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Abstract: In recent years, pre-trained language models, represented by the bidirectional encoder
representations from transformers (BERT) model, have achieved remarkable success in machine
reading comprehension (MRC). However, limited by the structure of BERT-based MRC models (for
example, restrictions on word count), such models cannot effectively integrate significant features,
such as syntax relations, semantic connections, and long-distance semantics between sentences,
leading to the inability of the available models to better understand the intrinsic connections between
text and questions to be answered based on it. In this paper, a multi-granularity syntax guidance
(MgSG) module that consists of a “graph with dependence” module and a “graph with entity”
module is proposed. MgSG selects both sentence and word granularities to guide the text model to
decipher the text. In particular, syntactic constraints are used to guide the text model while exploiting
the global nature of graph neural networks to enhance the model’s ability to construct long-range
semantics. Simultaneously, named entities play an important role in text and answers and focusing on
entities can improve the model’s understanding of the text’s major idea. Ultimately, fusing multiple
embedding representations to form a representation yields the semantics of the context and the
questions. Experiments demonstrate that the performance of the proposed method on the Stanford
Question Answering Dataset is better when compared with the traditional BERT baseline model.
The experimental results illustrate that our proposed “MgSG” module effectively utilizes the graph
structure to learn the internal features of sentences, solve the problem of long-distance semantics,
while effectively improving the performance of PrLM in machine reading comprehension.

Keywords: machine reading comprehension; graph attention network; BERT; SQuAD

1. Introduction

Machine reading comprehension (MRC) has long been a vital task in natural language
processing (NLP). It refers to the ability of machines to read and understand a given text
and answer questions based on it (as shown in Figure 1). Better analysis and understanding
of the meaning of a sentence has always been a challenge for researchers in natural language
understanding (NLU). It is relevant in several ways, for example, in intelligent customer
service and speech assistants [1]. MRC has flourished, driven by the growing interest of
researchers, as well as the public release of numerous datasets (for example, the Stanford
Question Answering Dataset (SQuAD) [2,3]). Current MRC models are expected to perform
the tough tasks of not only finding relevant answers to questions based on a certain text
but also determining the questions that cannot be answered. For such models to be
more adaptable to the real world, a deeper understanding of the text in conjunction with
semantics and other information is required.
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Figure 1. Question–answer pairs of SQuAD2.0. In this dataset, except the answer is No answer, other
answers can be found in the passage.

The prevalent methods based on traditional deep learning, such as BiDAF [4], AoA-
attention [5], R-Net [6], and QANet [7], use the static word vectors GloVe [8] or word2vec [9]
as word representations and multilayer neural networks to enhance the model’s under-
standing of the text and questions through continuous iteration and combine various
attention mechanisms to enhance question-text relevance. However, the traditional word
vector cannot address the problem of multiple meanings of a word. In addition, the atten-
tion module has a complex network structure, which makes it challenging for it to handle
longer texts and causes several other problems, resulting in unsatisfactory MRC results.

Owing to the development of language models, the significant advances achieved in
common language models can be used for various tasks [10–13], and surprising results
have been achieved in MRC tasks. Yu et al. [14] used convolution kernels of different
sizes to convolute and pool the encoding of BERT, and used global information and local
information to fuse to improve the accuracy of reading comprehension of Chinese datasets.
Pre-training language models (PrLMs) use the concept of transfer learning to train models
effectively on a large corpus of relevant tasks. In addition, the parameters are fine-tuned in
terms of a specific task to further optimize the models. However, based on the structural
limitation of a model, the text needs to be truncated based on the maximum text length
acceptable by it, leading to the loss of semantics. Further, such models are also unable to
learn long-distance semantic relationships between sentences, which leads to their inability
to understand text and related questions accurately.

To accurately represent the text, several researchers have focused on semantics and
syntax [15–18]. SG-Net [19] explicitly considers syntactically significant words in each
input sentence and selectively picks out such words to reduce the impact of noise caused
by lengthy sentences. Parsing-All [16] benefits from each other with syntax and semantics
as joint optimization goals. Zhang et al. [20] propose an approach based on semantic
parsing to answer simple and complex questions and resolves ambiguity in natural lan-
guage problems. Thus, a significant improvement has been achieved in syntactic parsing.
Meanwhile, graph neural networks are beginning to be used for natural language task
processing owing to their ability to model non-Euclidean spatial data. Fan et al. [21] used a
combination of dependent syntax and graph convolution neural networks to perform a sen-
timent analysis based on comments from Internet users. Yin et al. [22] constructed parallel
GCNNs and fused them with LSTM to extract graph domain features from feature cubes.
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Zheng et al. [23] modeled text hierarchically at multiple-granularity levels and used graph
attention networks to obtain various granularity representations to model the dependencies
between the different granularities. Wu et al. [24] propose a novel Hierarchical-Cumulative
Graph Convolutional Network (HC-GCN) to generating Social Relationship Graphs for
Multiple Characters in Videos

To make up for the inability of the MRC model to deal with the two shortcomings
of long texts and intersentence semantics, such that the model can understand long texts
and accurately discriminate the semantics just like humans, we propose a graph neural
network to feature textual sentences and in-sentence entities. Based on the feature that
the different levels of granularity contain different levels of semantic information, a vast
variety of semantic information is integrated to make the model’s understanding of the
various semantics accurate. Thus, whether a question is answerable or not can be effectively
distinguished based on the granularity of the sentence. The start and end positions, which
are immensely difficult to identify, can be obtained following multigranularity fusion.
Experiments conducted on the SQuAD indicate that multigranularity syntax guidance
(MgSG) outperforms traditional models in terms of both exact match (EM) and F score(F1).

The main contributions of this study are as follows:

• A new network structure, MgSG, is proposed. Based on the use of PrLMs to represent
the text, combined with the graph structure, word and sentence granularities are used
to obtain a text representation with richer semantics.

• Two graph structure construction methods are designed using dependencies and
named entities, and a filtering mechanism is proposed to integrate them to improve
the accuracy of the overall text representation.

• The role of the dependencies and named entities in reading comprehension tasks is
analyzed, and it is demonstrated through experiments that both word and sentence
granularities affect model performance. In addition, the two granularity representa-
tions are modularized to make them compatible with more models.

The proposed method is used for evaluation on the SQuAD and superior results are
achieved in terms of both EM and F1 values when compared with the BERT-based reading
comprehension model, demonstrating the effectiveness of the method.

The rest of the paper is organized as follows. Related work is summarized in Section 2.
The various components of the model proposed in the text are described in detail in
Section 3. The experimental results and analyses are presented in Section 4. The analysis
and discussion of the effectiveness of the proposed method based on experiments are
presented in Section 5. The conclusions are presented in Section 6.

2. Related Work
2.1. Machine Reading Comprehension

In recent years, span-extraction MRC has gained significant momentum [25–27]. It
is a common practice to combine the two separate sequences of text and questions into
one sequence in a particular way, and the attention mechanism plays a significant role in
this. Zhu et al. [28] proposed the DUMA attention mechanism to directly model the MRC
relationship as an attention mechanism that can effectively capture the relationship among
the text paragraph, question, and answer triads. Zhuang et al. [29] designed DynSAN
to enhance the model’s ability to extract local semantics using a gated token selection
mechanism to dynamically extract significant tokens from the sequence.

Graph neural networks have demonstrated unique advantages in NLP tasks [30–32].
The relational graph attention network (R-GAT) [33] proposed by Wang et al. addresses the
problem of confusing connections when the model connects aspects with opinion words
by encoding grammatical information. Ding et al. [34] proposed a CogQA framework
based on multi-hop questions and answers in web-scale documents. Nicola et al. [35]
focused their answer-seeking concerns on the integration and reasoning of information
propagated within and between documents. The training and inference were performed
using GCN. Yu et al. [36] analyzed the relationships among multiple documents and
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queries, which was used to propose the bidirectional attention entity graph convolution
network (BAG). The BAG uses the relationships between nodes in the entity graph and the
attention information between the query and the entity graph to solve multi-hop reasoning
QA task. Bhargav et al. [37] designed a deep neural architecture (TAP) for identifying
answers and evidence in RCQA tasks requiring multi-hop inference. TAP consists of two
loosely coupled networks: a local and global interaction extractor (LoGIX) and an answer
predictor (AP). The loose coupling between the LoGIX and AP reveals the set of sentences
used by the AP in predicting answers. Thus, the answer prediction of the TAP can be
interpreted in a semi-transparent manner.

2.2. Syntactic Representation

Dependent syntax refers to the syntactic collocation between words. Recently, de-
pendency syntactic parsing has been further developed using neural networks, and new
state-of-the-art results have been obtained [38,39]. Benefiting from highly accurate parsers,
neural network models can achieve higher accuracy by exploiting syntactic information
rather than by ignoring it [15,40,41]. Kasai et al. [42] incorporated parse tree information
by converting dependency labels into vectors and simply linking label embedding to word
representations. Strubell et al. [43] proposed a neural network (LISA) that combines mul-
tiheaded self-attentiveness with multitask learning across dependency parsing, lexical
tagging, predicate detection, and SRL. LISA encodes the sequences once for multiple lexical
annotations and merges the syntax by training an attention head to attend to the grammat-
ical parent of each token. Jawahar et al. [44] explored the layers of the BERT model and
found that the lower, middle, and upper layers capture the surface, syntactic, and semantic
features, respectively. The upper layer was found to model long-distance dependencies,
making it critical to the performance of downstream tasks. However, they also found
that syntactic information was diluted in the upper layers. Kuncoro et al. [45] extended
the BERT model to consider syntactic information by modifying their pre-training target.
They used an alternative syntactic language model as a learning signal, adding what they
called “syntactic bias” to the BERT model. Using dependency trees and graph convolution
networks to learn grammar-based embedding, Vashishth et al. [46] proposed SynGCN
to overcome the problem of vocabulary explosion that arises when using the sequential
context of words to learn word-embedding representations.

This study demonstrates the effectiveness of grammar and entity and graph neural
networks in MRC when they accurately aid traditional BERT models in terms of embedding
representations.

3. Methodology

In this section, we will focus on MgSG. Figure 2 depicts the overall architecture of
MgSG, which consists of four parts: the text input, feature encoding, feature interaction,
and answer prediction phases. We focus on and improve the performances of the feature
encoding and feature interaction phases. In the feature encoding phase, text C and question
Q are passed to the BERT model as the overall information <C, Q>. The syntactic parser is
also used to syntactically parse <P, Q> and combine the sentence dependencies as features
with the graph attention network. The resulting node-embedding representations are
fused with the feature vectors generated by the BERT model and passed to the feature
fusion module. In the fusion phase, the named entities in <P, Q> are passed to the graph
neural network to reinforce their critical role in the text and answers, node-embedding
representations are generated and passed to the attention network to update the embedding
representations of the fused named entities, and finally the multiple-feature information is
fused and passed to the model prediction phase.
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Figure 2. This is the overall structure of the model framework. The text is fed into the pretrained
language model and our GD module (lower middle), respectively. In the GD module, a graph
network is constructed according to the dependencies of the input text and fused with the output of
pretrained language model. The GE module (middle right) extracts named entities in the text and
builds a graph network and fuses it with BiDAF in the next layer. The model prediction module
makes span predictions.

3.1. Feature Encoder Part

In this study, we input the text and questions as comprehensive information to the
BERT model and graph with dependence (GD) module. The long-range semantic asso-
ciations established by the graph structure are used to capture the semantic information
of the text better, yielding a text-embedding representation that contains richer semantic
information.

BERT Encoder

As presented on the left side of Figure 3, we concatenate the question and passage
texts to form a single input sequence. In particular, we tokenize the input sequence to form
word pieces (subword tokens) at first. Let C = (c1, c2, . . . , cm) and Q = (q1, q2, . . . , qn) denote
the passage and question sequences of subword tokens of lengths m and n, respectively.
Let T = ([CLS], c1, c2, . . . , cm, [SEP], q1, q2, . . . , qn, [SEP]) denote the total input sequence
for the PrLM of subword tokens of length L, where L = m + n + 3. For each token, the
input embedding is the sum of its token, position, and segment embeddings. Let X = (x1,
x2, . . . , xl) be the output from the embedding layer, which denote the embedding features
of the input sequence tokens of length l. X is then fed to the BERT encoder to obtain a
contextual representation. Let L = (l1, l2, . . . , ll) be the sequence of outputs from the BERT
model, which denote the embedding features of the sentence tokens of encoding length l.
The outputs of BERT are particularly implemented as expressed in Equations (1) and (2):

X = Embedding(T) (1)

L = Bert(X) (2)
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Figure 3. This is the overall structure of the feature encoder part. On the left side of the figure, PrLM
applies special delimiters ((CLS) and (SEP)) to text sequences. On the right side of the figure, the GD
module extracts the dependencies and builds the graph network.

3.2. Graph with Dependence Module

As presented on the right side of Figure 3, in the feature encoder phase, the long-
range semantic associations established by the graph structure are used to better access the
semantic information of the text. The syntactic parser (described in detail in Section 4) is
also used to disassemble and analyze the text to generate a dependency graph and pass the
dependency information to the graph attention network as features [47].

3.2.1. Dependence Relation

As can be seen from the bottom right of Figure 3, in this study, we use a pre-trained
syntactic parser for the text with tokens as nodes to create dependency relations between
each pair of nodes, that is, a syntactic dependency of interest (SDOI), by regarding each
word as a child node; the SDOI consists of the child node and all its ancestor nodes in the
dependency parsing tree [19]. That is, to exploit the relationship between the root word and
the dependency of the dependency graph of the sentence, we need only focus on words
that have a significant impact on the syntax. For example, in Figure 3, “related” does not
have a impact on all the words but only on its ancestors “fields” and “analysis” and itself.

3.2.2. Graph Attention Network

We apply graph attention networks to model the information flow between nodes,
which can further improve the representations of nodes through the attention mechanism
over features from its neighbors. It can be seen from Figure 4 that the traditional one-
dimensional convolution usually processes a few words near the central word, whereas the
graph convolution considers these dependencies as edges. The central word and all other
nodes connected by the edges are processed during the convolution. For example, the size
of the convolution kernel depicted in Figure 4a is 3, and the process of convolution involves
related, fields, and are. However, the graph convolution depicted in Figure 4b involves only
related and fields.

In particular, the graph of GD module can be represented as G(N, S), where N is the
set of nodes of the graph, k is the number of nodes, S is the set of edges of the graph, and
an edge exists between two nodes if they are related. Figure 4 indicates that an undirected
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graph can be constructed for all the tokens using the tokens as the graph’s nodes and the
edges of the graph as the association relations between the tokens.
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Analysis
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Algorithms
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Embedding representation

(a)

analysis

algorithms
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.

Embedding representation
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Figure 4. Difference between traditional convolution and graph convolution. (a) is the traditional
convolution. (b) is the graph convolution.

In this study, We know that the graph node needs to use the word vector as a substitute
for the word. GloVe [8] is used as the embedding representation for each token as a feature
of the nodes; sentence-based dependencies are used as association relations. If the current
token is not in GloVe’s vocabulary, we will skip the current token and not act as a node.
First, in the graph with dependency module, our input will generate multiple sets of
dependencies after dependency analysis, and each set has multiple words with hierarchical
relationships. Furthermore, the input is passed into the dependency parser, and if there are
dependencies among the tokens, an edge weight initialized to 1 is added to both the nodes
and 1 is added to the edge weight if the association is repeated subsequently. We also set a
threshold to limit our filter on the level of dependency syntactic relations. If the number of
dependencies set does not exceed the threshold, the information will not be incorporated
into the graph structure. The edges of the graph are created as follows:

Bdp =
z

∑
i=0

B(i)
dp (3)

where Bdp represent the edges of the dependence relation, z is the number of layers of
dependencies. For example, extending the child node only depends on the parent node
to the child node also depends on the parent node of the parent node, that is, two layers
of dependencies.

Instead of other graph-based models, graph attention networks are used to maintain
consistency with the multihead attention module of the BERT model. In the following, we
will describe a single layer of the proposed graph attention network. For consistency with
the multiheaded attention module in the BERT model, the graph attention network used
in the text uses a multiheaded attention mechanism. We describe one of the m attention
heads here and hi is the representation of each node. All the parameters for each attention
head and layer are unique. If an edge exists from node j to node i, the attention factor eij is
calculated as follows:

eij =

(
hiWQ)(hjWK)T

√
dz

(4)

In the preceding equations, WQ, WK, and WV are parameter matrices.
We use the softmax function across all the neighbor nodes j ∈ Ni to normalize the
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attention coefficients of node i. In particular, there is a self-loop for each node (that is,
i ∈ Ni) to allow it to update the feature. This process can be expressed as follows:

αij = softmaxj
(
eij
)
=

exp
(
eij
)

∑k∈Ni
exp(eik)

(5)

Further, the output of this attention head zi is computed as a weighted sum of the
linearly transformed input elements:

zi = ∑
j∈Ni

αijhjWV (6)

where dZ is the output size of one attention head; we use dz × m = dh. Finally, we
concatenate the outputs of m individual attention heads to obtain the multihead attention
result U ∈ Rdh :

U = ‖m
k=1zk

i (7)

3.3. Integration Layer

The integration layer fuses the node- and text-embedding representations of the up-
dated graph; this process is implemented using a multiheaded attention mechanism in a
manner consistent with that explained in Section 3.2. Let M = [m1, m2, . . . , ml ] denote the
output sequence for the integration layer of subword tokens of length l.

Referring to Zhang et al. [32], we use cross-attention as an additional layer to extract
the answers to the questions to improve the accuracy of the prediction layer. We split the
obtained sequences L and U into LQ, LP, UQ, and UP, where LQ and LP denote the represen-
tation parts of the question and text in L, respectively. UQ and UP have the same meaning
as L. For dimensional unity, we expanded the split parts up to the maximum dimension. q

k
v

 =

 wq
wk
wv

 · [L, U] (8)

M = multihead cross attention (q, k, v) (9)

3.4. Feature Interaction Part

The feature interaction module fuses the node and text vectors of the updated graph
and is implemented using a multiheaded attention mechanism in a manner consistent with
that explained in Section 3.3. The specific details are presented in Figure 5.

3.4.1. Graph with Entity Module

The first step in initializing the graph structure is referred to as entity extraction.
Named entities are vital for MRC. Considering the SQuAD as an example, we found that
at least 95% of the questions or answers contained at least one entity through statistics on
the dataset. Most of the remaining parts are time, number type entities, that is why we
expand the scope of the entity. According to the characteristics of the dataset, we have
extended the scope of named entities to include numeric entities and temporal entities. The
range of named entities was extended to ensure the accuracy of the reading comprehension
answers. Further, the keywords of a text are generally referred to as entities. As presented
in Figure 6, the words typed in red-colored font are answer-related entities. It is clear to see
that not only is the central idea of a passage usually the one that contains named entities
but also these entities play a significant role in the answers. The fact that these entities
appear several times at different locations, some of them at a distance from each other,
provides us with ideas for using the graph structure to obtain semantics.
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Figure 5. An overall architecture of the feature interaction module. On the right side of the figure,
the GE module extracts named entities and builds a graph network based on specific relationships.
Combining Bi-DAF (left side of the figure) with the output of GE for the segment prediction task.

Closely related fields in theoretical computer science are analysis of 

algorithms and computability theory. A key distinction between 

analysis of algorithms and computational complexity theory is that 

the former is devoted to analyzing the amount of resources needed 

by a particular algorithm to solve a problem, whereas the latter asks 

a more general question about all possible algorithms that could be 

used to solve the same problem. In turn, imposing restrictions on the 

available resources is what distinguishes computational complexity 

from computability theory: the latter theory asks what kind of 

problems can, in principle, be solved algorithmically.

Figure 6. Text content display.

In particular, we use the named entities obtained by extraction as nodes of the undi-
rected graph, the embedding representation M output by the fusion layer mentioned in
Section 3.3 as the feature vector of the named entities, and the relationship of association
between the named entities as the edge weights. Here, we use the sliding window approach
to obtain the edge weights: first, we define a sliding window w and sliding step s, where
s < w. After each text segment is counted, the sliding window will move backwards. If
two or more named entities appear in a window w, an edge is attached to the nodes and
initialized with weight 1. In the process of sliding the window, the content of the text may
appear repeatedly, and we still use the same approach to calculate the weights. According
to the characteristics of the dataset, we have extended the scope of named entities to include
numeric entities and temporal entities. The range of named entities was extended to ensure
the generality of the reading comprehension answers. Finally, we obtain an updated graph
node representation G = (g1, g2, . . . , gn).

3.4.2. Graph Interaction Module

The input of the fusion layer results, which is fed into the graph interaction module, is
also fed into the Bi-DAF to obtain a contextual representation related to the query through
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bidirectional attention and attention flow. Let B = (b1, b2, . . . , bn) denote the outputs of
Bi-DAF.

Up to this point, for each character in the text, an embedding representation B based
on the structure of the sequence can be obtained, where part of the named entities can
also be represented by an embedding based on the graph structure E The embedding
representations obtained from the two structures are fused, resulting in a unified embedding
representation containing the structures of both the features. The particular embedding
representation is expressed as follows:

E(ai) =

{
B(ai), ai 6∈ e
B(ai) + G

(
ej
)
, ai ∈ ej

(10)

where ai is the token for which an embedding representation is required and e is the set of
named entity containing the token. At this point, the embedded representation information
of the character is obtained from the sum of the embedded representations based on the
sequence and graph structures. However, due to the BERT tokenize will cause the token to
not correspond to the word, if the token ai does not belong to any of the named entities,
then its embedding representation is obtained from the sequence-based textual embedding
representation.

When the fused embedding representation is obtained, the residuals are concatenated
with the output M of the initial fusion layer and regularized before being output to the
model prediction module.

3.5. Prediction Module

The prediction module uses the text representations M and E based on the encoding
and interaction modules to predict the answers to the questions. First, a residual connection
is established between the two representations to avoid the gradient disappearing after
multiple iterations, followed by layer normalization. We also utilize an additional fully
connected feed-forward network. Finally, the Softmax function is used to predict the
probability that a particular text is the answer. The specific calculations are as follows:

H = LayerNorm (M + E) (11)

Pa = Softmax(W a H + ba) (12)

4. Experiment

In this section, we introduce our experiments in detail, including the experimental
settings, datasets, evaluation metrics.

4.1. Setup

For the syntactic parser, we adopt the dependency parser from dependency parser
(HPSG) [48] through joint learning of the constituent parsing using the BERT model as the
sole input, which achieves very high accuracy: 97.00% UAS and 95.43% LAS on the English
dataset Penn Treebank (PTB) test set.

We use the available PrLMs as encoders to build the baseline MRC models: BERT and
ALBERT. Our implementations of the BERT and ALBERT models are based on the public
Pytorch implementation from Transformers. We use the PrLM weights in the encoder
module and all the official hyperparameters. For the fine-tuning, we set the initial learning
rate within {2 × 10−5, 3 × 10−5} with a warm-up rate of 0.1 and L2 weight decay of 0.01.
The batch size is selected from within {8, 16, 32}. The maximum number of epochs is set to
4 for all the experiments. The hyperparameters are selected using the dev set.

4.2. Datasets

Our proposed model is evaluated on two MRC datasets: SQuAD2.0 and CMRC
2018 [49].
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SQuAD2.0 is an MRC dataset on Wikipedia articles with more than 150K questions. As
a widely used MRC benchmark dataset, SQuAD2.0 is an upgrade of SQuAD1.1 with over
50,000 new and unanswerable questions that are written adversarially by crowdworkers to
look similar to answerable ones. The training dataset contains 87 K answerable and 43 K
unanswerable questions.

CMRC is a span-extraction dataset for Chinese MRC. This dataset consists of nearly
20,000 real questions annotated in Wikipedia passages by human experts. Before annotation,
a document is divided into several articles, and each article is no more than 500 words
in length.

4.3. Evaluation

The EM and F1 are used to evaluate the performance of the model at the token
level. EM denotes the percentage of answers predicted by the model in the dataset that
are the same as the ground truth. F1 denotes the average word coverage between the
model-predicted answers and ground truths in the dataset.

5. Results and Discussion

In this section, we demonstrate the experiment results and analyze the reasons for
the results.

5.1. Experiment Results

We present a comparison between the proposed model and the baseline models on
the SQuAD 2.0 and CMRC 2018 dev sets, including three traditional methods and several
fine-tuned methods based on PrLMs. The main results are presented in Tables 1 and 2.

Table 1. Results for SQuAD 2.0 dev dataset. The results of the experiments are obtained in our local
environment and the corresponding literatures.

Model EM(%) F1(%) EM(%) for
MgSG F1(%) for MgSG

Human
performance 86.8 89.5

QANet 62.6 66.7
SAN 68.2 70.9

Match-LSTM 60.3 63.5

BERT-base 75.8 79.2 77.2 81.1
BERT-large 80.4 83.3 80.9 84.0

ALBERT-base 77.1 80.1 81.5 84.8
ALBERT-large 79.4 82.3 81.8 85.6

ALBERT-xxlarge 85.6 88.1 85.9 88.2
XLNET-base 77.6 80.3 79.5 82.1
PERT-base 76.3 80.1 76.9 80.5
PERT-large 82.8 86.1 82.5 86.0

ELECTRA-base 79.5 82.5 80.2 83.6

The results indicate that the proposed model combined with the various pre-trained
models mentioned indicate varying degrees of improvement, some of which are significant.
For the SQuAD dataset, comparing the same pre-trained models but with different sizes.
Although the improvement of the large model is not as large as that of the small model,
there is still a relatively obvious improvement. For example, the EM of BERT-large has
increased by 0.5%. Compared with the large improvement of the small model, because
the learning ability of the large model is strong enough, some grammatical relations have
been learned, which leads to the fact that the additional feature information we have
may have been learned, so compared with the small model, the improvement is not very
obvious. Then, the improvement for albert-base+MgSG is better than that of BERT-large,
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and the amount of parameters is much smaller than that of BERT-large. This proves that
the improvement of our module is more obvious for small models, which provides a new
idea for model Lightweighting.

Table 2. Results for CMRC-2018 dev dataset. The results of the experiments are obtained in our local
environment and the corresponding literatures.

Model EM(%) F1(%) EM(%) for
MgSG

F1(%) for
MgSG

Human performance 75.8 79.2

P-Reader (single model) 76.7 80.6
Z-Reader (single model) 76.3 80.5

BERT-base 63.6 83.9 64.3 84.4
BERT-wwm-ext 64.6 84.8 64.8 84.8

RoBERTa-wwm-ext 65.5 85.5 65.1 85.6
ELECTRA-base 66.9 83.5 67.5 84.7
ELECTRA-large 67.6 83.8 67.9 85.4

PERT-base 64.1 84.5 64.8 85.1
MacBERT-base 66.3 85.4 66.1 85.4
ERNIE 2.0-base 67.8 87.5 67.7 87.3

For the CMRC dataset, it can be seen from Table 2 that the fusion of multigranularity
features with the baseline model also effects a performance improvement of approximately
1% over the baseline model. However, CMRC is a Chinese dataset. Different languages
bring different grammatical rules and semantics. Compared with Chinese grammar rules,
English grammar rules are obviously clearer, and the semantic information contained in
the dependencies of words is also clearer, which can greatly help the understanding of
sentences. Therefore, the improvement of the model for English data is greater. Due to the
grammatical structure of Chinese is more random and irregular, which makes it difficult
for us to use the information contained in Chinese grammar accurately and correctly. On
the other hand, it proves that our model can make good use of the hidden information
contained in explicit grammatical structures and the use of weak grammatical structures is
less stable.

5.2. Ablation Study

In this section, we describe certain ablation experiments that were conducted to
demonstrate the validity of the proposed model. All the experimental baselines refer to the
BERT base model except for the comparison of changes in variable.

To verify the effectiveness of our module, we separately added two modules to the
baseline model. From the experimental results presented in Table 3, we can see that
when we add the GD module and the graph with entity (GE) module to the baseline, the
performance of the model is significantly improved. Further, combined with the results
presented in Table 1, we understand that these two modules can improve performance
when used alone, and they are compatible and improve each other’s performance when
used together.

Table 3. Impact of various modules on the performance of the model.

Model EM (%) F1 (%)

BERT 75.8 (±0.2) 79.2 (±0.2)
BERT + GD 76.7 (±0.1) 80.6 (±0.2)
BERT + GE 76.5 (±0.1) 80.5 (±0.2)
BERT + GD + GE 77.2 (±0.1) 81.1 (±0.2)
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We also demonstrate the effectiveness of our proposed method with an example. As
shown in Figure 7, in the first example, the question is What chemical did Priestley use in his
experiments on oxygen? and the answer is obviously in the vicinity of the person named
entity in the question in the paragraph, and then the BERT model. The answer was not
predicted, and the answer suggested by our model was mercuric oxide. This shows that
by constructing part-of-speech edges, the model can have a more specific goal in finding
answers. The problem of the second example in Figure 7 is Which is one of the park features
located in North Fresno?, the difficulty of this question is that it does not provide a very direct
keyword, North Fresno, feature can only provide the approximate location of the answer
in the text and there are multiple misleading answers around. Our method can give the
correct answer because it follows the grammatical structure and reinforces the hidden
information contained in Woodward Park as the subject of which features the Shinzen Japanese
Gardens, while BERT cannot.

We also verify the effectiveness of the dependency syntax through experiments. We
will first average the hidden state representations of the last layer of BERT and generate the
corresponding heatmap (Figure 8). We find that BERT is significantly more interested in
regular subject position, but this is not where the answer comes from. We then summed
and averaged the output of our module with the representation of the hidden state. The
darker the color, the higher the impact. Due to the addition of dependency syntax, the
attention of the model significantly weakens the position of the beginning, and is biased
towards the parenthesis in the sentence, which is the source of the correct answer.

In the meantime, on August 1, 1774, an experiment conducted by the British clergyman Joseph Priestley focused sunlight on 

mercuric oxide (HgO) inside a glass tube, which liberated a gas he named "dephlogisticated air". He noted that candles 

burned brighter in the gas and that a mouse was more active and lived longer while breathing it. After breathing the gas 

himself, he wrote: "The feeling of it to my lungs was not sensibly different from that of common air, but I fancied that my 

breast felt peculiarly light and easy for some time afterwards 

What chemical did Priestley use in his experiments on oxygen? 

BERT answer None BERT+MgSG answer mercuric oxide ( )    

Fresno has three large public parks, two in the city limits and one in county land to the southwest. Woodward Park, which 

features the Shinzen Japanese Gardens, numerous picnic areas and several miles of trails, is in North Fresno and is 

adjacent to the San Joaquin River Parkway. Roeding Park, near Downtown Fresno, is home to the Fresno Chaffee Zoo, and 

Rotary Storyland and Playland. Kearney Park is the largest of the Fresno region's park system and is home to historic 

Kearney Mansion and plays host to the annual Civil War Revisited, the largest reenactment of the Civil War in the west 

coast of the U.S.

Which is one of the park features located in North Fresno? 

BERT answer Woodward Park BERT+MgSG answer Shinzen Japanese Gardens( )

Figure 7. The red font represents the correct answer, blue font represents the wrong answer, green
fonts represent keywords or information in the question.

a BERT

b BERT + GD moule

Figure 8. Effectiveness analysis. The darker the color of the token, the greater the influence of
the token.



Appl. Sci. 2022, 12, 9525 14 of 19

Further, as illustrated in Figures 9 and 10, we present two different examples using the
SQuAD dataset to demonstrate the effectiveness of the proposed method. For the example
presented in Figure 9, the answer is a name. In addition, not too many other named entities
are present in this sentence. Therefore, the named entity granularity effectively reinforces
the role of the answer in this sentence. When only named entity granularity is added to the
model, the probability of predicting an answer improves by almost 2%. However, when the
only dependency granularity is added, model is 1.6% less likely to predict an answer. The
reason for such results is that the syntactic complexity of the sentence is too high because it
contains multiple clauses, causing the model to focus too much on the relationship between
the sentences and not pay attention to the answer. When we add both granularities to the
model, it still has a positive effect on the prediction of the answer. This is consistent with
the data presented in Table 1.

Figure 9. Effectiveness analysis. Example of the answer is the possibility of named entities.

Figure 10 presents another form of the answer, which itself increases the difficulty
of the model predicting the answer when the answer is a sentence. When there are a few
named entities in the sentence, there is a high probability that they will occur in the answer.
In this example, solutions and resources are reinforced. The dependency relationship plays a
more significant role in this example, and this specific dependency relationship analysis
is illustrated in Figure 7. The results obtained from these two examples demonstrate the
effectiveness of the proposed method.
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Figure 10. Effectiveness analysis. Example of the answer is the possibility of long sentence.

5.3. Discussion

In this section, we present a deep analysis of the effect of extensions to named entities
for the various parts of speech and multiple parameters with dependencies on the perfor-
mance of the model.

First, we experimented with and analyzed the relationship between the number of
layers and the performance of the graph neural network in which the dependencies were
located. Further, to verify the effect of graph sparsity, we analyzed the values of the de-
pendency threshold and the categories of the named entity. The experimental results are
presented in Tables 4–6.

Table 4 indicates that as the number of dependent layers increased, the F1 value of
the model steadily increased from layer 1 to 4. This result suggests that more interword
relationships can be obtained by interfusing pairs of nodes at further layers, forming a
better understanding of the sentences. However, as the number of layers increases to 5, the
evaluation index decreases. Thus, the experimental results suggest that when the number
of layers of dependencies increases to a certain number, it is counterproductive to learn
interword relationships after the model has already learned them.

Table 4. Impact of the number of dependency layers on the performance of the model.

Num of Layers EM (%) F1 (%)

1 76.1 80.1
2 75.5 80.2
3 76.8 80.8
4 77.2 81.1
5 76.5 80.8
6 76.4 80.5

Further, as presented in Table 5, we analyze the effect of dependency thresholds on
the performance of the model. We argue that when there are only a very few words in
a sentence as a collection of subwords, the words in this collection should not represent
the meaning of the sentence; a higher number of subwords are more representative of the
meaning of the sentence. The experimental results also verify our conjecture that such a
fusion will instead affect the performance of the model when the dependency threshold is
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0, that is, when all the words have dependencies. When we increased the threshold to a
certain value, we obtained the best balance.

Table 5. Impact of the threshold of GD on the performance of the model.

Threshold EM (%) F1 (%)

0 75.5 78.8
1 76.8 80.2
2 76.9 80.5
3 76.6 80.1
4 76.1 79.5

This experiment proves the correctness of our extended entity range. By adding
different entity types, we found that although the expanded entity types do not account
for a high proportion of the overall dataset, the numbers usually contain extremely high
information in a piece of text, and even some answers are numbers. In addition, we
also thought that some pronouns actually sometimes refer to some entities, and in some
sentences, entities are omitted and pronouns are used. However, when we added the
upper pronoun, the results were lower. The main reason is that the number of words that
pronouns can refer to is too large, and the referential relationship is very difficult to handle.
This leads to the reason for the performance degradation caused by adding pronouns.

Table 6. Impact of the POS on the performance of the model.

Type EM (%) F1 (%)

Noun 76.5 80.4
Noun + Pron 76.1 80.2
Noun + Time 76.6 80.5
Noun + Num 76.7 80.5
Noun + Num + Time 76.7 80.7

6. Conclusions

This paper proposes a MRC model that combines graph neural networks with multiple-
granularity semantic fusion. The model takes advantage of the graph network structure that
can link long-distance nodes using sentence dependencies and entities as two important
features to help PrLM with a smaller number of parameters to obtain more accurate text
and question representations by adding fewer parameters and computational cost. Using
the BERT as the baseline model, MgSG achieves significantly better results than the baseline
model on the SQuAD2.0, demonstrating that MgSG has a significant impact on MRC.
At the same time, we also found that our method can better learn explicit grammatical
structures or clear grammatical structures (such as English). This provides new ideas for
future research on model lightweighting and analysis of syntactic semantics.

In the future, we will try to use other graph structures(i.e., graph-to-sequence models)
to learn more features and delve into how to make the model better understand data with
unclear grammatical structures, such as Chinese, to achieve a better understanding of
the text.

Author Contributions: Conceptualization, Z.L. and G.L.; methodology, Z.L.; validation, Z.L., C.X.,
C.Z. and Y.Z.; formal analysis, Z.L.; investigation, Z.L.; resources, Z.L.; data curation, Z.L.; writing—
original draft preparation, Z.L.; writing—review and editing, G.L., Z.L., C.X., C.Z. and Y.Z.; supervi-
sion, G.L., C.Z. and C.X.; project administration, G.L. and Z.L.; funding acquisition, G.L. and C.X. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the China Chongqing Science and Technology Commis-
sion under Grant cstc2020jscx-msxmX0086, cstc2019jscx-zdztzx0043, cstc2019jcyj-msxmX0442. China
Chongqing Banan District Science and Technology Commission project under Grant 2020QC413, and



Appl. Sci. 2022, 12, 9525 17 of 19

China Chongqing Municipal Education Commission under Grant KJQN202001137. Moreover, this
work is Chongqing University of Technology Graduate Education Quality Development Action Plan
Funding Results (Project number: gzlcx20223456).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and anyone can be used.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, Y.; Zhao, H.; Zhang, Z. Topicaware multi-turn dialogue modeling. In Proceedings of the Thirty-Fifth AAAI Conference on

Artificial Intelligence (AAAI-21), Virtual, 2–9 February 2021.
2. Rajpurkar, P.; Zhang, J.; Lopyrev, K.; Liang, P. SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; Association
for Computational Linguistics: Melbourne, Australia, 2016; pp. 2383–2392.

3. Rajpurkar, P.; Jia, R.; Liang, P. Know What You Don’t Know: Unanswerable Questions for SQuAD. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers); Association for Computational Linguistics:
Melbourne, Australia, 2018; pp. 784–789.

4. Seo, M.J.; Kembhavi, A.; Farhadi, A.; Hajishirzi, H. Bidirectional Attention Flow for Machine Comprehension. In Proceedings of
the 5th International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

5. Cui, Y.; Chen, Z.; Wei, S.; Wang, S.; Liu, T.; Hu, G. Attention-over-Attention Neural Networks for Reading Comprehension. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4
August 2017; Association for Computational Linguistics: Melbourne, Australia, 2017; pp. 593–602.

6. Wang, W.; Yang, N.; Wei, F.; Chang, B.; Zhou, M. Gated self-matching networks for reading comprehension and question
answering. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers);
Association for Computational Linguistics: Vancouver, BC, Canada, 2017; pp. 189–198.

7. Yu, A.W.; Dohan, D.; Luong, M.T.; Zhao, R.; Chen, K.; Norouzi, M.; Le, Q.V. Qanet: Combining local convolution with global
self-attention for reading comprehension. arXiv 2018, arXiv:1804.09541.

8. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

9. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781.
10. Radford, A.; Narasimhan, K. Improving Language Understanding by Generative Pre-Training. 2018. Available online: https://s3

-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf (ac-
cessed on 7 May 2022).

11. Kenton, J.D.M.W.C.; Toutanova, L.K. Bert: Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the NAACL-HLT, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.

12. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations. In Proceedings of the International Conference on Learning Representations, Virtual, 26 April–1 May 2020.

13. Zhang, Z.; Wu, Y.; Zhao, H.; Li, Z.; Zhang, S.; Zhou, X.; Zhou, X. Semantics-aware BERT for language understanding. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 9628–9635.

14. Dai, Y.; Fu, Y.; Yang, L. A Multiple-Choice Machine Reading Comprehension Model with Multi-Granularity Semantic Reasoning.
Appl. Sci. 2021, 11, 7945. [CrossRef]

15. Duan, S.; Zhao, H.; Zhou, J.; Wang, R. Syntax-aware transformer encoder for neural machine translation. In Proceedings of the
2019 International Conference on Asian Language Processing (IALP), Shanghai, China, 15–17 November 2019; pp. 396–401.

16. Zhou, J.; Li, Z.; Zhao, H. Parsing All: Syntax and Semantics, Dependencies and Spans. In Proceedings of the Findings of
the Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020; Association for Computational
Linguistics: Melbourne, Australia, 2020; pp. 4438–4449.

17. Zhu, F.; Tan, L.Y.; Ng, S.K.; Bressan, S. Syntax-informed Question Answering with Heterogeneous Graph Transformer. arXiv
2022, arXiv:2204.09655.

18. Zhou, J.; Zhao, H. Head-Driven Phrase Structure Grammar Parsing on Penn Treebank. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational
Linguistics: Melbourne, Australia, 2019; pp. 2396–2408.

19. Zhang, Z.; Wu, Y.; Zhou, J.; Duan, S.; Zhao, H.; Wang, R. SG-Net: Syntax-guided machine reading comprehension. In Proceedings
of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 9636–9643.

20. Zhang, J.; Hua, Y.; Qi, G.; Qi, D. Semantic Parsing for Multiple-relation Chinese Question Answering. In Proceedings of the
CCKS Tasks, Tianjin, China, 14–17 August 2018; pp. 101–106.

21. Fan, T.; Wang, H.; Wu, P. Negative Sentiment Analysis of Internet Users Based on Graph Convolutional Neural Network and
Dependent Syntax Analysis. Data Anal. Knowl. Discov. 2021, 5, 97.

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
http://doi.org/10.3390/app11177945


Appl. Sci. 2022, 12, 9525 18 of 19

22. Yin, Y.; Zheng, X.; Hu, B.; Zhang, Y.; Cui, X. EEG emotion recognition using fusion model of graph convolutional neural networks
and LSTM. Appl. Soft Comput. 2021, 100, 106954. [CrossRef]

23. Zheng, B.; Wen, H.; Liang, Y.; Duan, N.; Che, W.; Jiang, D.; Zhou, M.; Liu, T. Document Modeling with Graph Attention Networks
for Multi-grained Machine Reading Comprehension. In Proceedings of the ACL 2020, Online, 5–10 July 2020; Association for
Computational Linguistics: Melbourne, Australia, 2020.

24. Wu, S.; Chen, J.; Xu, T.; Chen, L.; Wu, L.; Hu, Y.; Chen, E. Linking the Characters: Video-Oriented Social Graph Generation via
Hierarchical-Cumulative GCN. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24 October
2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 4716–4724.

25. Lv, S.; Guo, D.; Xu, J.; Tang, D.; Duan, N.; Gong, M.; Shou, L.; Jiang, D.; Cao, G.; Hu, S. Graph-based reasoning over heterogeneous
external knowledge for commonsense question answering. In Proceedings of the AAAI Conference on Artificial Intelligence,
New York, NY, USA, 7–12 February 2020; pp. 8449–8456.

26. Clark, K.; Luong, M.T.; Le, Q.V.; Manning, C.D. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
In Proceedings of the ICLR, Virtual, 26 April–1 May 2020.

27. Sultan, M.A.; Chandel, S.; Astudillo, R.F.; Castelli, V. On the importance of diversity in question generation for QA. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 5651–5656.

28. Zhu, P.; Hai Zhao, X.L. Dual Multi-head Co-attention for Multi-choice Reading Comprehension. arXiv 2020, arXiv:2001.09415.
29. Zhuang, Y.; Wang, H. Token-level Dynamic Self-Attention Network for Multi-Passage Reading Comprehension. In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association
for Computational Linguistics: Melbourne, Australia, 2019; pp. 2252–2262.

30. Marcheggiani, D.; Bastings, J.; Titov, I. Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers); Association for Computational Linguistics: New Orleans, LA, USA, 2018; pp. 486–492.

31. Song, L.; Zhang, Y.; Wang, Z.; Gildea, D. N-ary Relation Extraction using Graph-State LSTM. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; Association
for Computational Linguistics: Brussels, Belgium, 2018; pp. 2226–2235.

32. Zhang, Y.; Qi, P.; Manning, C.D. Graph Convolution over Pruned Dependency Trees Improves Relation Extraction. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018;
Association for Computational Linguistics: Brussels, Belgium, 2018; pp. 2205–2215.

33. Wang, K.; Shen, W.; Yang, Y.; Quan, X.; Wang, R. Relational Graph Attention Network for Aspect-based Sentiment Analysis. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Association for
Computational Linguistics: Melbourne, Australia, 2020; pp. 3229–3238.

34. Ding, M.; Zhou, C.; Chen, Q.; Yang, H.; Tang, J. Cognitive Graph for Multi-Hop Reading Comprehension at Scale. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, 28 July–2 August 2019, Florence, Italy; Association
for Computational Linguistics: Florence, Italy, 2019; pp. 2694–2703.

35. De Cao, N.; Aziz, W.; Titov, I. Question Answering by Reasoning Across Documents with Graph Convolutional Networks.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers); Association for Computational Linguistics: Minneapolis, MN, USA, 2019;
pp. 2306–2317.

36. Cao, Y.; Fang, M.; Tao, D. BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning Question
Answering. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers); Association for Computational Linguistics: Minneapolis, MN,
USA, 2019; pp. 357–362.

37. Bhargav, G.S.; Glass, M.; Garg, D.; Shevade, S.; Dana, S.; Khandelwal, D.; Subramaniam, L.V.; Gliozzo, A. Translucent answer
predictions in multi-hop reading comprehension. In Proceedings of the AAAI Conference on Artificial Intelligence, New York,
NY, USA, 7–12 February 2020; pp. 7700–7707.

38. Li, Z.; Zhao, H.; Parnow, K. Global greedy dependency parsing. In Proceedings of the AAAI Conference on Artificial Intelligence,
New York, NY, USA, 7–12 February 2020; pp. 8319–8326.

39. Ma, X.; Hu, Z.; Liu, J.; Peng, N.; Neubig, G.; Hovy, E. Stack-Pointer Networks for Dependency Parsing. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers); Association for Computational Linguistics:
Melbourne, Australia, 2018; pp. 1403–1414.

40. Chen, K.; Wang, R.; Utiyama, M.; Sumita, E.; Zhao, T. Syntax-directed attention for neural machine translation. In Proceedings of
the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

41. Wang, Y.; Lee, H.Y.; Chen, Y.N. Tree Transformer: Integrating Tree Structures into Self-Attention. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics:
Hong Kong, China, 2019; pp. 1061–1070.

42. Kasai, J.; Friedman, D.; Frank, R.; Radev, D.; Rambow, O. Syntax-aware Neural Semantic Role Labeling with Supertags. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers); Association for Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 701–709.

http://dx.doi.org/10.1016/j.asoc.2020.106954


Appl. Sci. 2022, 12, 9525 19 of 19

43. Strubell, E.; Verga, P.; Andor, D.; Weiss, D.; McCallum, A. Linguistically-Informed Self-Attention for Semantic Role Labeling. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4
November 2018; Association for Computational Linguistics: Brussels, Belgium, 2018; pp. 5027–5038.

44. Jawahar, G.; Sagot, B.; Seddah, D. What Does BERT Learn about the Structure of Language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational
Linguistics: Florence, Italy, 2019; pp. 3651–3657.

45. Kuncoro, A.; Kong, L.; Fried, D.; Yogatama, D.; Rimell, L.; Dyer, C.; Blunsom, P. Syntactic Structure Distillation Pretraining for
Bidirectional Encoders. Trans. Assoc. Comput. Linguist. 2020, 8, 776–794. [CrossRef]

46. Vashishth, S.; Bhandari, M.; Yadav, P.; Rai, P.; Bhattacharyya, C.; Talukdar, P. Incorporating Syntactic and Semantic Information in
Word Embeddings using Graph Convolutional Networks. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics: Florence, Italy,
2019; pp. 3308–3318.
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