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Abstract: Social networks (SNs) and many other industrial types of networks, structured by many
nodes and relationships between nodes, have become an integral part of our daily lives. A binary-
state network (BN) is often used to model structures and applications of SNs and other networks.
The BN reliability is the probability that a BN functions continuously, i.e., that there is always a
path between a specific pair of nodes. This metric is a popular index for designing, managing,
controlling, and evaluating networks. The traditional BN reliability assumes that the network is
activity-on-arc, and the reliability of each arc is known in advance. However, this is not always the
case. Functioning components operate in different environments; moreover, a network might have
newly installed components. Hence, the reliability of these components is not always known. To
resolve the aforementioned problems, in which the reliability of some components of a network is
uncertain, we introduce the fuzzy concept for the analysis of these components and propose a new
algorithm to solve this uncertainty-component activity-on-node BN reliability problem. The time
complexity of the proposed algorithm is analyzed, and the superior performance of the algorithm is
demonstrated through examples.

Keywords: social networks (SNs); binary-state network (BN); network reliability; uncertainty
environments; activity-on-node; binary-addition-tree algorithm (BAT)

1. Introduction

In social networks and many other industrial types of networks based on binary-state
networks (BNs), each unreliable component has only two states. The BN architecture is one of
the most common structures used to model issues in not only SNs [1,2] but also numerous
industrial types of networks that have become an integral part of our daily life, such as
networks involving multi-terminal network [3], transportation [4], grid/cloud computing [5,6],
general network [7], Internet of things [8,9], network resilience problems [10,11], directed
acyclic network [12], transition [13], and wireless sensor network [14]. Hence, an increasing
amount of BN applications have recently emerged [15,16]. BNs thus play an important role
in the planning, design, execution, management, and control of all the aforementioned
systems [17–19].

Assume that G(V, E, D) is a BN, where D is the state distribution of the compo-
nents, and V = {1, 2, . . . , n} and E = {a1, a2, . . . , am} are the sets of nodes and arcs,
respectively [20,21]. In the activity-on-arc (AOA) BN, each node is considered perfect,
whereas each arc may fail based on a predefined probability in D [22,23]. On the contrary,
in the activity-on-node (AON) BN, each arc is considered perfect, whereas each node
(except the source node 1 and the sink node n) may fail based on a predefined probability
in D [24–28].
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Note that a BN can be a mixture of AOA and AON; and a component can be a node,
an arc, cable, the Internet, machine, process station, workstation, tool, unit, or worker [29].
In this study, we focus on the AON—-and the component is a node in the AON, and an arc
in the AOA.

For example, Figure 1 shows an AOA BN G(V, E, D), where V = {1, 2, 3, 4, 5},
E = {a1 = e1,2, a2 = e1,3, a3 = e1,4, a4 = e2,4, a5 = e2,5, a6 = e3,5}. Node 1 is the source node and
node 5 is the sink node; the state distribution D is listed in Table 1.
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Table 1. State distributions in Figure 1.

a D (a)

a1 0.85
a2 0.80
a3 0.85
a4 0.80
a5 0.75
a6 0.90

The traditional reliability, R, of BNs is defined as the success probability that there is
at least one simple path from node 1 to node n. It is one of the most popular indices for
evaluating the performance of real-world BNs. For example, the reliability of propagation
is studied in SNs based on BN [1]. An algorithm is proposed for the transportation
BN [4]. A binary-code genetic algorithm and the simplified swarm optimization (SSO)
is hybrid to optimize the grid BN reliability [6]. The SSO is employed to optimize the
BN reliability in the Internet of Things [8]. The telecom BN reliability is evaluated by
considering network resiliency [10]. The BN reliability is solved using the unscented
transformation [13]. Additionally, a squeezed artificial neural network is proposed to
evaluate the BN reliability [25].

In the traditional BN, the reliability of each component must be known in
advance [19,22], for example, the reliability D(a) is already known in Table 1 for all
a ∈ E. It is NP-Hard and #P-Hard to calculate the BN reliability [17–19]. Various algo-
rithms have been proposed to calculate BN reliability and can be categorized into direct
and indirect algorithms [30–33]. The former, for example, the quick binary-addition-tree al-
gorithm (BAT) [34] and binary-decision diagram (BDD) [35], can calculate the BN reliability
directly; the latter is separated further into two main steps:

1. Find all simple paths or cuts based on path-based algorithms [5,8,9,21] or cut-based
algorithms [20,22,23], respectively; and

2. Calculate the BN reliability using inclusion-exclusion technology (IET) [36–38] or the
sum-of-disjoint product (SDP) [39–42].

The direct algorithm is more efficient than the indirect algorithm in calculating the
BN reliability because the two main steps in all indirect algorithms are both NP-hard and
#P-hard [34]. In addition, regardless of whether we use direct or indirect algorithms, the
component is an arc, and the reliability of each component must be known in
advance [29–31,38].

In real life, it is not practical or reasonable to assume that the reliability of each
component is known precisely beforehand [43–45]. For example, the Mars Rover is a
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novel vehicular system, and we cannot know the exact reliability of each component in
an environment that is completely different from Earth. Hence, the goal of this study is
to overcome the aforementioned obstacle of uncertainty by proposing a new algorithm
to deal with uncertain nodes using fuzzy set theory [46,47] and the binary-addition-tree
algorithm (BAT) [11,29,48–52].

It is well known that fuzzy set theory can effectively resolve uncertain and imprecise
problems. The BAT, first proposed by Yeh [48], can find all feasible and required vectors
simply based on binary addition. Its current version, quick BAT [34], is more efficient
compared to BDD and all other indirect algorithms in calculating BN reliability. Hence, the
proposed algorithm is based on BAT combined with fuzzy set theory to solve the proposed
uncertainty-component BN reliability problem owing to its importance and practicality.

The paper’s contribution is highlighted in the following points:

1. An activity-on-node (AON) BAT-based algorithm is proposed for computing the
reliability of a binary-state network instead of the traditional BN reliability assuming
that the network is activity-on-arc (AOA).

2. In real life, it is not practical or reasonable to assume that the reliability of each
component is known precisely beforehand. Nevertheless, in the traditional BN, the
reliability of each component must be known in advance. Thus, one of this study’s
contributions is to overcome the aforementioned obstacle of uncertainty by proposing
a new algorithm to deal with uncertain nodes using fuzzy set theory and the binary-
addition-tree algorithm (BAT).

The remainder of this paper is organized as follows. All acronyms, notations, nomen-
clatures, and assumptions are introduced in Section 2. A review of AOA BAT, AOA
path-based layered-search algorithm (PLSA), and some background material on fuzzy set
theory is given in Section 3. The proposed BAT-based algorithm is introduced formally in
Section 4, including the preprocessing steps of transferring the linguistic variable via many
stages to the unreliability, and the proposed AON PLSA to verify the connectivity of each
vector obtained from the proposed BAT. The performance of the proposed algorithm in
solving the proposed problem is demonstrated as an example. Finally, Section 5 concludes
the study.

2. Acronyms, Notations, Nomenclatures, and Assumptions

All needed acronyms, notations, assumptions, and nomenclatures are defined, pro-
vided, introduced, and explained here.

2.1. Acronyms, Notations, and Nomenclatures

Acronyms

BAT: Binary-addition-tree algorithm, which is an algorithm to search all
possible binary-state (0 or 1) vectors in the network [48].

BN: Binary-state flow network that each unreliable component has only
two states (0 or 1) in the network.

MP: Minimal path means the path from the source node to the sink node
is possible, but it is a failure if deleting any arc from this path.

MC: Minimal cut, which is a cut set and satisfies minimality, that is, it is
not a cut set after removing one element (arc) from this cut set.

DFS: Depth-search-first algorithm, which is preferential depth search of the
branches of the tree for the searching tree.

BFS: Breadth-search-first algorithm, which is preferential breadth search of
the branches of the tree for the searching tree.

BDD: Binary-decision-diagram, which is a procedure made up of a series
two state shift directions.

IET: Inclusion-exclusion technology, which is an approach to directly
compute the solution by including the relations of elements and
consider excluding the relationship between elements that affects the
solutions obtained.
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Acronyms

UGFM: Universal generating function methodology, which is an intuitionally
recursive methodology to find out the solutions by node UGF and
subnet UGF.

PLSA: Path-based layered-search algorithm, which is an algorithm to verify
the connectivity of each vector obtained from BAT.

AOA: Activity-on-arc that the nodes present the events connecting
by the arcs.

AON: Activity-on-node that the arcs present the events connected
by the nodes.

AFN: Average fuzzy number, which is a method to combine the linguistic
variables into one fuzzy number.

FPS: Fuzzy possibility score, which represents the experts’ belief of the
most likely score of an event occurring by transferring AFN to FPS
based on the left and right fuzzy ranking method.

FFR: Fuzzy failure rating = (frequency of error)/(total chance that an event
has an error).

Notations

|•|: Number of elements in set •.
n: Number of nodes in network.
m: Number of arcs in network.
ak: The kth undirected arc in network.
V: Set of nodes V = {1, 2, . . . , n} and |V| = n in network.
E: Set of arcs E = {a1, a2, . . . , am} and |E| = m in network.

ei,j: ei,j = ak ∈ E, i, j ∈ V, and for one and only one k.
Pr(•): Occurrence probability of set •.

D: State distributions listing all components’ states and their
probabilities, e.g., Table 1 is the arc state distribution of Figure 1.

G(V, E): A graph created by V and E. For example, Figure 1 shows a network
constituted by set of arcs E = {a1, a2, . . . , a6} and set of nodes V = {1, 2,
3, 4, 5}.

G(V, E, D): A network constituted by G(V, E) and D. For example, G(V, E) shown
in Figure 1 and D in Table 1 form a network.

X: Binary state vector: its kth coordinate is the state of the kth
component.

xk: State of the kth coordinate in X.
Pr(X): Occurrence probability of vector X.

R: Reliability of a BN
G(X): G(X) = G(V, {a∈E | each arc a with X(a) > 0}, D).

X << Y: If vector X is obtained before Y in the BAT.

Nomenclatures

MP/MC: An MP/MC is an arc subset; each of its proper subsets is not an
MP/MC [17,19,25]. For example, {a1, a3, a6} is an MC, and {a3, a4, a5}
is an MP in Figure 1.

Uncertainty component: The reliability of the component is uncertain.
Crisp component: The reliability of the component is certain.

R: Success probability of at least a directed path from nodes 1 to n.

2.2. Assumptions

1. The networks have no loops or parallel arcs.
2. Each node and arc are perfectly reliable in AOA BN and AON BN, respectively.
3. The source node and the sink node, that is, nodes 1 and n, are perfectly reliable.
4. Each arc is undirected.
5. The states of the components are statistically independent, and its state follows D to

be zero or one.
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3. Overview of BAT and Fuzzy Set

The proposed AON BAT is modified from the traditional AOA (binary-state) BAT [45]
to find each vector, say X. It is also used to verify whether X is connected using PLSA [45]
after transferring each uncertainty component with fuzzy and incomplete information to
a crisp component to calculate the uncertainty-component binary-state AON reliability.
Hence, the traditional AOA BAT, AOA PLSA, and fundamental fuzzy set-related parts are
discussed in this section.

3.1. AOA BAT

(AOA) BAT was first proposed by Yeh [48]. Based on binary addition, it is used to
solve AOA binary-state network reliability problems. Owing to its simplicity, efficiency,
and memory saving capability, BAT has been implemented in various areas. It has re-
cently become a new search method for finding all possible solutions or vectors. For
example, BATs have been implemented to solve rework problems [29], network reliability
problems [34,48,51,52], wildfire spread prediction [49], and forecasting of computer virus
propagation [50].

From the results of numerical experiments evaluating the running time and computer
memory, BAT [48] was found to outperform depth-search-first algorithms (DFS), for exam-
ple, the quick IET [37], which is the best-known algorithm for calculating MFN reliability;
the breadth-search-first algorithm (BFS), the universal generating function methodology
(UGFM) [19], which is the main algorithm for solving information network reliability
problems [53]; and binary-decision diagram (BDD) [35], which outperforms other algo-
rithms in binary-state network reliability problems [17,18].

The purpose of the original BAT is to search all possible vectors for related AOA
problems [48]. BAT starts from a vector zero, say X, and adds one to X to update X
iteratively. Let us briefly explain the basic principles of BAT. The entire original BAT is
processed in a backward manner from the last coordinate of X to the first coordinate [48].
Let xk be the current coordinate. If xk = 0, xk is updated by letting xk = 1. A new vector is
formed, and the current coordinate is reset to m, e.g., (1, 0, 0) is updated to (1, 0, 1). If xk = 1,
xk is updated by letting xk = 0. The process is then moved to the (k − 1)th coordinate to
repeat the aforementioned procedure until the new current coordinate is zero, e.g., (1, 0, 1)
is updated to (1, 1, 0).

The original AOA BAT pseudocode is as following Algorithm 1 [48]:

Algorithm 1: AOA BAT

Input: m.
Output: All solutions X of the problem.

Let SUM = 0, X = 0, and k = m.
while SUM < m

if X(ak) = 1
SUM = SUM − 1
X(ak) = 0

else
SUM = SUM + 1
X(ak) = 1
if k > 1

k = k − 1
end

end
end

From the aforementioned five lines of pseudocode, it can be observed that BAT is
simple to program, efficient to run, easy to understand, economical in RAM, and suitable
for make-to-fit [11,29,48–52].
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The number of all obtained vectors is 2m for an m-tuple vector zero in STEP B0. The
time complexity of BAT is O(2m+1), as proved in [52]. Furthermore, the total computer
memory is only O(m) because the current vector X is used repeatedly, and a new updated
vector needs to compute only its related values or predefined functions [48].

The following table shows how the AOA BAT is implemented to find all the state
vectors in Figure 1. Because |E| = 6 in Figure 1, there are 26 = 64 vectors at the end. To
recognize the sequence of the obtained vectors easily, the notation Xi is used in Table 2.
However, in the actual BAT procedure, there is always one vector X in the complete process;
there is no need to discriminate the sequence of the obtained X.

Table 2. Complete results obtained from the BAT in Figure 1.

i Xi i Xi i Xi i Xi

1 (0, 0, 0, 0, 0, 0) 17 (0, 0, 0, 0, 1, 0) 33 (0, 0, 0, 0, 0, 1) 49 (0, 0, 0, 0, 1, 1)
2 (1, 0, 0, 0, 0, 0) 18 (1, 0, 0, 0, 1, 0) 34 (1, 0, 0, 0, 0, 1) 50 (1, 0, 0, 0, 1, 1)
3 (0, 1, 0, 0, 0, 0) 19 (0, 1, 0, 0, 1, 0) 35 (0, 1, 0, 0, 0, 1) 51 (0, 1, 0, 0, 1, 1)
4 (1, 1, 0, 0, 0, 0) 20 (1, 1, 0, 0, 1, 0) 36 (1, 1, 0, 0, 0, 1) 52 (1, 1, 0, 0, 1, 1)
5 (0, 0, 1, 0, 0, 0) 21 (0, 0, 1, 0, 1, 0) 37 (0, 0, 1, 0, 0, 1) 53 (0, 0, 1, 0, 1, 1)

6 (1, 0, 1, 0, 0, 0) 22 (1, 0, 1, 0, 1, 0) 38 (1, 0, 1, 0, 0, 1) 54 (1, 0, 1, 0, 1, 1)
7 (0, 1, 1, 0, 0, 0) 23 (0, 1, 1, 0, 1, 0) 39 (0, 1, 1, 0, 0, 1) 55 (0, 1, 1, 0, 1, 1)
8 (1, 1, 1, 0, 0, 0) 24 (1, 1, 1, 0, 1, 0) 40 (1, 1, 1, 0, 0, 1) 56 (1, 1, 1, 0, 1, 1)
9 (0, 0, 0, 1, 0, 0) 25 (0, 0, 0, 1, 1, 0) 41 (0, 0, 0, 1, 0, 1) 57 (0, 0, 0, 1, 1, 1)

10 (1, 0, 0, 1, 0, 0) 26 (1, 0, 0, 1, 1, 0) 42 (1, 0, 0, 1, 0, 1) 58 (1, 0, 0, 1, 1, 1)

11 (0, 1, 0, 1, 0, 0) 27 (0, 1, 0, 1, 1, 0) 43 (0, 1, 0, 1, 0, 1) 59 (0, 1, 0, 1, 1, 1)
12 (1, 1, 0, 1, 0, 0) 28 (1, 1, 0, 1, 1, 0) 44 (1, 1, 0, 1, 0, 1) 60 (1, 1, 0, 1, 1, 1)
13 (0, 0, 1, 1, 0, 0) 29 (0, 0, 1, 1, 1, 0) 45 (0, 0, 1, 1, 0, 1) 61 (0, 0, 1, 1, 1, 1)
14 (1, 0, 1, 1, 0, 0) 30 (1, 0, 1, 1, 1, 0) 46 (1, 0, 1, 1, 0, 1) 62 (1, 0, 1, 1, 1, 1)
15 (0, 1, 1, 1, 0, 0) 31 (0, 1, 1, 1, 1, 0) 47 (0, 1, 1, 1, 0, 1) 63 (0, 1, 1, 1, 1, 1)

16 (1, 1, 1, 1, 0, 0) 32 (1, 1, 1, 1, 1, 0) 48 (1, 1, 1, 1, 0, 1) 64 (1, 1, 1, 1, 1, 1)

3.2. AOA PLSA

To solve network reliability problems in the traditional BAT, the connectivity of each
obtained vector found in the BAT procedure is verified using AOA PLSA [48]. Consequently,
the summation of the probabilities of all connected vectors is related to network reliability.

Each vector, say X, obtained from BAT is a subgraph G(V, X) of G(V, E). For example,
the subgraph corresponding to X28 = (1, 1, 0, 1, 1, 0) is depicted in Figure 2.
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The layered-search algorithm (LSA) was first proposed in [54] and revised to PLSA to
verify the connectivity of each vector obtained from BAT [48].

To apply the PLSA to test whether X is connected, i.e., whether there is a simple path
from nodes 1 to n in G(V, X), an empty queue is initialized by adding node 1 to the queue.
This queue stores the nodes that are adjacent to any node in the queue by at least one arc
repeatedly. If node n is included, a simple path is found from nodes 1 to n, that is, such a
vector is connected. Otherwise, X is a disconnected vector. The pseudocode of the AOA
PLSA is as following Algorithm 2:
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Algorithm 2: AOA PLSA.

Input: A vector X obtained from BAT.
Output: Whether X is connected or disconnected

while Qi 6= ∅
V* = Q0 = {1}
i = 1
Qi = { v ∈ V* | for all eu,v ∈ E, and u ∈ V*}
if n ∈ Qi or Qi = ∅
halted
else

V* = V* ∪ Qi
i = i + 1

end
end

The time complexity of the PLSA to verify whether a vector is connected is O(n). For
example, in Figure 2, the PLSA determines X = (1, 1, 0, 1, 1, 0) to be connected, and the
procedure is listed in Table 3.

Table 3. Process from the proposed PLSA for Figure 2.

i Qi Qi+1 V* Remark

0 {1} {2, 3} {1, 2, 3}
1 {2, 3} {5} X is connected

3.3. Fuzzy Set Theory

The fuzzy set theory introduced by Zadeh has become a common technique for
handling uncertain problems with imprecise information [46]. The basic principle of fuzzy
set theory is briefly presented in this section.

3.3.1. Fuzzy Number

Let x be a real number allocated to A
1 

A 

, and A
1 

A 

⊂ the universe set U. The fuzzy set A
1 

A 

is

defined as follows [43]:
A

1 

A 

= {(x, u A

1 

A 

(x))| x ∈ X} (1)

where u A

1 

A 

(x): X→ [0, 1] denotes the membership function of fuzzy set A.

There are many forms of fuzzy numbers that represent fuzzy sets. In this study,
triangular fuzzy numbers are applied. A triangular fuzzy number A

1 

A 

= (a, b, c), where

a ≤ b ≤ c, is defined in Equation (2); it is depicted in Figure 3 [46]:

u A

1 

A 

(x) =


(x− a)/(b− a), a ≤ x ≤ b,
(x− c)/(b− c), b ≤ x ≤ c,
0, otherwise,

(2)
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3.3.2. Linguistic Variable

It is natural to use linguistic variables to estimate, rate, and judge subjective events. In
this study, each uncertainty component had to be rated by experts using linguistic variables.
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This is shown in the first column of Table 4. To fuzzify the experts’ ratings to measure the
reliability of each uncertainty component, the linguistic variables presented in Table 4 are
transferred to their approximate reasoning of triangular fuzzy numbers, as shown in the
second column of Table 4 [46,47].

Table 4. Linguistic variables and their fuzzy numbers.

Linguistic Variables Triangular Fuzzy Numbers

Very Low (VL) (0.0, 0.0, 0.1)
Low (L) (0.0, 0.1, 0.3)

Fairly Low (FL) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)

Fairly High (FH) (0.5, 0.7, 0.9)
High (H) (0.7, 0.9, 1.0)

Very High (VH) (0.9, 1.0, 1.0)

For example, assume that components 3, 4, and 5 are uncertainty nodes, and six
experts are asked to rate these components using linguistic variables. The results of these
linguistic variables are listed in Table 5.

Table 5. Linguistic variables of six experts.

Component Linguistic Variables

3 VL, L, L, VL, L, L
4 VL, L, H, VH, L, H
5 VH, H, L, VH, H, L

3.3.3. Average Fuzzy Number

After obtaining the linguistic variables for these components with uncertain informa-
tion, we need to aggregate the experts’ rates; that is, combine the linguistic variables into
one fuzzy number called the average fuzzy number (AFN), by averaging the fuzzy number
of all experts’ linguistic variables based on the α-cut [47].

Assume that A
1 

A i,j = (ai,j, bi,j, ci,j) is the linguistic variable provided by expert j for

uncertainty component i. The average fuzzy number of the uncertainty component i is
defined as:

A
1 

A 

i
= (A

1 

A 

i,1
⊕ A

1 

A 

i,2
⊕ . . .⊕ A

1 

A 

i,h
)/h (9)

where h is the number of experts.
For example, six experts rated the uncertainty component 3: VL, L, L, VL, L, and

L. Based on Equation (3), Equation (9), and Tables 4 and 5, we obtain the AFN for the
uncertainty component 3:

A
1 

A 

3
= [2(0.0, 0.0, 0.1) + 4(0.0, 0.1, 0.3)]/6 = (0.0, 0.4/6, 1.4/6). (10)

3.3.4. Defuzzification to Convert AFN to FPS

The AFN is still a fuzzy number and requires further defuzzification to convert it to a
crisp number called the fuzzy possibility score (FPS), which represents the experts’ belief
of the most likely score of an event occurring. The method of transferring AFN to FPS
is based on the left and right fuzzy ranking method proposed in [55]. To implement this
method, we need to define the fuzzy maximizing and minimizing sets as:

fmax(x) =
{

x x ∈ [0, 1]
0 otherwise

(11)
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fmin(x) =
{

1− x x ∈ [0, 1]
0 otherwise

(12)

Based on the α-cut, we have FPSR(k) and FPSL(k) for uncertainty component k [55]:

FPSR(k) = supx [ fk(x) ∧ fmax(x) = α, where α = A
1 

A 

α,UB
(α). (13)

FPSL(k) = supx [ fk(x) ∧ fmin(x) = α, where (1 − α) = A
1 

A 

α,LB
(α), (14)

After solving α and bringing α into the following equation, we can obtain the FPS for
the uncertainty component k [55]:

FPS(k) = |FPSR(k) + 1 − FPSL(k)|/2. (15)

For example, the α-cut for A
1 

A 3 = (0.0, 0.4/6, 1.4/6) is:

A
1 

A 

3,α
= [α(0.4/6 − 0) + 0, α(0.4/6 − 1.4/6) + 1.4/6] = [0.4α/6, 1.4/6 − α/6]. (16)

After solving Equations (13) and (14), we have:

α = A
1 

A 

3,α,UB
(α) ⇒ α = 1.4/6 − α/6 ⇒ α = FPSR(3) = 0.2 (17)

(1 − α) = A
1 

A 

3,α,LB
(α) ⇒ (1 − α) = 0.4α/6 ⇒ α = FPSL(3) = 0.9375. (18)

Hence,
FPS(3) = |FPSR(3) + 1 − FPSL(3)|/2 = 0.86875. (19)

3.3.5. Further Conversion of FPS to FFR

To confirm the affinity between the non-fuzzy failure rate of hardware and experts’
FPS, the FPS must be converted into fuzzy failure rates (FFRs), which are an error rate [56]:

FFR = (frequency of error)/(total chance that an event has an error). (20)

=

{
10−k FPS 6= 0
0 otherwise

, (21)

where:
k = |(1 − FPS)/PFS|1/3 × 2.301. (22)

The FFR of an uncertainty component, say i, is treated as the unreliability; that is,
R(i) = 1 − FFR(i). For example, because:

k = |(1 − 0.86875)/0.86875|1/3 × 2.301 = 1.225514. (23)

We have the FFR of uncertainty component 3:

FFR(3) = 10−k = 10−1.225514 = 0.059496, (24)

and:
R(3) = 1 − FFR(3) = 0.940504. (25)

4. Proposed AON BAT-Based Algorithm

The proposed AON BAT-based algorithm for computing the reliability of a binary-
state network with uncertainty nodes is presented in this section. The preprocessing steps
for transferring uncertainty nodes into crisp nodes are described in Section 4.1. Moreover,
the first AON BAT is proposed by modifying the traditional AOA BAT in Section 4.2. An
example of the proposed AON BAT is presented in Section 4.3.
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4.1. Preprocessing Operations: Transfer of Uncertainty Components into Crisp Components

The preprocessing steps of the proposed algorithm include dealing with uncertainty
nodes whose reliabilities are unknown. The basic concept of transferring uncertainty
nodes into crisp nodes is based on fuzzy set theory [46], as mentioned in Section 3.2. The
pseudocode for the proposed preprocessing operation is as following Algorithm 3 [47]:

Algorithm 3: Preprocess Uncertainty Components

Input: An AON BN G(V, E, D) with uncertainty nodes.
Output: Convert each uncertainty node into a crisp node.

Each expert rates the uncertainty nodes using linguistic variables.
Transfer each linguistic variable into a fuzzy number.
Average experts’ fuzzy numbers and calculate their related α-cuts for each
uncertainty node to have an AFN [47].
Convert AFN to FPS with defuzzification [55].
Convert FPS to FFR [56]—-which is the unreliability.

Taking Table 6 as an example of which nodes 3–5 are uncertainty nodes, in STEP P0,
experts first rate these uncertainty nodes using linguistic variables, as shown in Table 4 and
the second column of Table 6. Then, STEP P2 calculates the average fuzzy number (AFN)
based on Table 4 and STEP P1, as shown in the third column of Table 6.

Table 6. Example of STEPs P0, P1, and P2.

Node i Linguistic Variables Average Fuzzy
Number α-Cut

3 VL, L, L, VL, L, L (0, 0.4/6, 1.4/6) [0.4α/6, 1.4/6 − α/6]
4 VL, L, H, VH, L, H (2.3/6, 3/6, 3.7/6) [0.7α/6 + 2.3/6, 3.7/6 − 0.7α/6]
5 VH, H, L, VH, H, L (3.2/6, 4/6, 4.6/6) [0.8α/6 + 3.2/6, 4.6/6 − 0.1α]

STEP P2 mainly focused on aggregating experts’ ratings into an AFN. Subsequently,
each α-cut of the related AFN is also required to be calculated, as shown in the last column
of Table 6.

After many fuzzy numbers are aggregated into an AFN and the related α-cut, the next
step is to defuzzify the values. Based on the left and right fuzzy ranking method proposed
in [55], STEP P3 defuzzifies AFN to FPS, as shown in columns 2 to 4 of Table 7. The last
step, that is, STEP P4, transfers APS to FFR based on Equation (21), as listed in the last
two columns of Table 7. Consequently, the FFR is treated as the unreliability of the related
uncertainty node.

Table 7. Example of STEPs P3 and P4.

Node i FPSL (i) FPSR (i) FPS (i) k FFR (i) R (i)

3 0.2 0.9375 0.86875 1.225514 0.059496 0.940504
4 0.552239 0.552239 0.5 2.301 0.005 0.995000
5 0.411764 0.696970 0.642603 1.892283 0.012815 0.987185

4.2. AON BAT

The proposed AON BAT is based on the traditional AOA BAT proposed in [48]. In the
proposed AON BAT, the values of the first and last coordinates, that is, the source node
and the sink node, are always 1 because the BN fails if any one of these two nodes fails.

Unlike the traditional AOA BAT that is implemented backward from the last to the
first coordinate, the proposed AON BAT is implemented forward; that is, from the first to
the second last node. Note that the states of the first and last nodes are always one and do
not need to be changed.
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Moreover, in the traditional AOA BAT, there is a variable “SUM” to count the number
of coordinates—of which the values are one—to decide when to stop the BAT procedure.
To improve the efficiency, the proposed AON BAT adopts another method by checking
whether the current coordinate is the last coordinate; that is, the coordinate n. If the answer
is yes, then the algorithm is stopped.

The number of all obtained vectors from the proposed AON BAT is 2n−2 because the 1st
and nth coordinates are unchanged. In addition, the time complexity of the traditional AOA
BAT is O(2m+1) with the space complexity being O(m) [52], whereas the time complexity
and space complexity of the AON BAT are O(2n−2+1) = O(2n−1) and O(n − 1), respectively.
Moreover, to calculate the AON BN reliability, an additional step is needed.

The pseudocode of the proposed AON BAT is presented in the following Algorithm 4:

Algorithm 4: AON BAT

Input: A n-tuple vector X.
Output: All solutions in vector form are found in the related AON problems.

X = 0, except that both the first and last are 1s, and k = 2.
while k < n

if X(ak) = 0
X(ak) = 1
k = 1
if X is connected

R = R + Pr(X)
endif

else
X(ak) = 0
k = k + 1

end
end

4.3. AON PLSA

The proposed AON PLSA is based on the traditional AOA PLSA proposed in [48,54]
to verify the connectivity of a vector obtained from the proposed AON BAT. The basic idea
of the proposed AON PLSA is very similar to that of the AOA PLSA. The pseudocode of
the proposed AON PLSA is similar to that of the AOA PLSA and is listed as following
Algorithm 5:

Algorithm 5: AOA PLSA.

Input: A vector X obtained from BAT.
Output: Whether X is connected or disconnected

V* = Q0 = {1} and i = 1.
while n

1 

 

A 

 

 Qi and Qi 6= ∅
Qi = { v

1 

 

A 

 

 V* | for all eu,v ∈ E, X(v) = 1, and u ∈ V*}.
V* = V* ∪ Qi
i = i + 1

end

The only difference between the proposed AON PLSA and AOA PLSA is the second
step. Hence, the time complexity of the proposed AON PLSA is O(n) [48].

4.4. Example

The general procedure of the proposed AON BAT-based algorithm is best demon-
strated with examples. All types of networks are NP-hard and #P-hard. To reduce the
complexity, a middle-sized SNs on AON BN, as shown in Figure 5, was implemented to
better demonstrate how the proposed algorithm solves the SNs on AON BN reliability with
the uncertainty components problem.
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Figure 5. Example of a middle-sized SN on AON BN.

The information of nodes 3, 4, and 5 is unknown, and their ratings, that is, linguistic
variables, are provided by six experts; the reliability of nodes 2, 6, and 7 is listed in Table 8.
Note that nodes 1 and 8 are perfectly reliable.

Table 8. State distributions in Figure 5.

a D (a) Linguistic Variables

a2 0.80
a3 unknown VL, L, L, VL, L, L
a4 unknown VL, L, H, VH, L, H
a5 unknown VH, H, L, VH, H, L
a6 0.90
a7 0.88

After the preprocessing steps provided in Section 4.1, all uncertainty components are
transferred to crisp components, as shown in Tables 6 and 7. The new state distribution
after transformation is shown in Table 9.

Table 9. New state distributions of Figure 5.

a D (a)

a2 0.80
a3 0.940504
a4 0.995000
a5 0.987185
a6 0.90
a7 0.88

Note that in Table 10, if Pr(Xi) is not empty, Xi is a connected vector. For example,
Pr(X1) is empty and Pr(X64) = 0.585325 indicates that X1 is a disconnected vector, and X64
is a connected vector.

Table 10. Result obtained from the proposed AON BAT.

i Xi Pr(x2) Pr(x3) Pr(x4) Pr(x5) Pr(x6) Pr(x7) Pr(Xi)

1 (1, 0, 0, 0, 0, 0, 0, 1) 0.2 0.059496 0.005 0.012815 0.1 0.12
2 (1, 1, 0, 0, 0, 0, 0, 1) 0.8 0.059496 0.005 0.012815 0.1 0.12
3 (1, 0, 1, 0, 0, 0, 0, 1) 0.2 0.940504 0.005 0.012815 0.1 0.12
4 (1, 1, 1, 0, 0, 0, 0, 1) 0.8 0.940504 0.005 0.012815 0.1 0.12
5 (1, 0, 0, 1, 0, 0, 0, 1) 0.2 0.059496 0.995 0.012815 0.1 0.12

6 (1, 1, 0, 1, 0, 0, 0, 1) 0.8 0.059496 0.995 0.012815 0.1 0.12
7 (1, 0, 1, 1, 0, 0, 0, 1) 0.2 0.940504 0.995 0.012815 0.1 0.12
8 (1, 1, 1, 1, 0, 0, 0, 1) 0.8 0.940504 0.995 0.012815 0.1 0.12
9 (1, 0, 0, 0, 1, 0, 0, 1) 0.2 0.059496 0.005 0.987185 0.1 0.12
10 (1, 1, 0, 0, 1, 0, 0, 1) 0.8 0.059496 0.005 0.987185 0.1 0.12 2.82 × 10−6



Appl. Sci. 2022, 12, 9514 14 of 17

Table 10. Cont.

i Xi Pr(x2) Pr(x3) Pr(x4) Pr(x5) Pr(x6) Pr(x7) Pr(Xi)

11 (1, 0, 1, 0, 1, 0, 0, 1) 0.2 0.940504 0.005 0.987185 0.1 0.12
12 (1, 1, 1, 0, 1, 0, 0, 1) 0.8 0.940504 0.005 0.987185 0.1 0.12 4.46 × 10−5

13 (1, 0, 0, 1, 1, 0, 0, 1) 0.2 0.059496 0.995 0.987185 0.1 0.12
14 (1, 1, 0, 1, 1, 0, 0, 1) 0.8 0.059496 0.995 0.987185 0.1 0.12 0.000561
15 (1, 0, 1, 1, 1, 0, 0, 1) 0.2 0.940504 0.995 0.987185 0.1 0.12

16 (1, 1, 1, 1, 1, 0, 0, 1) 0.8 0.940504 0.995 0.987185 0.1 0.12 0.008869
17 (1, 0, 0, 0, 0, 1, 0, 1) 0.2 0.059496 0.005 0.012815 0.9 0.12
18 (1, 1, 0, 0, 0, 1, 0, 1) 0.8 0.059496 0.005 0.012815 0.9 0.12
19 (1, 0, 1, 0, 0, 1, 0, 1) 0.2 0.940504 0.005 0.012815 0.9 0.12 1.3 × 10−6

20 (1, 1, 1, 0, 0, 1, 0, 1) 0.8 0.940504 0.005 0.012815 0.9 0.12 5.21 × 10−6

21 (1, 0, 0, 1, 0, 1, 0, 1) 0.2 0.059496 0.995 0.012815 0.9 0.12
22 (1, 1, 0, 1, 0, 1, 0, 1) 0.8 0.059496 0.995 0.012815 0.9 0.12
23 (1, 0, 1, 1, 0, 1, 0, 1) 0.2 0.940504 0.995 0.012815 0.9 0.12 0.000259
24 (1, 1, 1, 1, 0, 1, 0, 1) 0.8 0.940504 0.995 0.012815 0.9 0.12 0.001036
25 (1, 0, 0, 0, 1, 1, 0, 1) 0.2 0.059496 0.005 0.987185 0.9 0.12

26 (1, 1, 0, 0, 1, 1, 0, 1) 0.8 0.059496 0.005 0.987185 0.9 0.12 2.54 × 10−5

27 (1, 0, 1, 0, 1, 1, 0, 1) 0.2 0.940504 0.005 0.987185 0.9 0.12 0.0001
28 (1, 1, 1, 0, 1, 1, 0, 1) 0.8 0.940504 0.005 0.987185 0.9 0.12 0.000401
29 (1, 0, 0, 1, 1, 1, 0, 1) 0.2 0.059496 0.995 0.987185 0.9 0.12
30 (1, 1, 0, 1, 1, 1, 0, 1) 0.8 0.059496 0.995 0.987185 0.9 0.12 0.005049

31 (1, 0, 1, 1, 1, 1, 0, 1) 0.2 0.940504 0.995 0.987185 0.9 0.12 0.019954
32 (1, 1, 1, 1, 1, 1, 0, 1) 0.8 0.940504 0.995 0.987185 0.9 0.12 0.079817
33 (1, 0, 0, 0, 0, 0, 1, 1) 0.2 0.059496 0.005 0.012815 0.1 0.88
34 (1, 1, 0, 0, 0, 0, 1, 1) 0.8 0.059496 0.005 0.012815 0.1 0.88
35 (1, 0, 1, 0, 0, 0, 1, 1) 0.2 0.940504 0.005 0.012815 0.1 0.88

36 (1, 1, 1, 0, 0, 0, 1, 1) 0.8 0.940504 0.005 0.012815 0.1 0.88
37 (1, 0, 0, 1, 0, 0, 1, 1) 0.2 0.059496 0.995 0.012815 0.1 0.88 1.34 × 10−5

38 (1, 1, 0, 1, 0, 0, 1, 1) 0.8 0.059496 0.995 0.012815 0.1 0.88 5.34 × 10−5

39 (1, 0, 1, 1, 0, 0, 1, 1) 0.2 0.940504 0.995 0.012815 0.1 0.88 0.000211
40 (1, 1, 1, 1, 0, 0, 1, 1) 0.8 0.940504 0.995 0.012815 0.1 0.88 0.000844

41 (1, 0, 0, 0, 1, 0, 1, 1) 0.2 0.059496 0.005 0.987185 0.1 0.88
42 (1, 1, 0, 0, 1, 0, 1, 1) 0.8 0.059496 0.005 0.987185 0.1 0.88 2.07 × 10−5

43 (1, 0, 1, 0, 1, 0, 1, 1) 0.2 0.940504 0.005 0.987185 0.1 0.88
44 (1, 1, 1, 0, 1, 0, 1, 1) 0.8 0.940504 0.005 0.987185 0.1 0.88 0.000327
45 (1, 0, 0, 1, 1, 0, 1, 1) 0.2 0.059496 0.995 0.987185 0.1 0.88 0.001029

46 (1, 1, 0, 1, 1, 0, 1, 1) 0.8 0.059496 0.995 0.987185 0.1 0.88 0.004114
47 (1, 0, 1, 1, 1, 0, 1, 1) 0.2 0.940504 0.995 0.987185 0.1 0.88 0.016259
48 (1, 1, 1, 1, 1, 0, 1, 1) 0.8 0.940504 0.995 0.987185 0.1 0.88 0.065036
49 (1, 0, 0, 0, 0, 1, 1, 1) 0.2 0.059496 0.005 0.012815 0.9 0.88
50 (1, 1, 0, 0, 0, 1, 1, 1) 0.8 0.059496 0.005 0.012815 0.9 0.88

51 (1, 0, 1, 0, 0, 1, 1, 1) 0.2 0.940504 0.005 0.012815 0.9 0.88 9.55 × 10−6

52 (1, 1, 1, 0, 0, 1, 1, 1) 0.8 0.940504 0.005 0.012815 0.9 0.88 3.82 × 10−5

53 (1, 0, 0, 1, 0, 1, 1, 1) 0.2 0.059496 0.995 0.012815 0.9 0.88 0.00012
54 (1, 1, 0, 1, 0, 1, 1, 1) 0.8 0.059496 0.995 0.012815 0.9 0.88 0.000481
55 (1, 0, 1, 1, 0, 1, 1, 1) 0.2 0.940504 0.995 0.012815 0.9 0.88 0.0019

56 (1, 1, 1, 1, 0, 1, 1, 1) 0.8 0.940504 0.995 0.012815 0.9 0.88 0.007598
57 (1, 0, 0, 0, 1, 1, 1, 1) 0.2 0.059496 0.005 0.987185 0.9 0.88
58 (1, 1, 0, 0, 1, 1, 1, 1) 0.8 0.059496 0.005 0.987185 0.9 0.88 0.000186
59 (1, 0, 1, 0, 1, 1, 1, 1) 0.2 0.940504 0.005 0.987185 0.9 0.88 0.000735
60 (1, 1, 1, 0, 1, 1, 1, 1) 0.8 0.940504 0.005 0.987185 0.9 0.88 0.002941
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Table 10. Cont.

i Xi Pr(x2) Pr(x3) Pr(x4) Pr(x5) Pr(x6) Pr(x7) Pr(Xi)

61 (1, 0, 0, 1, 1, 1, 1, 1) 0.2 0.059496 0.995 0.987185 0.9 0.88 0.009257
62 (1, 1, 0, 1, 1, 1, 1, 1) 0.8 0.059496 0.995 0.987185 0.9 0.88 0.037028
63 (1, 0, 1, 1, 1, 1, 1, 1) 0.2 0.940504 0.995 0.987185 0.9 0.88 0.146331
64 (1, 1, 1, 1, 1, 1, 1, 1) 0.8 0.940504 0.995 0.987185 0.9 0.88 0.585325

SUM 0.995984

From the last row in Table 10, we have R = 0.995984, which is the summation of the
reliability of all connected vectors in Figure 5.

5. Conclusions

Various social networks (SNs) are necessary for modern daily life. The reliability of
these SNs is defined as the success probability that the BN is working, that is, the source
and sink nodes are connected by a directed path in the BN of SNs. Hence, reliability can
be implemented in evaluating, managing, and designing the performance of all types
of BNs. However, most reliability problems are focused on the AOA network structure;
moreover, they assume that the reliability of each component is known in advance. This
paper presents a novel AON BN of the SN reliability problem with uncertainty components
and presents an AON BAT to solve the problem.

To solve the proposed novel problem, we first invited experts to provide their linguistic
variables to rate these uncertainty components. A fuzzy set was then applied. Each
linguistic variable was transferred to a fuzzy number, and these fuzzy numbers were
aggregated into an AFN corresponding to the same uncertainty component. Each AFN
was transferred further to the FPS and FFR, which is considered to be an unreliability in
the proposed problem.

After transferring each uncertainty component variable to a crisp component, the
proposed AON BAT was implemented to calculate the reliability of the AON BNs of SNs
together with the proposed AON PLSA to verify the connectivity of each obtained vector.
Moreover, the time complexity of the proposed AON BAT was O(2n−1), with the space
complexity being O(n − 1), both of which are less than that of AOA BAT, where n is the
number of nodes. In addition, from the example demonstration, it can be observed that the
proposed AON BAT can calculate the AON BN of SN reliability with uncertainty compo-
nents for the 8-node 13-arc 3-uncertainty-component BN. Thus, the proposed algorithm has
the potential to solve larger-sized problems, the propagation of information in larger-sized
problems, or the assumption of each node and arc as perfectly reliable. Furthermore, a
real-world application of the proposed ANO BAT is planned to be studied.

In future works, the proposed AON BN of SNs reliability problem with uncertainty
components will be further extended to AON multi-state networks of SNs and AON
multi-commodity multi-state networks. The proposed algorithm will be improved corre-
spondingly for larger-sized problems.
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