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Abstract: Compared with traditional liquid crystal and organic light emitting diode (OLED), micro
light emitting diode (µLED) has advantages in brightness, power consumption, and response speed.
It has important applications in microelectronics, micro-electro-mechanical systems, biomedicine,
and sensor systems. µLED massive transfer method plays an important role in these applications.
However, the existing µLED massive transfer method is faced with the problem of low yield. To
better transfer the µLED, the force value detached from the substrate needs to be measured. Atomic
force microscope (AFM) was used to measure the force of a single µLED when it detached from the
substrate. The µLED was glued to the front of the cantilever. When a single µLED was in contact with
or detached from the Polydimethylsiloxane (PDMS), the maximum pull-off force can be obtained.
The force at different peel speeds and preload was measured, and the experimental results show
that the separation force between a single µLED and PDMS substrate is not only related to the peel
speeds, but also related to the preload. The force values under different peel speeds and preload
were measured to lay a theoretical foundation for better design of µLED massive transfer system.

Keywords: AFM; µLED; mass transfer; adhesive force measurement

1. Introduction

The main advantage of micro light emitting diode (µLED) is that each LED can be
controlled and driven independently, leading to excellent power consumption, bright-
ness, resolution, contrast, heat dissipation, and other characteristics [1–3], and µLED has
important applications in microelectronics [4], biomedicine [5], and sensor systems [6].

µLED needs to be transferred to the circuit substrate in practical application. Currently,
the most popular transfer method is the stamp method, which adjusts the adhesion force by
adjusting the peeling parameters of Polydimethylsiloxane (PDMS) to complete the µLED
pickup and release. The design of stamp is one of the key technologies of µLED transfer
printing [7–9]. A comprehensive understanding of the adhesion between µLED and PDMS
is needed to achieve more efficient and high-yield transfer. Therefore, it is very important
to measure the adhesion between the µLED and the substrate under different peel speeds
and preload.

Recently, many scholars have studied the adhesion between µLED and substrate. Tian
Yu et al. found that the peel angle can regulate the adhesion and friction through a theoreti-
cal model, which is the mechanism of gecko’s strong adhesion and fast separation [10]. Xu
Quan, Rogers et al. found that peel speed is an important factor affecting adhesion [11].
Rogers optimized the ground geometry of PDMS by using a sharp substrate, and the
strength of adhesion can be switched from strong to weak in a reversible manner by more
than three orders of magnitude [9].
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Chang Dong Yeo developed an instrument based on capacitive force sensor to measure
the dynamic adhesion between rough surfaces [12]. Min sock Kim proposed a new instru-
ment to measure the dynamic adhesion of the interaction surface on the flexible substrate,
and proposed an optimal adhesion control strategy based on the analysis of adhesion [13].
In 2017, Lindsay Vasilak used strain gauge load cell to measure the normal adhesive force
of OLED [14]. Chang-Dong Yeo used a high-resolution, high-dynamic bandwidth capaci-
tive force transducer and two piezoelectric actuators to measure adhesive pull-off forces
between nominally flat rough silicon surfaces under various dynamic conditions [15]. Jaeho
Lee used Atomic Force Microscope (AFM) to measure the adhesion between the colloidal
probe and silicon wafer. Two spherical colloids made of silicon dioxide and gold that
were attached to an AFM cantilever were approached to and retracted from a silicon wafer
specimen [16].

However, at present, none has been found in the literature regarding adhesion test
between a single µLED and the substrate and most of the experiments demonstrate the
adhesion between a large area of PDMS and µLED array, since it is hard to attach a single
µLED to the force sensor. In this paper, based on AFM, the adhesion between a single µLED
and the substrate was measured using cantilever, and the relationship between peel speeds,
preloads, and adhesion was evaluated [17,18]. In Section 2, the theoretical relationship
between pull-off forces to peel speeds and preload will be deduced. In Section 3, the
theoretical results will be verified experimentally.

2. The Theoretical Relationship between Pull-Off Forces to Peel Speed and Preload
2.1. The Image of µLED

The size of µLED is generally smaller than 100 µm [19,20], as shown in Figure 1. A
scanning electron microscope (SEM) image of µLED is shown in Figure 1A. The surface of
the µLED array obtained by optical microscope is shown in Figure 1B.
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Figure 1. Image of µLED. (A) Scanning electron microscope (SEM) image of µLED. (B) The surface of
the µLED array obtained by optical microscope.

2.2. The Theoretical Relationship between Pull-Off Forces and Peel Velocity

The relationship between peel speed and pull-off force has also been extensively
studied [21], which can be expressed as:

Gc(v) = G0[1 + (
v
v0

)
k
] (1)

where G0 is the critical energy release rate and corresponding detaching speed v0 ap-
proaches zero, v is the peel speed, and the exponent k is a parameter that can be determined
from experiments. The power–law relationship (Equation (1)) has been found applicable to
low or high peel speed obtained from metal/polymer and polymer/polymer interfaces at
various temperatures.
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2.3. The Theoretical Relationship between Pull-Off Forces and Preload

According to the Hertzian contact theory, the actual contact occurs only on a small part
of the apparent area due to the surface roughness when two solid surfaces are in contact.
The size and distribution of the zone of contact exert a decisive influence on friction and
wear. The shape of the rough peaks on the actual contact surface is usually elliptical. Since
the size of the contact area of the ellipsoid is much smaller than its radius of curvature, the
rough peak can be approximately regarded as a sphere. The contact of two flat surfaces
can be regarded as a series of uneven spheres. The contact between two elastomer can be
converted into the contact between an elastic sphere with equivalent radius of curvature R
and equivalent modulus of elasticity E and a rigid smooth surface.

When µLED contacts with PDMS, the Young’s modulus of PDMS is much lower than
that of µLED, so it can be considered as elastic contact. When the two rough peaks contact
each other, the normal deformation δ is produced under the action of load W, which makes
the shape of the elastic sphere change from dotted line to solid line. The actual contact area
is a circle of radius a, as shown in Figure 2. The relationship between load and contact area
is given by Equation (2) [22]. 

δ = ( 9W2

16E∗2R
)

1/3

a = ( 3WR
4E∗ )

1/3

W = 4
3 E∗R1/2δ3/2

(2)
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Figure 2. Diagram of single peak elastic contact.

The ideal rough surface is composed of many orderly rough peaks with the same
curvature radius and height, and the load and deformation of each peak are exactly the
same and independent from each other. However, the rough peak height of the actual
contact surface is randomly distributed in general, so the contact peak should be calculated
according to the probability. The contact condition of two rough surfaces is shown in
Figure 3.

Their contact can be converted into the situation where one smooth rigid surface
touches another rough elastic surface. Since the surface of µLED is very smooth, while the
surface of PDMS is quite the opposite, this assumption is consistent with reality.

When the distance between the center lines is h, only the part of the contour height
z > h contacts with. In the probability density distribution curve, the shading area of the
z > h part is the surface contact probability, that is [23]

P(z > h) =
∫ ∞

h
ψ(z)dz (3)



Appl. Sci. 2022, 12, 9480 4 of 8Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 8 
 

 

Figure 3. Contact of rough surfaces. The root mean square values of the roughness of the two sur-

faces are respectively σ1 and σ2, h is the distance between the center lines, z is the part of the contour 

height z > h contacts with, and Ψ(z) is the probability of the surface contact. 

Their contact can be converted into the situation where one smooth rigid surface 

touches another rough elastic surface. Since the surface of μLED is very smooth, while the 

surface of PDMS is quite the opposite, this assumption is consistent with reality. 

When the distance between the center lines is h, only the part of the contour height z 

> h contacts with. In the probability density distribution curve, the shading area of the z > 

h part is the surface contact probability, that is [23] 




=
h

zzhzP d)()(   (3) 

If the number of peaks on the rough surface is n, the number of peaks participating 

in the contact, m, is given by [23]: 




=
h

zznm d)(  (4) 

The normal phase deformation of each contact peak is z-h. From Equation (2), the 

actual contact area A is given by [23]: 




−=−=
h

zzhzRnhzRmA d)()()(   (5) 

The total load W is supported by the contact peak as [23]: 




−=−=
h

zzhzRnEhzRmEW d)()(
3

4
)(

3

4 2/32/1*2/32/1*   (6) 

Usually, the contour height of the actual surface follows a Gaussian distribution [24], 

in which most of region near the z-score approximates an exponential distribution. Sup-

pose that )/exp()(  zz −= , we get: 

)/exp(  hnm −=  (7) 

)/exp(2  hnRA −=  (8) 

)/exp(
4

3 2/32/1*  hRnEW −=  (9) 

From the above equations, it can be derived that W is proportional to A and W is 

proportional to m. Thus, the actual contact area and the number of contact peaks have a 

linear relationship with the load in the elastic contact state of the two rough surfaces. Sep-

arating μLEDs from PDMSs creates two new interfaces, and the force value Fcr required 

for this process is obtained as [10]: 

AFcr =  (10) 

where 𝛾 is the viscosity coefficient of the two surfaces. From Equations (8)–(10), it can be 

concluded that the adhesive force increases with the increase of preload. 

Figure 3. Contact of rough surfaces. The root mean square values of the roughness of the two surfaces
are respectively σ1 and σ2, h is the distance between the center lines, z is the part of the contour height
z > h contacts with, and Ψ(z) is the probability of the surface contact.

If the number of peaks on the rough surface is n, the number of peaks participating in
the contact, m, is given by [23]:

m = n
∫ ∞

h
ψ(z)dz (4)

The normal phase deformation of each contact peak is z-h. From Equation (2), the
actual contact area A is given by [23]:

A = mπR(z − h) = nπR
∫ ∞

h
(z − h)ψ(z)dz (5)

The total load W is supported by the contact peak as [23]:

W =
4
3

mE∗R1/2(z − h)3/2 =
4
3

nE∗R1/2
∫ ∞

h
(z − h)3/2ψ(z)dz (6)

Usually, the contour height of the actual surface follows a Gaussian distribution [24],
in which most of region near the z-score approximates an exponential distribution. Suppose
that ψ(z) = exp(−z/σ), we get:

m = nσ exp(−h/σ) (7)

A = πnRσ2 exp(−h/σ) (8)

W =
3
4

nE∗R1/2σ3/2 exp(−h/σ) (9)

From the above equations, it can be derived that W is proportional to A and W is
proportional to m. Thus, the actual contact area and the number of contact peaks have
a linear relationship with the load in the elastic contact state of the two rough surfaces.
Separating µLEDs from PDMSs creates two new interfaces, and the force value Fcr required
for this process is obtained as [10]:

Fcr = Aγ (10)

where γ is the viscosity coefficient of the two surfaces. From Equations (8)–(10), it can be
concluded that the adhesive force increases with the increase of preload.

3. The Experimental Results and Discussion
3.1. Experimental Steps

To measure the adhesion between a single µLED and the substrate, a cantilever
measurement scheme is adopted, and the specific steps are shown in Figure 4A–C.
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(A–C) Measurement steps. (A) The initial state. (B) The loading status. (C) The reverse motion.
(D) Typical single measurement results.

Step 1: Apply glue to the tip of the tipless cantilever with a stiffness of 5.1 N/m.
Step 2: Move the cantilever above a µLED.
Step 3: Lower the cantilever to contact the µLED and wait for the glue (UV photoresist)

to solidify.
Step 4: Raise the cantilever to make the µLED separate from the base.
Step 5: Move µLED above the PDMS substrate.
Step 6: Measure the relevant force value at different peel speeds and preload.
A typical adhesion–depth curve on a single µLED with a flexible PDMS substrate

(1:10 mixing ratio) measured by AFM is shown in Figure 4D. The tip of the cantilever
is controlled at a speed of 10 µm/s. The x-axis is the displacement of the µLED. The
measurement process is divided into two segments according to the direction of cantilever
movement: approach (red line in Figure 4D) and retract (blue line in Figure 4D). The y-axis
is force between the µLED and PDMS.

The AFM has been well calibrated using thermal method. The relationship between
the force acted on cantilever and PSD output has been obtained before measuring the
adhesion force.

The µLED on the cantilever was moved above a substrate PDMS, as shown in
Figure 4A. Figure 4B is in a loading status. The µLED is pressed on the PDMS and
continuously moved through the precision stage. The laser spot moves as the cantilever
bends. The cantilever will not stop until the pressure equals the set preload, as shown in
section BC in Figure 4D. Figure 4C is in reverse motion. With the reverse movement, the
pressure of µLED on the PDMS substrate becomes smaller and smaller until the pressure
reaches 0, as shown in the CD section.

Dynamic jumping behavior during approach (such as the BC segment) and measured
jumping behavior during return (CF) were measured.
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As can be seen from Figure 4D, the measurement process can be divided into four
stages according to the contact status: (I) pressure down to contact with PDMS, (II) pressure
to the maximum to reach preload, (III) reverse movement, and (IV) separation from PDMS.

I—Initial state: the cantilever is moved by a precision stage and is not in contact with
the PDMS, as shown in Section AB.

II—Loading status: µLED contact PDMS. The µLED is pressed on the PDMS and
continuously moved through the precision stage. The laser spot moves as the cantilever
bends. The cantilever will not stop until the pressure equals the set preload, as shown in
section BC.

III—Reverse motion: With the reverse movement, the pressure of µLED on the PDMS
substrate becomes smaller and smaller until the pressure reaches 0, as shown in the CD
section. As the reverse motion continues, the PDMS deforms due to the tension between
the µLED and PDMS. At this point, the elastic force of the cantilever acting on µLED is less
than the critical adhesion force of PDMS, as shown in section DE.

IV—Exit stage: The elastic force of the cantilever on µLED is greater than the critical
adhesion force. A sudden jump in the position sensitive device (PSD) voltage output can
be observed, as shown in the EF section.

The maximum pull-off force can be defined as the minimum force of the force-depth
curve, as shown in Figure 4D.

3.2. Measurement of Adhesion under Different Detaching Velocities and Preload

As shown in Figure 5, the maximum pull-off force was measured at different peel
velocities (detaching velocity) varying from 10 µm/s to 300 µm/s, in which high peel speed
(300 µm/s) resulted in strong adhesion, while low peel speed (10 µm/s) resulted in weak
adhesion. Obviously, there is a strong correlation (proportional relationship) between the
maximum pull-off force and the peel velocity.
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Figure 5. The measured maximum pull-off forces with respect to peel velocity.

We measured the maximum adhesion force at different preload from 0.5 to 3 µN (the
peel speed was fixed at 10 µm/s). The proportional relationship between the maximum
pull-off force and the preload is shown in Figure 6.

The experimental results show that the preload has a great influence on the adhesion,
which is different from the previous research: “Unlike the effects of material property of
PDMS, the maximum pull-off force has similar value regardless of the initial indentation
force between the tip and the flexible substrate”. Our theoretical result is consistent with
our experimental result but different from the literature.

It Is hard to compare the experimental results to results from Equations (8)–(10). The
equations show a positive proportion relationship between contact area and the maximum
pull-off force. However, the real contact area between the µLED and PDMS or other
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substrates could not be measured. Therefore, it is impossible to directly compare the
quantity of theoretical value and experimental value absolutely, but only relatively.
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Figure 6. Results for the maximum pull-off force at different preload.

4. Conclusions

In this paper, the adhesion force between the µLED and substrate at different peel
speeds and preload was measured by AFM. The experimental results show that the sep-
aration force between a single µLED and PDMS substrate is not only related to the peel
speed, but also related to the preload. Although it is hard to directly compare the abso-
lute quantity of theoretical value and experimental value, the results find a new way to
design an apparatus for µLED transfer printing. Future research is required to reversibly
change adhesion strength between strong and weak modes by more than two orders of
magnitude so that the system can be applied in transfer printing. We will focus on the
design of a novel substrate to achieve this target. This system would have broader impacts
in transfer printing.
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