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Abstract: Patrol missiles are a common type of unmanned aerial vehicle, which can be efficiently
used for reconnaissance and sensing. In this work, target detection and the damage assessment
of typical mobile ground targets by patrol missiles are studied, and a new method, combining the
YOLO v3 with the VGG networks, is proposed for the problem. Specifically, with YOLO v3 as the
precursor, the proposed method can detect, classify, and localize ground targets accurately and
quickly. Then, the image blocks of detected targets are fed into the lightweight VGG networks, which
can evaluate their damage level coarsely. Meanwhile, based on class activation mapping (CAM) and
deconvolution, we further analyse the activation intensity of clustered convolution kernels, which
helps determine whether the targets’ key components are destroyed. Unlike traditional image change
detection methods, which require images before and after a strike for comparison, the proposed
method learns the target model through extensive training and can assess the target’s damage
status in a timely and online manner. Compared to previous learning-based methods, our detailed
analysis with convolutional feature visualization of the damaged targets and their components gives
a more interpretable perspective. Finally, Unity simulation experiments prove the proposed method’s
effectiveness, which improves the accuracy of damage level assessment by 16.0% and 8.8% compared
with traditional image-change-detection-based methods and the two-CNN learning-based method.
The convolutional feature clustering method evaluates the status of the targets’ key components with
an accuracy of 72%.

Keywords: damage assessment; target detection; feature layer visualization; class activation mapping;
deconvolution; convolutional feature clustering

1. Introduction

Damage assessment of targets based on images has been a significant problem in
intelligent military perception. The U.S. Joint Chiefs of Staff defined the Battle Damage As-
sessment (BDA): The timely and accurate estimate of damage resulting from the application
of military force, either lethal or non-lethal, against a predetermined objective [1].

This work focuses on the damage assessment for mobile ground targets, such as tank,
supply vehicle, and tent. Unlike traditional fixed ground targets in previous works, mobile
ground targets are more flexible. They are moving on the ground for certain specific tasks
and their positions are constantly changing in real-time. Therefore, the damage assessment
method for mobile ground targets should also operate in real-time and only on the UAV’s
hardware, without the participation of a rear control center.

However, since most of the existing works evaluate the damage status of the target
by detecting the changes in images before and after a strike, real-time and online damage
assessment is nearly impossible for them. Specifically, they are often divided into three
parts: register the images before and after the strike, detect the struck target from the
images, and assess the damage level based on the changes in the geometric and texture
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features [2]. Since the high-precision registration of the images from before and after the
strike is a complex and time-consuming process, it is always performed offline at the control
center rather than online on only the UAV’s hardware.

The traditional image-change-detection-based methods are mainly for fixed targets.
Since they need high-precision registration of the images from before and after the strike,
they are unavailable for mobile ground targets. Although learning-based methods can
extract deep semantic information and detect mobile ground targets in real-time, they often
suffer more from the influence of different inter- and intraclass features. Therefore, these
existing methods are hard to extend to mobile targets.

Moreover, most existing works focus on the damage level assessment for the whole
targets, lacking of further status evaluation for their functional components. However,
such information is also very important for the evaluation of the various specific abilities
of mobile ground targets. For example, a supply vehicle with destroyed wheels will no
longer be able to move, making it easier to be attacked. A similar work can be found in [3],
which analyzed the structure of typical fixed ground target based on expert knowledge
and realized a functional damage assessment. However, it is hard to extended to various
mobile ground targets. Due to the stationary nature of each part of a fixed target, there
is a stable position relationship between the key components and the overall body of
the target. In contrast to the case of a fixed target, the position relationship of a mobile
target will change significantly with the target’s movement and the observation angle.
In addition, methods of functional damage assessment based on expert knowledge are often
designed for large-scale general targets and require a large amount of data maintenance
and management. Applying such methods to mobile targets is difficult due to the wide
variety of mobile targets and their complex structural variations.

To tackle the above problems, we propose a real-time detection and timely damage
assessment method named YOLO-VGGNet for mobile ground targets. Firstly, with YOLO
v3 as the precursor, the proposed method detects, classifies, and localizes mobile ground
targets accurately and quickly. Secondly, the image blocks of detected targets are fed into
the lightweight VGG networks, which output the coarse results of damage level assessment.
Later, based on class activation mapping (CAM) and deconvolution, we further analyze
the activation intensity of clustered convolution kernels and determine whether the targets’
key components are destroyed.

The innovations of this paper are as follows: (1) We propose a real-time detection and
timely damage assessment method for mobile ground targets, YOLOVGGNet, which can
be performed based on online perception; (2) We cluster and visualize the convolution
kernels based on CAM and deconvolution, which not only helps determine whether the
targets’ components are damaged or not, but also provides a more interpretable perspective
for learning-based methods; (3) We build up a simulation system based on Unity and prove
the effectiveness of the proposed method by extensive experiments. Experimental results
show that the proposed method improves the accuracy of damage level assessment by
16.0% and 8.8% compared with traditional image-change-detection-based methods and the
two-CNN learning-based method. The convolutional feature clustering method evaluates
the status of the targets’ key components with an accuracy of 72%.

This paper is organized as follows: Section 2 introduces existing works on damage
assessment. Section 3 designs the novel damage level assessment method named YOLO-
VGGNet. Section 4 mainly describes damage assessment of the target’s components based
on convolution feature clustering, and a detailed description of convolutional feature
clustering can be found here. The simulation system and experimental result are shown in
Section 5. Section 6 concludes the paper.

2. Related Work

The core of the damage assessment process is the analytical assessment method
used. In addition to manual interpretation, traditional methods mainly include Bayesian
networks [4], principal component analysis (PCA) [5], and image feature understanding [6].
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Evaluation methods based on Bayesian networks mostly rely on machine interpre-
tation, which can synthesize various types of information and have the advantages of
a short processing time and the ability to quantitatively analyze problems that are sub-
ject to uncertainty. Ma et al. made full use of the advantages of Bayesian networks in
computing uncertain problems to build a Bayesian model for target damage assessment.
By using GeNIe software, this Bayesian model can assess the damage effect on target
ships [7]. Cheng et al. used UAV reconnaissance technology to obtain image information of
vehicle targets and analyzed the damage features using Bayesian networks to establish a
functional damage assessment model [8]. By incorporating a dynamic Bayesian network
analysis of a damage time stream, Yang effectively overcame the subjectivity and uncer-
tainty of traditional methods and achieved a higher assessment accuracy [9]. Nevertheless,
although they are beneficial for solving uncertain problems, Bayesian-based evaluation
methods cannot make use of human experience and knowledge and often cannot grasp
principal contradictions.

PCA-based methods mainly adopt the idea of dimensionality reduction to transform
complex feature representations of images into only a few evaluation metrics, which are
then used as quantitative features to evaluate the degree of image change [10]. Li et al.
fused the advantages of PCA and synthetic aperture radar (SAR) imaging with multitexture
feature extraction to evaluate the damage to ground buildings and reduce the amount of
data computation [11]. Wu et al. combined PCA with a convolutional mapping network to
achieve change detection for high-resolution images acquired in different time periods [12].
Yousif O and Ban Y proposed an improved PCA-NLM method for urban development
change detection based on SAR images from different time periods [13]. PCA-based
methods can reduce the volume of data to be processed and capture principal contradictions.
However, they are less robust to image interference.

With the rapid development of remote sensing, image processing, and other related
technologies, image-feature-understanding-based methods have become the focus of cur-
rent research on damage assessment, which are generally divided into two categories:
image-segmentation-based [14] and target-detection-based [15] methods. They are more
widely adaptable, more resistant to interference, and more in line with human visual un-
derstanding than methods based on pixel and texture change detection. However, complex
structures and uncertain environments make it difficult for the adaptability and accuracy
of such assessment algorithms to meet the demands of application.

The key to traditional damage assessment methods is the detection of changes in
images acquired before and after a strike, which is essentially a feature extraction problem.
Multiple errors are inevitably introduced when using various image processing algorithms,
such as image preprocessing, image registration, and image radiation correction. At the
same time, it is not easy to build an effective assessment model from a limited sample due
to the specificity and confidentiality of the attacked targets. Moreover, such methods often
rely on a control center, and the assessment results will inevitably have a certain lag, which
is intolerable for some tasks with high real-time requirements [16].

Although much work has been done on image-change-detection-based damage as-
sessment, these methods have seldom paid attention to the problems of achieving online
and real-time performance. The emergence of learning-based methods provides a solution
to these problems. In recent years, convolutional neural networks (CNNs) have achieved
great success in computer vision and pattern recognition. In tests on many large datasets,
deep CNNs have exceeded human recognition rates and have a faster detection speed [17].
Considering the advantage of extracting deep advanced semantic features through learning
based on large amounts of data, the application of learning-based methods for damage
assessment has also attracted widespread attention [18–20]. Zhang et al. proposed a new
baseline dataset for road damage detection with attention learning. Their dataset was
collected by professional onboard cameras and is manually labeled with eight damage
categories of three degrees (mild, moderate, and severe), which can effectively help pro-
mote research on the automated detection of road damage [21]. Kumar et al. applied a
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Mask-RCNN to evaluate the abrasion areas of vehicles involved in road traffic accidents to
reduce the workload of insurance company personnel [22].

Damage assessment based on a single-stage CNN requires considerable calculation for
each image. When faced with a large amount of data that need evaluation, this approach is
very time-consuming. Therefore, many researchers have used lightweight networks to first
determine whether a target is damaged to improve the evaluation efficiency. Calton et al.
designed a two-CNN disaster assessment network to evaluate the extent of the damage
inflicted on coastal cities and structures. Two neural subnetworks are applied to evaluate
whether houses are affected by floods and the damaged components of the houses [23].
In the same way, Alqahtani et al. designed a two-CNN learning-based damage assessment
method for mechanical structures. Two subnetworks were built to evaluate whether a
structure is damaged and the degree of damage [24]. The two-CNN evaluation approach
significantly improved the accuracy and computational efficiency.

However, although the existing methods based on two-CNN can achieve improved
evaluation efficiency and obtain better results by extracting deep semantic features, the ob-
jects of evaluation belong to a single target type. The relationship between the two CNNs
in the processing approach is relatively weak.

How do we evaluate the damage degrees of different types of targets? Is such a
two-CNN evaluation method effective for this purpose? Some researchers have considered
judging the target type based on the first subnetwork. To evaluate the damage degrees of
different houses after a typhoon, Xu et al. combined two CNNs. The first subnetwork was
used to distinguish different types of houses and localize their positions, and the second
was used to evaluate the degree of damage to each house based on prior information from
the first CNN [25]. Similarly, to evaluate the degrees of damage caused by different natural
disasters, Tang et al. concatenated two CNNs to classify the disaster type and damage
level [26]. However, the relationship between the two CNNs was still weak, depending
only on classification information. We propose a strongly concatenated two-stage learning-
based method for mobile ground targets based on prior YOLO detection, classification,
and localization information.

Despite the undeniable progress achieved by learning-based damage assessment
approaches in recent years, the explainability of deep neural networks presents an un-
avoidable problem. Due to the lack of analysis of the intermediate results, it is difficult to
give concrete reasons for the experimental results obtained, thereby limiting the further
applications of such learning-based approaches, especially in the fields of automatic vehicle
driving and medical disease diagnosis. Therefore, many existing works have focused on the
operating mechanisms and feature extraction logic of CNNs, a topic known as explainable
AI (XAI) [27]. By visualizing the features extracted from intermediate convolutional layers,
the study of feature visualization can effectively improve the understanding of XAI [28].
Feature visualization has functions similar to those of image feature extraction based on
computer image processing [29]. If we could utilize such visualized features, this would be
beneficial in enhancing the ability of CNNs to solve damage assessment problems.

Convolutional feature visualization methods generally include intermediate feature
layer visualization [30], class activation mapping(CAM) [31], and deconvolution [32].
In CAM, the importance of each component of an image to the final decision is represented
by generating a heatmap as an intuitive representation of the weight distribution. Sel-
varaju et al. proposed Grad-CAM to make CAM more universal [33]. Grad-CAM optimizes
the backpropagation process and calculates the weights corresponding to each feature map
in a convolutional layer by performing global averaging of the gradients and summing the
weights. Based on Grad-CAM feature visualization, Banerjee et al. introduced feature infor-
mation to evaluate the environmental damage after a typhoon [34], and Chen explained
the results of building damage classification and derived the image basis for the neural
network’s determinations [35]. They both obtained better damage assessment results by
introducing XAI theory into the damage assessment field.
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Not only Grad-CAM but also other works on XAI-based feature visualization have
enabled significant progress. Zhang et al. increased the credibility of diagnostic results
based on XAI [36]. Matin et al. modified a dataset and training model based on XAI
and achieved a better post-disaster building damage assessment effect [37]. Nevertheless,
the current XAI-based methods also have the shortcoming that they cannot work in a
real-time and online manner. The reason is that the neural network structure is relatively
complex, and considerable weight information is lost during backpropagation, leading to
high time consumption during processing.

The development of XAI theory not only increases trust in the results generated by AI
systems but also provides new assistance in solving existing problems. In deconvolution
visualization [32], a feature map is taken as the input to perform the inverse of convolution,
thereby mapping the results to the original pixel space to display the features extracted by
the convolution kernels of each layer. The latest research on the visualization of convolu-
tional features provides novel approaches to damage assessment problems. LayerCAM [38]
can produce reliable class activation maps from any CNN layer by employing element-level
weights. Score-CAM [39] gets rid of the dependence on gradients by obtaining the weight
of each activation map through its forward passing score on the target class. The final result
is obtained by a linear combination of weights and activation maps, which achieves better
visual performance and fairness for explaining the decision-making process.

To combine the advantages of learning-based and XAI-based methods, we propose
the YOLO-VGGNet method. It can not only meet the requirements of real-time detection
and timely damage assessment online but also fully utilize the visualized features from the
convolutional layers.

3. Target Detection and Damage Level Assessment Based on YOLO-VGGNet

As shown in Figure 1, YOLO-VGGNet consists of three modules. Firstly, the YOLO
v3 detects, classifies, and localizes mobile targets in the images. Then, the VGG-1 series
networks assess the damage level of detected targets coarsely. Finally, image blocks for
functionally damaged targets are fed into the VGG-2 network for further analysis of the
targets’ key components.

YOLO v3 ...

Output

...

functionally damaged slightly damaged normal

tank
VGG-1-1

radar
VGG-1-2

tent
VGG-1-3

supplyvehicle
VGG-1-4

...

...

radar antenna

......

severely damaged

VGG-2

Layer 26
512 convolutional kernels

tank track

tank turret

Target detection
and localization

Target damage
level assessment

Target damage
components analysis

Image blocks
containing target

tent texture

Figure 1. The process of mobile ground target detection and damage assessment by patrol missiles.
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We divide our contributions into two parts. In Section 3, we proposed a two-stage
learning-based framework for mobile ground targets based on YOLO prior information,
which can meet the requirements of real-time detection and timely damage assessment
online. In Section 4, a novel convolutional feature clustering method based on CAM and
guided backpropagation of deconvolution was proposed for the first time to evaluate the
components of damaged targets.

3.1. Target Detection Based on YOLO v3

Considering the movement of ground targets, the YOLO v3 network is utilized to
detect, classify, and localize them online. Compared to YOLO v1 and YOLO v2, YOLO
v3 features significant changes in some functions: Multiscale detection logic is introduced
to meet the needs of detection for targets of different scales. The concept of multilabel
classification is applied to meet the requirements for detecting multiple types of targets.
The loss function is optimized to make the prior bounding box more accurate for target
positioning. Although YOLO v4, YOLO v5, and other subsequent versions have also
emerged more recently, the essential functions needed, such as detection, classification,
and localization, have remained unchanged. In addition, YOLO v3 is widely used in
engineering, and its stability has been verified. Let G be the input image, then the YOLO
v3 network can be described by:

φ1(G, θpre) =
{

Gb0 , Gb1 , · · · , Gbn

}
, Gbm = {Pm, Cm, Qm| m = 0, 1, · · · , n, }, (1)

where φ1(·, θpre) indicates the YOLO v3 network and θpre is its weights. There are n detected
targets in the original image and Gbm describes the image block of the mth detected target.
It consists of three parts: the parameters of the bounding box Pm = [xm, ym, wm, hm],
the target’s class Cm, and the target’s confidence Qm. Another critical setting in the training
process is the loss function, as shown in (2).

L1 = Lcoord + Lcon f i + Lclass (2)

The loss function consists of three parts: the coordinate prediction error Lcoord, the con-
fidence error Lcon f i, and the classification error Lclass. They are built for the location,
detection, and classification, respectively. Specifically, the Lcoord is defined as follows:

Lcoord = λcoord

S2

∑
g=0

A

∑
a=0

Iobj
ga [(xg − x̂g)

2 + (yg − ŷg)
2]

+λcoord

S2

∑
g=0

A

∑
a=0

Iobj
ga [(wg − ŵg)

2 + (hg − ĥg)
2],

(3)

where λcoord is the weight of the coordinate error, S2 is the number of grids in the input
image, and A is the number of bounding boxes generated by each grid. If the ath anchor
box of the gth grid is responsible for this target, the value of Iobj

ga is 1. Otherwise, the value

of Iobj
ga is 0. The hat above the parameters is used to distinguish the predicted bounding

box from the labeled box, including xg, yg, wg, and hg as the x-coordinate, y-coordinate,
width, and height, respectively. Obviously, the smaller the Errorcoord, the more accurate
the prediction.

In our implementation, four types of mobile ground targets, including tanks, radars,
supply vehicles, and tents, are selected and a total of 1250 images of them are collected in the
simulation system. Note that these images are of different damage levels. Besides, to speed
up the training process, the Darknet53 pre-training model is used in the initialization of
the YOLO v3 network. In the training process, the epoch of the training dataset is 100,
the batch size is 8, and the learning rate is 0.001.
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3.2. Target Damage Level Assessment Based on VGG-1

Based on the prior detection, classification, and localization information of targets
by YOLO v3, the image block Gbm of the mth detected target could be cropped from
the image G and then fed into the VGG-1 series networks to assess the target’s damage
level. Considering the huge differences among different types of ground targets, four
class-specific assessment models are designed for four types of targets. According to the
classification of image blocks Cm, the corresponding VGG-1 network is selected: VGG-1-1,
VGG-1-2, VGG-1-3, and VGG-1-4 for the tank, radar, supply vehicle, and tent, respectively.

Then, the damage level assessment problem can also be simplified as a classification
problem. There are many other classification networks with deeper layers, stronger feature
representation capabilities, and higher recognition accuracy than VGG, such as ResNet-18
and Inception v3. However, VGG is a classical serial CNN without a residual structure,
which means that the extracted feature map contains the target’s position information.
For example, the upper left corner of the feature map strictly corresponds to the upper
left corner of the original image. Therefore, by means of weight visualization, CAM can
visualize the regions in the feature map that the neural network pays attention to, meaning
that the results of VGG are highly interpretable.

For each types of ground targets, they can be divided into different damage levels.
In this work, four types of targets are labeled as four damage levels: normal, slightly damaged,
functionally damaged, and severely damaged, as shown in Figure 2. Normal is for the target
that has not been struck. Slightly damaged means that the functions of the target are not
affected. Functionally damaged targets lose one or more key components. Severely damaged
indicates that the target has been totally destroyed and lost all of its key components.

(a) (b) (c) (d)

Figure 2. Supply vehicles with different damage levels. From (a–d), the damage levels of supply
vehicles are normal, slightly damaged, functionally damaged, and severely damaged, respectively.

As a classification problem, the loss function only contains the classification error,
which is shown in (4).

L2 =
‖ϕl(y)− ϕl(y′)‖2

2
Cl HlWl

, (4)

where y is the image’s label, ŷ is the predication of the VGG-1 network, and ‖ϕl(y)− ϕl(y′)‖
is the error between the classification and the target label. ϕ indicates the loss network of
VGG, Cl indicates the number of layers of the network, and Cl HlWl indicates the feature
map size of layer l. VGG uses the perceptual loss function based on human eye perception,
which is different from the earlier L2 loss function based on image pixel space. The L2
loss function does not match the image quality and features perceived by the human eye,
while the space calculated by the perceptual loss function is converted from image space
to feature space. Such a loss function setting has the advantage of a more understandable
feature extraction, which can effectively extract the target’s advanced semantic features and
exclude irrelevant factors’ interference. The VGG-1 series networks can be described by:

φCm
2 (Gbm , θpre′) =


0, normal,
1, slightly damaged,
2, functionally damaged,
3, severely damaged.

(5)
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φCm
2 (·, θpre′) indicates the VGG-1 network of category Cm and θpre′ is its weights, Gbm is the

output of YOLO v3. The output contains four damage levels: normal, slightly damaged,
functionally damaged, and severely damaged.

To speed up the learning process and ensure the classification accuracy of the trained
model under limited samples, only the parameters of partial layers are updated in the
training process, which is usually called fine-tuning. As for the dataset, targets with four
different damage levels are collected from the simulation environment. The dataset contains
1000 images with 4 damage levels. For each type of target, 250 images are collected, of which
200 are used as training and validation samples, and 50 are used as test samples. In the
training process, the epoch of the training dataset is 20, the batch size is 32, the learning
rate is 0.001, and the output of the final fully connected layer is modified to 4.

4. Target Damaged Components Analysis Based on Convolutional Feature Clustering

After evaluating the damage level of the targets in the image blocks, the proposed
convolutional feature clustering will be activated to analyze the damaged components
for functionally damaged targets, which can cluster convolution kernels with large re-
sponse values at the target’s specific components. We can judge whether the component is
destroyed according to activation intensity of the clustered convolution kernels.

We divide the convolutional feature clustering into three steps. The first is to select
the convolutional layer, which contains the richest weight information of the targets’
components. We compared the weight visualization of three CAM methods using ablation
experiments and chose the best to visualize the weights of four targets layer by layer.
Finally, the 26th convolutional layer in Score-CAM is selected after comparison.

The second is the improvement of deconvolution for clustering the convolution ker-
nels of different types of targets. Deconvolution is used to analyze the feature extracted
by convolution kernels. We found that different targets of the same class tend to acti-
vate specific convolution kernels due to similar components and structures. Therefore,
by the guided backpropagation, we collected the (top 10 activation intensity kernels of the
layer) clustered convolution kernels of a certain number of radars, tents, supply vehicles,
and tanks. The result shows that different radar targets tend to activate the same part of the
convolution kernels because they contain the same characteristics (the radars all contain
antenna and bracket).

At last, we deepen the study from different targets to the targets’ different components
by guiding the backpropagation of convolution kernels. It is experimentally demonstrated
that for different components of the same target, partial convolution kernels exist, which
are focused on extracting features of the same component. Therefore, we proposed the
novel convolutional feature clustering method, which can cluster the convolution kernels
with large response values at the target’s specific components and determine whether that
component is destroyed by detecting the sum of the activation intensity of the clustered
convolution kernels. Furthermore, we evaluate eight damaged components of four types
of targets based on the convolutional feature clustering method and verify the effectiveness
of our method.

4.1. Feature Visualization Based on CAM

A total of 1200 images were collected for VGG-2 with four types of targets, of which
1000 were used as training sets and 200 as the test set. In addition, we do not need damaged
training data, all belong to “normal”. The training parameters and the loss function are the
same as those for the VGG-1 series.

Based on the gradient information, the CAM is backpropagated from the result to the
intermediate convolutional layer. Then, the weights of all feature maps in the layer are
summed and mapped onto the original image in the form of a heatmap, as shown in (6).

Lc
CAM =

n

∑
i=1

wc
i Ai, (6)
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where n is the number of feature maps, Ai is the ith feature map in the convolutional layer,
and wc

i is the weight of the ith feature map when the classification result is c. Global average
pooling (GAP) ensures that the number of feature maps matches the weight parameters.
From the optimization perspective, this equation can be converted into (7).

Lc
CAM = ReLU(∑

k
αc

k Ak
l−1), (7)

where αc
k = Wc

l,l+1|k|, and Wc
l,l+1|k| is the weight of the kth neuron of layer l after GAP.

The application of the ReLU activation function prevents the disappearance of the gradient,
but there is still a partial loss. The CAM image is generated by upsampling to scale up Lc

CAM
to the input image’s size and superimpose it on the original. Three activation mapping
visualization methods, Grad-CAM, Score-CAM, and Layer-CAM, were selected to analyze
the features extracted from the intermediate VGG convolutional layers. The ablation
experiment was performed to compare their feature visualization effect. The radar is taken
as an example, as shown in Figure 3.

10

Grad-CAM

Score-CAM

Layer-CAM

2617 21 24 28

Figure 3. The comparison of different CAM visualizations.

The low and middle convolutional layers in Grad-CAM have poor feature visual-
ization because of the loss of gradient information when backpropagating. Layer-CAM
significantly improves due to a smaller loss of gradient information when backpropagating.
Score-CAM gets rid of the dependence on the gradient and the final result is obtained from
a linear combination of weights and activation mapping, which best visualizes the features
extracted at the targets’ components.

It is concluded that Score-CAM has the best feature visualization of the target’s
components. We select the convolutional layer with the richest weight information based
on Score-CAM. Moreover, this characteristic corresponds to the VGG’s loss function based
on human eye perception. Since the low convolutional layers mainly extract simple and
intuitive features, while the middle and high layers are richer in semantic information,
the focus is on visualizing the middle and high layers. The feature of the target’s different
components can be separated during the processing, and we only visualize the weight
information using Score-CAM. As shown in Figure 4, different targets have different
weighting components, mainly distributed in tent structures, tank turrets and armor,
supply vehicle heads and trunks, and radar brackets and antennas.
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10

military tent

tank

supply vehicle

radar

17 21 24 26 28

Figure 4. Score-CAM feature visualization for different targets.

The advantage of feature visualization based on CAM is that the gradient information
relying on the convolution process is simple and intuitive, and the weights of the target’s
components are comprehensible. The disadvantage is that the presented heat map is the
accumulation of the weights of all convolution kernels in this layer. We cannot analyze the
convolution kernels with different degrees of activation separately.

4.2. Deconvolution Feature Visualization Analysis

Deconvolution is the reverse operation of convolution. The concept of deconvolution
was initially applied in signal processing techniques. Encouraged by its great progress in
signal processing, deconvolution has been widely used in various fields. The deconvolution
originates from Ref. [30], in which Zeiler et al. firstly visualized the features to enhance
the interpretability of convolution kernels. The “deconvolution” in our paper refers to
the deconvolution process. It refers to the backpropagation of the features extracted in an
intermediate convolutional layer to the original pixel space, which is beneficial for analyzing
features extracted by convolution kernels. As shown in Figure 5, no new parameters are
learned in the deconvolution process, which is unsupervised.

It is well known that neural networks consist of multiple layers, each containing
numerous neurons. For example, each CNN layer contains hundreds or thousands of
convolution kernels. Different convolution kernels are trained to extract different features
of a target. However, for different targets or different target’s components, only a small
number of convolution kernels will be activated in response. Deconvolution visualization
can establish the connection between the feature map of the intermediate layers and the
original image. Although the features extracted by the convolution kernels can be analyzed
visually and graphically, no one knows at which layer and by which convolution kernels
extract the needed features. Therefore, we propose a new convolutional feature clustering
method by combining the advantages of CAM and deconvolution. It first selects the
convolutional layer according to the CAM, which contains the richest feature information
of the target’s components, and then clusters the convolution kernels with large responses
to the target or the target’s specific components by deconvolution.
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Figure 5. Schematic diagram of the deconvolution.

Figure 3 reveals that the features extracted by the 26th layer of convolution have better
discrimination of the target’s components. Therefore, we analyzed 512 feature maps of
this layer (The size of each feature map is 14 × 14). Herein, we introduce the maximum
activation visualization method. It generally finds the maximum activation value in each
feature map, then compares the maximum activation values of all feature maps in this layer
and selects the largest one as the maximum activation unit. Finally, it sets all parameters in
this layer to zero except for the maximum activation unit and maps the maximum activation
unit to the original pixel space by deconvolution. The principle is shown in (8).

Deconv(
512

MAX
j=1

(
196

MAX
i=1

(xji))), (8)

where xji indicates the unit in the 26th convolution layer, j indicates the number of feature
maps, and i indicates the unit number in each feature map.

As shown in Figure 6, the target’s components corresponding to the maximum ac-
tivation unit are the tank turret and radar bracket. This method is useful for analyzing
the extracted features of the convolution kernels, but it is one-sided. Only comparing the
maximum activation values of the feature maps cannot represent the true activation area of
the 196 units of each feature map, since the activation values for areas without targets are
negative and cannot all be summed up. Considering the proportion of the actual target in
the image, we add a filter δ to remove the noise from irrelevant areas of the image and only
keep the areas with large response values. The sum of the first 36 activation units is taken
as the activation intensity of this feature map. Meanwhile, different convolution kernels
may extract features of the same target or the same target’s component. We convert (7) to
(9). The improved maximum activation visualization method is shown in (10). It realizes
the feature visualization extracted from any single convolution kernel by deconvolution.

Lc
CAM = ReLU(

512

∑
k=1

αc
k Ak

l−1) = ReLU(
512

∑
k=1

Wc
l,l+1|k|A

k
l−1) (9)

Deconv(δ(Wc
l,l+1|k|A

k
l−1)) (10)

where αc
k = Wc

l,l+1|k|, Wc
l,l+1|k| is the weight of the kth neuron of layer l after GAP. δ is the

filter, which retains the first 36 activation units in the feature map and sets the other to zero.
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Figure 6. Maximum activation unit deconvolution visualization.

For the radar target, we visualized the feature extracted by the top 10 (when comparing
the activation intensity of feature maps, only the sum of the top 36 units are compared)
convolution kernels in the 26th layer. Some of the visualized results are shown in Figure 7,
where the numbers are the convolution kernel serial numbers, and the central recognition
areas are framed by ellipses. Fifty different radar images were tested, and the frequency
distribution of the top 10 in 512 convolution kernels is shown in Figure 8. The test results
of the tank, tent, and supply vehicle are shown in Table 1.

31 125 115

374 148 Original

Figure 7. Deconvolution visualization of clustered convolution kernels for radar target.
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Figure 8. The frequency distribution of different radar targets. (a) The frequency distribution of 512
convolution kernels. (b) The frequency of clustered convolution kernels.

Table 1. Activation intensity ranking of feature maps for different types of targets.

Types Feature Maps of the Top 10 Activation Intensity (from Large to Small)

Radar 31, 115, 125, 22, 214, 148, 378, 374, 421, 268
Tent 374, 101, 23, 443, 470, 384, 448, 202, 414, 371
Tank 31, 22, 125, 115, 378, 421, 420, 148, 268, 174

Supply vehicle 31, 125, 115, 22, 378, 214, 421, 148, 174, 3

Table 1 and Figure 8 reveal that the same type of targets activates almost the same
convolution kernels in the high-layer convolution (26th layer) because they contain the same
characteristics(radar bracket and antenna). In addition, different types of targets activate
different convolution kernels. Therefore, we can conclude that different convolution kernels
are trained to extract different features. Several convolution kernels exist that mainly extract
features from the target’s specific components.

4.3. Convolutional Feature Clustering for Target-Damaged Components

We can cluster the convolution kernels sensitive to certain types of targets based on
deconvolution. However, the following question arises: what about the specific components
of the target? Our method is essentially a form of guided backpropagation, in which only
the weights of the target’s key components are backpropagated.

4.3.1. Guided Backpropagation for Target-Damaged Components

The radar image is divided into 14 × 14 grids corresponding to 14 × 14 units of the
feature map to generate a mask for the radar antenna, as shown in Figure 9. The units in the
mask are summed as the activation intensity of the radar antenna component. As shown
in (11), the activation intensity of the 512 masks in this layer are sorted to derive the clustered
convolution kernels for the radar antenna Ka = [443, 232, 12, 384, 341, 409, 300, 371, 293, 498].
The visualization results are shown in Figure 10. Twenty radar images were tested, and the fre-
quency distribution of the radar antenna and bracket is shown in Figure 11. The clustered con-
volution kernels, for the radar bracket, are Kb = [378, 31, 214, 115, 268, 22, 211, 299, 125, 148].
The test results are consistent with the data in Table 1.

Gd = (Vd,M) = Vd ∗M, (11)
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whereM indicates the mask of the radar antenna. Only the units in the mask area are 1,
and the rest are 0. Vd is the d-th feature map. Gd is the sum of the masked area units in the
d-th feature map. The deconvolution visualization of the target’s components is shown
in (12).

Deconv(δ(Wc
l,l+1|ki|Gki

)) (i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), (12)

where ki ∈ K, and K is the clustered convolution kernel vector.
We also test the degree of feature entanglement between a target’s different components

and find that this layer’s feature entanglement is relatively tight. The relevant components
can contribute to each other’s activation intensity in the feature extraction process.

Figure 9. Radar antenna mask.

443 232 12 384

341 409 300 Original

Figure 10. Visualization of the extracted features by the radar antenna clustered convolution kernels.
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Figure 11. Frequency distribution of the target’s different components. (a) Radar antenna. (b) Radar
bracket.

4.3.2. Analysis of Damaged Components Based on Convolutional Feature Clustering

We input image blocks of the radar into the VGG-2 network to analyze the damaged
components and take the radar bracket and the antenna as an example for testing, as shown
in Figure 12.

(a) (b) (c)

Figure 12. Sample of damaged components. (a) Damaged bracket. (b) Damaged antenna. (c) Intact.

The principle of convolution feature clustering is shown in (13). The changes in
activation intensity of the clustered convolution kernels for radar’s components are shown
in Figure 13.

φ3(Gbm , θpre′′) =
10

∑
p=1

εpq (13)

where φ3(·, θpre′′) indicates the VGG-2 network and θpre′′ is its weights. If the result of
φCm

2 (Gbm , θpre) is functionally damaged, the image block Gbm will be input to VGG-2 net-
work. ∑10

p=1 εpq is the sum activation intensity of the clustered convolution kernels. q
indicates the different components of the target.

As shown in Figure 13, the activation intensity of the clustered convolution kernels
decreases significantly after the strike. Therefore, we can set a threshold, and the sum of
the activation intensity of the clustered convolution kernels can be used as a condition to
determine whether the target’s components have been destroyed. The images of the target
before and after the strike are shown in Figure 14. The clustered convolution kernels for
the targets’ different components are shown in Table 2.
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Figure 13. Changes in the activation intensity of clustered convolution kernels before and after the
strike. (a) Radar bracket. (b) Radar antenna.

before strike

after strike

Figure 14. Image changes before and after the strike.

Table 2. Clustered convolution kernels for the targets’ different components.

Different Components Feature Maps of the Top 10 Activation Intensity (from Large to Small)

Tank (turret) 268, 31, 22, 474, 421, 342, 289, 353, 174, 115
Tank (tread) 115, 31, 268, 174, 22, 146, 214, 79, 421, 219

Radar (antenna) 443, 232, 12, 384, 341, 409, 300, 371, 293, 498
Radar (bracket) 378, 31, 214, 115, 268, 22, 211, 299, 125, 148
tent (structure) 101, 283, 350, 179, 343, 504, 443, 120, 202, 317
tent (texture) 443, 202, 101, 283, 379, 433, 135, 269, 350, 276

Supply vehicle (trunk) 491, 152, 219, 366, 227, 423, 268, 450, 180, 31
Supply vehicle (head) 423, 296, 219, 31, 22, 447, 115, 210, 416, 366

We take the tank turret, the tent structure, and the supply vehicle trunk, as examples.
The changes in the activation intensity of the clustered convolution kernels before and after
the strike are shown in Figure 15.



Appl. Sci. 2022, 12, 9484 17 of 22

tent structure tank turret supply vehicle trunk
Feature regions

0

500

1000

1500

2000

2500

Su
m

 o
f a

ct
iv

at
io

n 
in

te
ns

ity

Before strike
After strike

Figure 15. The changes in the activation intensity of the clustered convolution kernels.

5. Experimental Validation and Results

The difficulty of obtaining images of mobile ground targets from high altitudes is well
known, and there are few existing datasets for the damage assessment of mobile ground
targets. Therefore, we conducted experiments based on a simulation environment.

To simplify our model while making it more applicable to the real world, we added
object shadows as well as the strike effects of sparks, craters, and thick smoke on the
targets. Furthermore, we introduced environmental noise, interference from ground build-
ings, and dynamic lighting changes and divided the simulation scenario into two parts:
before and after the strike.

5.1. Traditional Damage Assessment Method Based on Image Change Detection

The simulation platform is divided into the server and the client. The server sends
the RGB images collected by the missile swarm to the client through the UDP protocol.
The flight trajectory of the missile swarm is randomly initialized. Due to the missile swarm
mission requirements, we assume that the nodes in the swarm can send image information
of the ground targets to each other in real-time and detect the changes before and after
the strike.

As we know, image-change-detection-based methods are greatly affected by the sur-
rounding environment. The results of the PCA-k-means are shown in Figure 16, and the
states below are the evaluation results. Due to the uncertainty of the image change factors,
the smoke and sparks around the target negatively impact the evaluation. In addition,
the degree of an image change in the target area is not necessarily related to the tar-
get’s damage level, which increases the difficulty of damage assessment based on image
change detection.
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Figure 16. The result of PCA-k-means assessment.

5.2. Analysis of Experimental Results

As for YOLO-VGGNet, the YOLO v3 detects, classifies, and localizes the targets in the
images. To meet the requirements of real-time detection and timely damage assessment,
the recognized image blocks containing the target are stored in a memory buffer. At the
same time, another process is activated to input the image blocks into the VGG-1 series
networks for damage level assessment. If the assessment result is functionally damaged,
the image blocks will be further input into the VGG-2 network for damaged components
analysis to maximize the use of computing resources. The time consumption for each
stage of the YOLO-VGGNet damage assessment is shown in Table 3. The client received
15 frames per second through the UDP protocol in the actual test. Our hardware configura-
tion is a Lenovo y7000p rescuer laptop, RTX2060 GPU, and 32GB memory. The maximum
processing speed is 21 frames per second. The corresponding convolutional feature clus-
tering thresholds are set for the target’s different components. Then, the missile swarm
detects the ground target in real-time according to the predetermined trajectory, assesses
the damage level, and analyzes the damaged components in a timely manner.

Table 3. Time consumption for each stage of YOLO-VGGNet damage assessment.

YOLO Recognition
/Each Frame

Damage Level Assessment
/Each Image Block

Damaged Components Analysis
/Each Image Block

Time/s 0.03124 0.1985 0.5136

In addition to PCA-k-means, we also compared our method with Mask-RCNN-based
and Bayesian-Network-based methods on the basis of YOLO’s prior information. The com-
parison of damage level assessment results is shown in Table 4. The number of targets
for each damage level is 250 and the columns show the proportions of correct valua-
tions. The recognition rate of YOLO-VGGNet, PCA-k-means, Mask RCNN, and Bayesian
Network are 83.1%, 66.6%, 74.3%, and 67.1%.

The experimental results show that the two-stage learning-based method YOLO-
VGGNet achieves higher accuracy than traditional image-change-detection-based and
single-stage learning-based methods. Although traditional methods evaluate faster and
have a strong generalization ability to scenarios, they mainly focus on the physical and
pixel spaces. The presence of thick smoke, sparks, and craters around the target can
significantly impact the evaluation results. Moreover, the changes in the surrounding
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environment are not strictly related to the damage level and may come from previous
strikes. In addition, it is concluded that single-stage damage level assessment suffers more
from the influence of different inter- and intraclass features. Though the two-CNN learning-
based method can extract deep semantic information, different destructive targets may
exhibit the same damage characteristics due to the targets’ different structural, functional,
and anti-destruction characteristics. For example, sparks are fatal to tents but have little
effect on tanks. Therefore, training a specific damage assessment model for each type
of target is necessary. By specific-type evaluation models, Our two-stage learning-based
method not only has the advantage of extracting deep semantic information but also avoids
the influence of different inter- and intraclass features. Furthermore, existing methods can
only get a rough functional damage assessment according to the damage level. Our method
has a clear advantage over existing methods by focusing on the activation intensity of the
clustered convolution kernels to determine whether the target’s components are damaged
or not, as shown in Table 5.

Table 4. The results of the damage level assessment.

Damage Level YOLO-VGGNet PCA-k-Means Mask-RCNN Bayesian Network

Normal 78.0% 70.4% 82.0% 73.6%
Slightly damaged 81.6% 49.6% 63.2 % 48.4%

Functionally damaged 80.0% 56.8% 68.0% 58.8%
Severely damaged 93.2% 89.6% 84.0% 87.6%

Table 5. The functions of different damage assessment methods.

Method Damage Area
Detection

Damage Level
Assessment

Damaged Components
Analysis

PCA-k-means X X #

Bayesian Networks X X #
YOLO-VGGNet X X X

Mask-RCNN X X #

After the damage level assessment, the functionally damaged targets will be analyzed
using convolutional feature clustering. The tank tread and turret, the tent structure and
texture, the supply vehicle head and trunk, and the radar antenna and bracket were used
as examples for testing. During the continuous multiframe detection, as long as one frame
of the target’s component is evaluated as normal, that component is judged as normal.
The results of the simulation experiments are shown in Table 6. The columns show the
proportions of correct valuations.

Table 6. The results of the assessment of damaged components based on convolutional feature clustering.

Different Targets’ Components Correct

Radar antenna 75.0%
Radar bracket 84.0%

Tank turret 71.4%
Tank tread 64.7%

Tent structure 78.8%
Tent texture 54.2%

Supply vehicle head 60.0%
Supply vehicle trunk 84.0%

Combining the test results of eight evaluated components, the accuracy of damaged
components assessment based on convolutional feature clustering is 72%. Corresponding
to the feature visualization in Figure 4, the accuracy of components with high weights
in the Score-CAM heatmap is higher. These include radar antennas, radar brackets, tank
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turrets, tent structures, and supply vehicle trunks. In comparison, the accuracy of tank
treads and tent texture is lower because these components with lower weight do not have
much influence on the final decision during VGG feature extraction.

Although we added various types of interference to the simulation environment,
the synthetic images nevertheless differ from authentic images. Therefore, we additionally
collected authentic images from the Internet to preliminarily verify the effectiveness of our
feature extraction method. Further research with authentic images will be conducted in
the future.

6. Conclusions

This paper proposes a damage assessment method based on YOLO-VGGNet for mo-
bile ground targets. Unlike traditional image change detection methods, which require
images before and after the strike for comparison, the proposed method learns the target
model through extensive training and can assess the target’s damage status based on only
online perception. Specifically, with YOLOv3 as the pre-processor, the proposed method
can detect, classify, and localize ground targets accurately and quickly. Then, the image
blocks of detected targets are fed into the lightweight VGG networks, which can evaluate
their damage level. Meanwhile, based on CAM and deconvolution, we further analyze the
activation intensity of clustered convolution kernels. On the one hand, it is helpful to deter-
mine whether the targets’ key components are destroyed. On the other hand, it provides
a more interpretable perspective for learning-based methods. Finally, Unity simulation
experiments prove the proposed method’s effectiveness, which improves the accuracy of
damage level assessment by 16.0% and 8.8% compared with traditional image-change-
detection-based methods and the two-CNN learning-based method. The convolutional
feature clustering method evaluates the status of the targets’ key components with an
accuracy of 72%.

This work also has some limitations. Firstly, the recognition and localization errors
of the targets may increase with the decrease in the angle of view. Further research on
multiangle fusion of convolutional feature clustering may be a significant research interest.
Secondly, although the proposed method can be utilized to assess the damage to any
target’s component, this work focuses mainly on the key components of targets, and the
assessment accuracy of components with low weights is lower than those with high weights.
In subsequent work, we will attempt to extract more detailed information on the damaged
target components and explore information fusion from multiple perspectives to make our
method more robust for ground interference.
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