74.05

10 12 18 31.1131 19.7403 20.5417 50.9

By comparing the average fitness function values obtained by the PSO algorithm
and the DE-7(NSDE) algorithm, we found that the average fitness function values ob-
tained by the DE-7(NSDE) algorithm were equal to those of the PSO algorithm for Case 1,
Case 2, Case 4, and Case 5. Moreover, the average fitness function values obtained by the
DE-7(NSDE) algorithm were greater than those of the PSO algorithm for all other cases
(Case 3, Case 6, Case 7, Case 8, Case 9, and Case 10). This indicated that the performance of
the DE-7(NSDE) algorithm was either as good as or better than that of the PSO algorithm
for all the test cases when the population size was 50.

When the population size was 50, the average fitness function values obtained by
applying the six DE algorithms are listed in Table 18. The average fitness function values
obtained by the DE-1 algorithm and the DE-3 algorithm were the same as those of the
NSDE algorithm for all test cases.

Although the average fitness function values of the DE-2, DE-4, DE-5, and DE-6
algorithms were not as good as those of the NSDE algorithm for all test cases, they were
close to those of the NSDE algorithm for most test cases, with the exception of Case 10. The
DE-4 and DE-5 algorithms performed poorly for Case 10. In short, the performances of the
NSDE, DE-1, and DE-3 algorithms were either as good as or better than those of the DE-2,
DE-4, DE-5, and DE-6 algorithms for all test cases when the population size was 50.

Based on the analysis above, we found that the DE-1, DE-3, and DE-7(NSDE) algo-
rithms either performed as well as or better than the three variants of the PSO algorithm
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and the DE-2, DE-4, DE-5, and DE-6 algorithms when the population size was 50. Figure 6
shows the bar chart based on the results listed in Tables 17 and 18.

Table 18. Fitness function values for six discrete DE algorithms with population size NP = 50;
rD = rP = 0.1.

Case D P DE-1 DE-2 DE-3 DE-4 DE-5 DE-6

1 3 10 32.998 32.998 32.998 32.998 32.998 32.998
2 5 11 63.615 58.8758 63.615 63.615 63.615 61.9928
3 5 12 41.715 40.2785 41.715 41.715 41.2892 41.715
4 6 12 51.11 51.11 51.11 48.3931 51.11 51.11
5 7 13 30.063 30.063 30.063 30.063 30.063 30.063
6 8 14 72.328 68.4738 72.328 72.328 72.328 72.328
7 9 15 89.03 84.7331 89.03 89.03 88.2778 88.091
8 10 16 54.02 52.2693 54.02 53.8623 53.8623 52.4425
9 11 17 74.05 68.1678 74.05 73.1033 68.2863 71.9426

10 12 18 50.9 50.3477 50.9 44.9773 49.3177 37.2349
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We also used the free software KEEL [62] to apply the Friedman test to obtain average
rankings for the ten algorithms proposed in this paper based on the results of the experi-
ments for POP = 50. To perform the Friedman test for the results when POP = 50, the data
in Tables 17 and 18 were first transformed into rank data. Then, the rank data were used
as the inputs to perform the Friedman test. The average rankings of the ten algorithms
proposed in this paper are shown in Table 19. The results in Table 19 indicated that the best
three algorithms were the NSDE, DE-3, and DE-1 algorithms. This was consistent with our
analysis. The Friedman statistics showed significant differences between the algorithms,
with a value of 46.445455 and a p-value = 0.

In addition to comparing the performance of the ten algorithms based on the average
fitness function values, we also compared their efficiency. Tables 20 and 21 show the average
number of generations required to find the best solutions for all runs of each algorithm
when the population size was 50. Figure 7 shows the average number of generations in a
bar chart based on the results listed in Tables 20 and 21. It can be observed from Table 20
that the average number of generations required to find the best solutions for the DE-7
(NSDE) algorithm was much lower than that required by the PSO, CLPSO, and CenPSO
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algorithms. The DE-7 (NSDE) algorithm was more efficient than the three variants of the
PSO algorithm.

Table 19. Average rankings of the ten algorithms obtained by Friedman test for NP = 50.

Algorithm Ranking

PSO 6.65
CLPSO 8.75

CenPSO 9.05
NSDE 3.2
DE-1 3.2
DE-2 6.4
DE-3 3.2
DE-4 4.65
DE-5 5.15
DE-6 4.75

Table 20. Average number of generations for discrete PSO, CLPSO, CenPSO, and DE-7 (NSDE)
algorithms with NP = 50; rD = rP = 0.1.

Case D P PSO CLPSO CenPSO DE-7
(NSDE)

1 3 10 51.5 117.3 146.6 12.9
2 5 11 127.3 399.3 355 26.4
3 5 12 437.2 316.6 540.7 32.9
4 6 12 468.6 541.4 514.6 33.2
5 7 13 347.1 219.9 319.3 24.8
6 8 14 416.4 431.1 559.3 41.9
7 9 15 366.4 499.8 363.6 61.3
8 10 16 609.5 438.9 502.1 48.6
9 11 17 611.5 487.6 422.8 67

10 12 18 521.5 455.6 513.6 63.1

Table 21. Average number of generations for six discrete DE algorithms with population size
NP = 50; rD = rP = 0.1.

Case D P DE-1 DE-2 DE-3 DE-4 DE-5 DE-6

1 3 10 17.6 14 19.2 15.5 16.2 19.2
2 5 11 30.2 21.2 33 55.3 22.1 28
3 5 12 28.7 23.7 43.3 41.9 40.1 75.7
4 6 12 35.4 25.2 37.4 117.3 21.4 114.7
5 7 13 29.3 24.3 32.2 38.1 26.7 148.6
6 8 14 38 105.2 47.1 36.6 41.7 96
7 9 15 78.9 98.2 75.4 58.7 56.7 61.9
8 10 16 51.5 75.7 66.3 55.6 110.7 135.3
9 11 17 68.7 188.5 78.4 51.9 120.2 113.6

10 12 18 83.6 47.9 197.9 138.7 233.2 194.2
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By comparing Table 20 with Table 21, it can be seen that the average number of
generations required to find the best solutions for the six DE-based algorithms was much
smaller than that of the PSO, CLPSO, and CenPSO algorithms. The six DE-based algorithms
were more efficient than the three variants of the PSO algorithm when the population size
was 50.

Based on the comparison above, the seven DE-based algorithms were more efficient
than the PSO, CLPSO, and CenPSO algorithms when the population size was 50.

The above analysis of the POP = 30 and POP = 50 experimental results indicated that
the DE-1, DE-3, and DE-7 (NSDE) algorithms were either as good as or outperformed
all the other algorithms for the test cases in terms of the average fitness function values.
Our analysis also indicated that the DE-1, DE-3, and DE-7 (NSDE) algorithms were much
more efficient than the three variants of the PSO algorithm. The efficiency of the DE-1,
DE-3, and DE-7 (NSDE) algorithms was comparable to that of the DE-2, DE-4, DE-5, and
DE-6 algorithms.

6. Discussion

The results presented in the previous section showed that because the minimal ex-
pected cost savings discount parameter was considered in the decision model, it could
identify a set of ridesharing participants for whom the minimal cost savings discount
was guaranteed to improve user satisfaction with the ridesharing service in terms of cost
savings. For example, the small example of Case 1 indicated that the minimal expected cost
savings discount could be satisfied for the six ridesharing participants in the solution found
by our algorithms. That is, the minimal expected cost savings discount can be guaranteed
as long as a solution can be found.

The results presented in the previous section showed that the discount-guaranteed
ridesharing problem could be solved by applying different approaches. In this paper, we
limited our scope to two approaches: differential evolution and particle swarm optimization.
Seven DE-based algorithms and three variants of the PSO algorithm were considered as the
candidate solvers to find the solutions for the discount-guaranteed ridesharing problem.
Depending on the approach used, the performance and efficiency varied. The seven DE-
based algorithms considered in this study followed the same three-step operation process:
mutation, crossover, and selection. The differences between these seven DE algorithms lay
in the mutation strategies used. The method for improving the quality of a particle in PSO
is different to that in DE. In PSO-based approaches, each particle attempts to improve its
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solution quality by adjusting its velocity. All three variants of the PSO algorithm considered
in this study followed the same operation process to determine personal and global bests
and update velocity. The differences between these three variants of the PSO algorithm
lay in their methods of updating the velocity. Based on the results of our experiments, we
compared the average fitness function values and the efficiency of the ten algorithms.

In terms of performance, the average fitness function values obtained by the DE-1,
DE-3, and NSDE (DE-7) algorithms were either greater than or the same as those of the other
seven algorithms for all the test cases, regardless of whether the population size was 30 or
50. This indicated that the DE-1, DE-3, and NSDE (DE-7) algorithms either performed as
well as or better than the other four DE algorithms and the three PSO algorithms for all the
test cases, regardless of whether the population size was 30 or 50. In terms of computational
efficiency, the analysis of the results indicated that the DE-7 (NSDE) algorithm and all the
other DE-based algorithms were more efficient than the three variants of the PSO algorithm
for all the test cases when the population size was set to 30 or 50. The efficiency of the DE-7
(NSDE) algorithm was comparable to that of the other six DE algorithms. Overall, the DE-1,
DE-3, and DE-7(NSDE) algorithms were the three best choices in terms of performance and
computational efficiency for the test cases in this study. This indicated that the minimal
cost savings discount constraints had a significant influence on the effectiveness of the
evolutionary algorithms.

7. Conclusions

The incentives for users to adopt ridesharing transport modes include monetary incen-
tives and non-monetary incentives. Monetary incentives are mostly related to savings on
transport costs, whereas non-monetary incentives may include safety, trust, or enjoyability.
In this study, we focused on a monetary incentive issue of ridesharing systems. In the liter-
ature, although the problem of optimizing cost savings has been studied extensively, the
problem of guaranteeing a minimal cost savings discount for ridesharing participants has
been ignored. To bridge this gap, we defined a discount-guaranteed ridesharing problem
and proposed a decision model to address this problem. The decision model took into con-
sideration the factor of a minimal cost savings discount. The goal of the decision model was
to maximize the total cost savings for ridesharing participants under the constraint that the
ridesharing participants’ minimal expected cost savings discount had to be satisfied. Due
to the highly non-linear and objective function and constraints, seven DE-based algorithms
and three PSO-based algorithms were developed and implemented to solve the decision
problem. We illustrated that the proposed method can find a solution that guarantees the
satisfaction of the minimal expected cost savings discount. The results were consistent with
our expectations. We studied the effectiveness of the ten different algorithms developed
based on the DE and PSO approaches. The results indicated that the DE-based algorithm
with a neighborhood search mechanism and two other DE algorithms outperformed all the
other algorithms used in the experiments. This provided valuable information for selecting
the right algorithm to solve a certain type of problem. The contributions of this paper were
as follows:

1. The issue of guaranteeing a minimal cost savings discount in ridesharing systems has
not been addressed in the literature. Hence, the problem addressed and the decision
model proposed in this study differentiate it from our previous studies and other
studies in the literature. We proposed a decision model that offers a minimal cost
savings discount for drivers and passengers.

2. We proposed ten solution algorithms to provide decision support tools for finding a
set of users for whom the minimal cost savings discount can be guaranteed and the
total cost savings achieved can be optimized.

3. We provided guidelines for selecting an appropriate solution algorithm by analyzing
the results of several test cases and comparing the proposed algorithms.

In this paper, we assumed that the ridesharing information provider was a non-profit
organization that aimed to promote ridesharing. The problem formulation can be extended
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to deal with situations in which a portion of the overall cost savings is allocated to the
ridesharing information provider. As many evolutionary algorithms exist, an interesting
future research direction would be to study the effectiveness of applying other approaches
to solve the problem presented in this paper. We focused on the monetary aspect of
ridesharing systems. Other non-monetary issues such as trust were not considered in this
paper. A consideration of these issues in a decision model would be an interesting and
challenging future research direction. Another challenging future research direction would
be to evaluate the feasibility and effectiveness of different cost savings allocation schemes
in the discount-guaranteed ridesharing problem.
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Appendix A

Procedure RealToBinary
Input: a
Output: c

Step 1: If a > Vmax
b← Vmax

Else If −Vmax ≤ a and a ≤ Vmax
b← a

Else
b← −Vmax

End If

Step 2: s← 1
1+exp−b

Step 3: Generate rsid, a random variable with uniform distribution U(0,1)

If rsid < s
c← 1

Else
c← 0

End If
Return c
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