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Abstract: The increase in cancer cases is undoubtedly affecting the development of new therapeutic
approaches. Polymeric nanoparticles are of great interest. Due to their relatively small size, the
possibility of incorporating into them medicinal substances and the ease with which their physico-
chemical properties may be manipulated, they are being used as anticancer drug delivery systems.
The aim of this review is to focus on the use of nanoscale polymeric particles in the treatment of
colorectal cancer, breast cancer, ovarian cancer and glioblastoma multiforme, and to consider their
potential use in cancer gene therapy. According to several reports, the use of polymer nanoparticles
as drug carriers is promising in solid tumors. With their application, it is possible to precisely deliver
medicinal substances to the tumor structure, to overcome the blood–brain barrier in the case of brain
tumors, to reduce the side effects of anticancer agents on normal cells and to achieve a therapeutic
effect with a lower drug dose. Additionally, a number of reports indicate that they can also be used
in combination with other methods of cancer treatment, mainly radiotherapy.

Keywords: nanoparticles; nanospheres; nanoformulation; polymer; drug delivery system; breast
cancer; colorectal cancer; ovarian cancer; glioblastoma multiforme; double emulsion

1. Introduction

Cancer is undoubtedly one of the most common causes of death among people world-
wide [1]. Environmental factors, inappropriate lifestyles (i.e., lack of physical activity, inad-
equate diet) and genetic predisposition increase the possibility of neoplastic transformation,
whereby cells acquire unique characteristics that promote its further development [2,3].
The ability to proliferate unlimitedly, evade the immune response and create new blood
vessels to facilitate metastasis are just some of the many characteristics of cancer cells [2,4].

At present, the treatment process is mainly based on debilitating and burdensome
chemotherapy, which is also not inert to normal cells and is often insufficient due to
emerging cell resistance to the chemotherapeutic agent in question [3]. For this reason,
combined methods are used in practice, involving the surgical removal of the tumor
combination with pharmacotherapy or radiotherapy [3,5]. Such methods, although they
have their advantages, also have limitations, which include the adverse destruction of
normal cells, the short half-life of chemotherapeutic agents in the circulation or the difficult
access to the medicinal substance in certain tumor types, e.g., glioblastoma multiforme [2,5].

Polymeric nanoparticles (PNPs) are increasingly being used as a drug delivery system
(DDS) to solve some of the problems resulting from, among other things, difficulties in
delivering the drug related to the location of tumor cells, as well as to reduce the risk of
effects on neighboring unchanged cells [6].

Polymeric nanoparticles have small sizes, mainly ranging from 1 nm to 1000 nm [7].
Depending on the method of their formulation, they can take two different structural
forms—nanocapsules and nanospheres. In the first case, the medicinal substance is en-
trapped in a core and surrounded by a polymer layer, but it can also be the core itself.
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Nanospheres, however, take the form of a cross-linked polymer inside which the drug
is loaded (Figure 1). The medicinal substance in either case can also be absorbed on the
surface of the nanoparticle [7,8].

Figure 1. Types of structural forms of polymeric nanoparticles.

Biodegradable and biocompatible polymers are mainly used to produce PNPs. These
include synthetic polymers, i.e., poly(lactide) (PLA) or poly(ε-caprolactone) (ε-PCL), as well
as co-polymers such as poly(lactide-co-glycolide) (PLGA), which are currently approved by
the Food and Drug Administration (FDA) [6–9]. Polymeric drug delivery systems also use
biopolymers, mainly chitosan or collagen, due to their nonimmunogenic properties. This
way, once the drug is released, the matrix is hydrolyzed into harmless products.

Another major advantage of PNPs is that it is possible to manipulate the properties
of a given polymeric nanoparticle by appropriate modification of the polymer, as a result
of which it is possible to control the release of the drug from the nanoparticle at a pre-
cise location in the body and also to make the carried water-soluble drug [7,9]. A short
half-life, on the other hand, can be compensated for by encapsulating the drug into the
nanoparticle [7,9].

Anticancer therapy using polymeric nanoparticles is increasingly being used in re-
search, due to the fact that it is possible to target the therapeutic effect only on cancer cells.
The small size undoubtedly mainly plays a role in cancer therapy, where access to the
medicinal substance is limited. An example is brain diseases, where the main obstacle is
the blood–brain barrier (BBB), which can be abolished in most cases, due to the ability of
drug-loaded PNPs to interact on a ligand–receptor basis [5]. Polymeric nanoparticles are
also being used in the treatment of colorectal cancer and women’s cancers, and there have
been in vitro attempts to use them as carriers for genome-editing tools. Therefore, the aim
of this review is to present the latest information on the use of polymeric nanoparticles as a
drug delivery system in selected cancer therapies and gene therapy.

2. Polymeric Nanoparticles—From Shape to Application

In the controlled delivery of a drug for cancer therapy, the properties of a specific
polymeric nanoparticle are crucial. Its size, shape, molar mass, polymer molar ratio or zeta
potential and stability in a biological system are highly dependent on the method used to
produce PNPs [6,7,10–12].
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The size of the nanoparticle should be suitable for the site of application so that it may
act efficiently and penetrate biological barriers, but on the other hand, nanoparticles that are
too small may be neutralized by the phagocytic system [7,13]. The most effective diameter
for a polymeric nanoparticle is assumed to be around 100 nm for delivery to vascularized
tumors, due to the ability of nanoparticles this size to pass through fenestrations in the
endothelium of a blood vessel [6]. However, in the case of cancerous tumors in the brain’s
periphery, smaller diameters of polymeric nanoparticles of around 70 nm seem to be more
effective, as confirmed by a study conducted by Gao et al. [14] in an animal model [14]. The
shape of the PNPs is mainly responsible for their function and pharmacology; therefore,
it is highly desirable to obtain PNPs with a spherical structure due to the fact of better
uptake of a particular nanoparticle by the target cells [7,13]. In order to prolong the
residence time of PNPs in the circulation and to prevent undesirable interaction with
plasma proteins, polyethylene glycol (PEG) coating is used. Such modification is directly
related to the increase in the half-life in the bloodstream and the improvement of the
stability of the nanoparticles [7]. In addition to prolonging the residence time of the
particles in the body, PEG coating also increases the hydrophilicity of the particles, and is
used to encapsulate hydrophobic and hydrophilic drugs to achieve controlled release of
the medicinal substance [7,13].

The most common polymers that are PEGylated are poly(D,L-lacide-co-glicolide)
(D,L-PLGA) and PLA nanoparticles, which gives them the properties described earlier.
Interestingly, studies report that the coating also reduces the effects of toxicity to normal
cells [7,13]. In order to enhance selectivity, polymeric nanoparticles are functionalized with,
e.g., folic acid, or conjugated with antibodies directed against surface receptors of cancer
cells overexpressing a particular receptor [7].

Standard methods for obtaining nanoparticles can be divided into two different groups:
top-down and bottom-up techniques (Figure 2).

Figure 2. Methods of formulation nanoparticles.

Bottom-up techniques form nanoparticles from single monomers through polymers.
This method includes emulsion polymerization and recombination technology, which is
mainly used to produce PNPs for gene therapy (Table 1) [6,10–12].

The top-down technique can be distinguished by the formulation of nanoscale particles
by: nanoprecipitation, solvent evaporation, salting out, dialysis or supercritical fluid
technology (Table 2). The main idea of this method is based on reducing the dimensions of
the starting material to a scale corresponding to nanostructures.
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Table 1. Bottom-up techniques for formulation of polymeric nanoparticles.

Methods of
Formulation Description Advantages Disadvantages Example Cancer Ref.

Emulsion
polymerization

Two subgroups may be
distinguished: using a

continuous organic phase
and using an aqueous phase.
Dispersion of the monomer
into an emulsion occurs, or
the monomer is dissolved in
an aqueous solution without

surfactants, respectively

PNPs with a high
molar mass
Often used

Does not require
surfactants when

using a
continuous

aqueous phase

For the
continuous

organic phase, it
requires the use

of surfactants and
toxic solvents

High cost
Time-consuming

Cur-loaded
PMMA NPs

Human lung
cancer lines [7,10,11,15,16]

Recombinant
technology

The latest techniques, based
on the use of living

organisms, e.g., Escherichia
coli, to produce a specific

biopolymer by altering the
expression of genes, result

in various amino acid
compositions and
particle properties

Efficient method
Formulates
small sizes

For gene delivery

Necessary use of
living organisms

Method under
development

K8-ELP
/pDNA

Human
breast cancer

lines
[11,17]

PNPs—polymeric nanoparticles; Cur—curcuminoid; PMMA—poly (methyl methacrylate); NPs—nanoparticles;
K8—oligolisyne; ELP—elastine-like polypeptide; pDNA—plasmid DNA.

3. Nanoparticles in Cancer Therapy—Passive and Active Mechanisms

In the treatment of cancer, the main problem is that a medicinal substance does not
target only cancer cells. Current therapy has a dualistic effect on the patient’s body. On the
one hand, it attacks cancer cells, causing inhibition of tumor growth or development, while
on the other hand, it also destroys healthy cells [18]. In addition, the use of chemotherapy
often does not completely eliminate tumor cells and contributes to their recurrence [18].
A significant advantage of polymeric nanoparticles is the possibility of freely modifying
nanoparticles at the stage of their manufacture, as a result of which it is possible to obtain
biodegradable PNPs formulated from D,L-PLGA or PLAs characterized by different sizes,
rates of degradation and thus rates of release of the medicinal substance [19,20]. By increas-
ing the size of the nanoparticle, the half-life of the drug at the target site, resulting from
impaired elimination by the kidneys, can be prolonged [21]. In addition, by manipulating
the surface area, the entire mechanism of action of a specific nanoparticle can undoubtedly
also be altered [6]. For cancer, PNPs are used, which usually have a targeted mechanism of
action [6,22]. Depending on the ability of nanoparticles to penetrate blood vessels, as well
as the presence of a specific ligand on their surface, an active mechanism and a passive
mechanism can be distinguished (Figure 3) [6,21–23].
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Table 2. Top-down techniques for formulation of polymeric nanoparticles.

Methods of
Formulation Description Advantages Disadvantages Example Cancer Ref.

Nanoprecipitation

Use of two mixing
solutions, which results
in the displacement of

solvent and precipitation
of nanoparticles

Single step
Formulation of

nanospheres and
nanocapsules

(~200 nm)

Only hydrophobic
drugs can be
encapsulated

Solvent residues

BLC-PTX-
loaded

D,L-PLGA
NPs

Human
lung

cancer
lines

[7,24–27]

Solvent
evaporation

PNPs are obtained by
evaporation of the

solvent from the polymer
followed by diffusion

through the continuous
phase. Single or double

emulsion can be
carried out

Formulates
nanospheres

Simplicity

Requires
homogenizer and

heating
Residual solvent may

remain
For lipid-

dissolved drugs

DTX-loaded
FA/D,L-PLGA

NPs

Breast
cancer
lines

[3,7,11,24–26]

Salting out

Water with salt is rapidly
added to a polymer

solution with a drug and
a water-soluble solvent,
leading to the diffusion
of the solvent and the

formation of
nanoparticles

For heat-
sensitive drugs

No heating
required

Encapsulates
nucleic acid and

protein molecules

Only for
lipophobic drugs
Time-consuming

Stabilizer
removal required

Meloxicam-
loaded

D,L-PLGA
NPs

Human
colorectal

cancer
lines

[7,19,26,28]

Dialysis

Uses a dialysis tube
inside which a polymer
dissolved in a solvent.

Suspension of
nanoparticles results in

displacement of
the solvent

Simplicity
Easy

manipulation of
nanoparticle size

Time-consuming
Does not require

advanced equipment

DTX-loaded
poly

(N-vinyl-
caprolactam)
chitosan NPs

TNBC
(in vivo) [3,11,20]

Supercritical fluid
technology

In this method,
supercritical liquid is

used and is based on two
phenomena: the rapid

expansion of the
supercritical solution and

the rapid expansion of
the supercritical solution

into the solvent

High purity of
nanoparticles

Environmentally
friendly

Possibility of
formulating very

small sizes
(<20 nm)

Technique rarely used
Limited

solubility of
compounds in

supercritical fluid

CXB-loaded
D,L-PLGA

NPs

Metastatic
cancers [11,29,30]

BLC—baicalein; PTX—paclitaxel; D,L-PLGA—poly(D,L-lactide-co-glycolide); NPs—nanoparticles; PNPs—
polymeric nanoparticles; DTX—docetaxel; FA—folic acid; TNBC—triple-negative breast cancer; CXB—celecoxib.

3.1. Passive Mechanism

As a tumor grows, the architecture at the tumor site is rearranged [31]. A so-called
tumor microenvironment (TME) emerges, which is composed of multiple cell types, i.e.,
fibroblast-associated cells (CAFs), tumor-associated macrophages (TAMs) and other im-
mune cells [31]. The possibility of tumor proliferation and the influx of cells into the TME
is mainly due to the formation of new blood vessels [23,31,32]. The rate of their forma-
tion is rapid as a result of the irresistible need to supply nutrients and oxygen necessary
for its growth [23,32]. The consequence of this is the appearance of abnormalities in the
endothelium of blood vessels [23,32]. They become more permeable, allowing polymeric
nanoparticles to enter the tumor more efficiently. Increased lymphatic drainage due to
abnormal vascular structure further contributes to prolonged retention of the nanoparticle
inside the tumor structure [21,23,32]. Both of these processes contribute to the so-called
enhanced permeability and retention (EPR) effect, which directs polymeric nanoparticles to
the tumor site [21,23,32]. PNPs up to 200 nm in size are assumed to diffuse best through
the damaged endothelium [15]. However, this mechanism has its limitations mainly due
to individual occurrences (differences in vascular permeability, cell receptor expression,
etc., between patients with the same type of cancer), in which the EPR effect may not
be present in humans in solid tumors or insufficiently so that diffusion of nanoparticles
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into the tumor is limited [21,23,33]. In addition, it is acknowledged that the targeted
action of PNPs through the EPR effect does not allow for the reduction in toxicity and
triggering of side effects (Figure 4) [26,34,35]. One example of nanoformulation based on a
passive mechanism is the Genexol PM® product, comprising Monomethoxy-poly (ethylene
glycol)-block-poly(D,L-lactide) loaded with paclitaxel at a dose of 30 mg. Currently, its use
is approved in South Korea for the treatment of metastatic breast cancer, while in the USA
it is under phase II clinical trials as a potential pancreatic cancer drug [22].

Figure 3. Mechanisms of action of polymeric nanoparticles: (a) passive mechanism; (b) active
mechanism.

3.2. Active Mechanism

In cancer progression, an increase in the expression of certain receptors on the surface
of the cancer cell is also observed [6]. The active mechanism, as compared to the passive one,
is based on exploiting this phenomenon and applying a selected polymeric nanoparticle in
combination with a cell-specific ligand [35,36]. Due to this effect, the polymeric nanoparticle
with the incorporated drug can better reach the tumor site and also what is highly desirable,
limiting the interaction only to tumor cells and thus causing a reduction in systemic
toxicity [36]. The most commonly used ligands attached to PNPs are biotin, folic acid and
antibodies directed against specific cellular antigens or proteins [26]. As an example, in
2015, a study by the team of Shi et al. [37] showed that the use of D,L-PLGA with paclitaxel
(20% w/w dry weight of PLGA) nanoparticles conjugated with 50 µg of vascular endothelial
growth factor (VEGF) formulated by single emulsion solvent evaporation better increases
the affinity for human umbilical vein endothelial cells (HUVECs) than PLGA NPs without
conjugation to VEGF. Additionally, they showed greater antiproliferative effects, which
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is crucial for anticancer therapy [26,37]. However, the use of a combination of polymeric
nanoparticles drug-loaded with a surface ligand has some limitations. The main one is the
reduced circulation time in the bloodstream due to faster uptake by the phagocytic system,
as well as the variability in the expression of selected receptors depending on the stage of
the cancer [26,36]. Despite these disadvantages, this system is more commonly used than
one based on a passive mechanism.

Figure 4. Comparison of properties of cancer cells used in treatment with polymeric nanoparticles
with normal tissue structure: (A) normal tissue; (B) cancer tissue with microenvironment. Reprinted
with permission from Ref. [34]. Copyright 2022 MDPI.

4. Polymeric Nanoparticles in Colorectal Cancer Treatment

Colorectal cancer (CRC) is classified as the second leading cause of cancer deaths
worldwide and categorized as a solid tumor developed from an initial adenoma [38–40].
The most challenging issue is the therapy of CRC patients. As a result of progression
and angiogenesis, a tumor microenvironment (TME) is formed, which makes treatment
with currently available cytostatic agents more difficult due to limited access to tumor
cells [39]. Standard therapy includes the administration of mixed cytostatic drugs, e.g.,
oxaliplatin application together with 5-fluorouracil (5-FU), or the use of irinotecan instead
of oxaliplatin [41]. In some cases, additional monoclonal antibodies are also used, e.g.,
bevacizumab, cetuximab or panitumumab [41].

In the case of therapy and administration of medicinal substances in the treatment
of CRC, it is necessary to consider and take into account all physiological as well as
pathological aspects occurring in this type of malignancy [41]. Due to its location, the
administration of anticancer drugs is carried out mainly by injection of a suspension of
polymeric nanoparticles loaded with the drug [41]. Most frequently, additional coating
with ligands specific for CRC neoplastic cells is used in this case. Another way of drug
administration is the oral route, which involves the use of a pH-dependent drug delivery
and release system [41]. The drug, when administered orally, overcomes a number of
physiological barriers associated with changes in the pH scale. Therefore, for this purpose,
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polymeric nanoparticles are coated with an enteric layer, which, at higher pH levels, is
degraded, so that the drug can be released at a specific location (Figure 5) [41].

The application of chemotherapeutic agents, due to their physicochemical properties,
bioavailability and lack of tissue and cell selectivity, results in the patient’s normal cells also
being destroyed during therapy [41,42]. Therefore, new methods of delivering a medicinal
substance targeting only cancer cells are increasingly being investigated. To achieve this,
researchers are attempting to use polymeric nanoparticles as drug delivery systems in
colorectal cancer cells due to the small size of the nanoparticles, allowing them to freely
penetrate blood vessels and achieve high stability and targeted release of the drug being
carried [42].

Figure 5. Administration routes for polymeric nanoparticles in the treatment of colorectal cancer.
Reprinted with permission from Ref. [41]. Copyright 2022 MDPI.

An in vitro and in vivo study by the team of Wu et al. [43] in 2020 on the SW620 cell line
and BALB/c mice showed that the use of PLGA nanoparticles loaded with 5 mg 5-FU and
2 mg perfluorocarbon (PFC) conjugated to EGF (EGF-PLGA@5FU/PFC NPs) formulated
by the double emulsion solvent evaporation method resulted in the targeted delivery
of the anticancer agent to tumor cells only via the active mechanism of the polymeric
nanoparticle [43]. In addition, this formulation allows the chemoresistance of colorectal
cancer cells to be abolished by locally increasing oxygen levels in the vicinity of the tumor
tissues [43]. Such studies provide new information on the use of formulations in the
delivery of drug combinations with synergistic effects. Consequently, the use of PNPs to
deliver chemotherapeutics in CRC may prove crucial in the development of new strategies
for targeted anticancer therapy, thereby reducing the adverse effects caused by the use
of uracil-based drugs. In most cases, the polymers used to formulate nanoparticles such
as D,L-PLGA are additionally coated with PEG in order to prolong their persistence in
the circulation, which is important due to the difficulty of accessing tumor cells through
the TME present in colorectal cancer [43]. Among polymeric nanoparticles, studies using
the biopolymer chitosan for drug delivery systems in CRC can also be found [43]. Other
studies using polymeric nanoparticles as drug delivery systems in colorectal cancer are
presented in Table 3.
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Table 3. Polymeric nanoparticles as drug delivery systems for colorectal cancer therapy.

PNPs Formulation
Method

Size
(nm) Drug Dose In Vitro/In Vivo Ref.

PHBV/PLGA Double emulsion
solvent evaporation ~150 5-FU 3 mg/mL In vitro—HT-29, CT-26

In vivo—BALB/c mice [44]

PLGA-PEG-PLGA Double emulsion
solvent evaporation ~40 5-FU/Chrysin 10 mg/mL In vitro—HT-29 [45]

HPMC phthalate Nanoprecipitation ~478 Doxycycline 5 mg/kg, 10 mg/kg In vivo—Swiss albino
mice [46]

D,L-PLGA Single emulsion
solvent evaporation ~191 Curcumin 10 mg,

20 mg In vitro—HT-29 [47]

D,L-PLGA Spontaneous
emulsification ~310 SN-38 15 mg In vitro—COLO-205 [48]

Poly-UA Nanoprecipitation ~171 Mith-A 3 mg In vitro—CT-26
In vivo—BALB/c mice [49]

Chitosan
polymeric

Ionic gelation
technique ~200 Imatinib 5 mg In vitro—CT-26

In vivo—Wistar rat [50]

D,L-PLGA-PEG-
FA

Double emulsion
solvent evaporation ~201 Oxaliplatin 5 mg/kg In vitro—CT-26

In vivo—BALB/c mice [51]

D,L-PLGA Single emulsion
solvent evaporation ~237 Quercetin and

CAPE 5 mg and 15 mg In vitro—HT-29 [52]

v6 Fab-PLGA-PEG Double emulsion
solvent evaporation ~345 Bevacizumab 25 mg/mL

In vitro—MKN74-
CD44std and

CD44v6+
[53]

CS-Chitosan Single emulsion
solvent evaporation ~289 Camptothecin 6 mg In vitro—CT-26

In vivo—BALB/c mice [25,54]

PMMA Single emulsion
solvent evaporation ~154 Benznidazole 0.0125 mg/25 mL In vitro—HT-29 [55]

PEG Single emulsion
solvent evaporation ~114 PTX and DHA 6 µg/mL In vitro—HT-29 [56]

PCL-PEG-PCL Double emulsion
solvent evaporation ~95 Cur and MTX 4 mg and 2 mg In vitro—CL-40,

SW1417 [57]

D,L-PLGA Modified salting-out ~200 Meloxicam n/d In vitro—HT-29 [28]

PEG-PLGA Double emulsion
solvent evaporation ~147 PTX 1 mg In vitro—S174T,

COLO205, HCT116 [58]

PEG-PLGA Double emulsion
solvent evaporation ~289 Sorafenib and

PEDF 2 mg and 25 µg In vitro—C26
In vivo—BALB/c mice [59,60]

PHBV—poly(3-hydroxybutyrate-co-3-hydroxyvalerate); D,L-PLGA—poly(D,L-lactide-co-glycolide); 5-FU—5-
fluorouracil; PEG—polyethylene glycol; HPMC—hydroxypropyl methyl cellulose; SN-38—7-ethyl-10-hydroxy-
camptothecin; EGFR—epidermal growth factor receptor; mAb—monoclonal antibody; poly-UA—poly(ursolic
acid); Mith-A—mithramycin-A; FA—folic acid; CAPE—caffeic-acid phenethyl ester; Fab—antibody fragment;
CS—chondroitin sulfate; PMMA—poly(methyl methacrylate); PTX—paclitaxel; DHA—dihydroartemisinin;
Cur—curcumin; MTX—methotrexate; PAA—poly(acrylic acid); ε-PCL—poly(ε-caprolactone); PEDF—pigment
epithelium-derived factor.

5. Polymeric Nanoparticles in Breast and Ovarian Therapy

Undoubtedly, the most common type of cancer occurring in women is breast cancer [61–63].
Among the different types, triple-negative breast cancer (TNBC) appears to be the most
malignant and most metastatic [61]. For therapy, the use of combinations of various taxanes,
i.e., PTX or DTX, platinum-based compounds, e.g., cisplatin, or the application of drugs
from the anthracycline group, is common, with doxorubicin leading the way [61,62].

The second type of cancer closely related to breast cancer is ovarian cancer [64]. The
division of ovarian cancer is based on histopathological changes within the epithelium and
includes five subtypes, 90% of which are high-grade serous carcinoma [64,65]. Treatment
of ovarian cancer is based on a combination of surgical resection and chemotherapy [66].
The gold standard is the administration of platinum-based drugs, e.g., carboplatin, whose
efficacy reaches up to 80% in combination with PTX. However, this treatment is not always
sufficient, as recurrence of the disease is observed [66].
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The problem of chemotherapy for treatment of breast and ovarian cancer is the non-
selective mechanism of action of the platinum-based or cytostatic drugs concerned [61].
In addition, the drugs applied in therapy are poorly soluble, and also, in some cases,
cell resistance to the drug may occur [67]. Multidrug resistance (MDR) is an increasingly
common phenomenon in cancer therapy that complicates the treatment process [68]. The
development of chemoresistance in tumor cells occurs either after treatment with cytostatic
drugs or, surprisingly, in patients not treated with chemotherapeutic agents. In addition,
the use of one type of drug may lead to the development of resistance not only to the
drug used, but also to other subtypes [68]. This occurrence is one of the most challenging
obstacles for sufficient treatment for both types of cancers. Therefore, there are increasing
reports on the development of new formulations using polymeric nanoparticles in targeted
drug delivery aimed at cancer cells [68].

A poly(D,L-lactide-co-glycolide) nanoparticle functionalized with 0.2 mg folic acid
and loaded with 10 mg docetaxel was investigated by the team of Poltavets et al. [69]. In
their study on breast cancer cell lines with overexpression of the folic acid receptor alpha
(FRα), they found that the use of the polymeric carrier overcomes the chemopreventive
effect. Additionally, increases in the cytotoxicity of docetaxel towards breast cancer cells,
compared to the use of DTX in its native form, were observed [68,69]. This indicates that
the polymeric nanocarriers have a significant effect on both distribution and selectivity, as
well as reducing toxic effects on normal cells [68,69].

Currently, Abraxane®, an albumin-based nanoparticle loaded with 5 mg paclitaxel,
is used for the treatment of metastatic breast cancer [61]. It should be noted here that it
is commonly referred to as a polymeric nanoparticle, even though it should actually be
classified as a nanoconjugate due to its physicochemical properties and structure. However,
for relevance and illustration, several applications of nanoconjugates based on albumin-
bound nanoparticles are also included in this review. However, the two terms should not
be mixed up.

In addition, cancer stem cells (CSCs) also play an important role in the development
of MDR, which is also the reason for cancer recurrence [68,70]. The major factor behind
this process is an increase in the expression of selected ATP-binding cassette efflux trans-
porters, which contributes to a greater pumping of the medicinal substance out of the cell,
leading to a reduced cellular response to the chemotherapeutic agent [68,70]. However,
this process can be abolished in some cases by using coadministration of cytostatic drugs
with chemosensitizers [68]. In a study by Guo et al. [71] using solvent-based methods,
mPEG-D,L-PLA nanoparticles loaded with docetaxel and resveratrol were obtained si-
multaneously. The study, conducted on MCF-7 breast cancer lines and in vivo, observed
that the coadministration of these two substances increased the cytotoxic effect and abol-
ished the MDR effect in tumor cells. This suggests that reducing the effect of resistance
to chemotherapeutics can be achieved by combining drugs that exhibit synergistic effects,
causing MDR to be eliminated in cancer cells [71].

The use of polymeric magnetic nanoparticles in the treatment of breast cancer also
seems interesting, because it reduces the elimination of drug-loaded NPs by the reticuloen-
dothelial system [72]. The team of Alsadat Vakilinezhad et al. [72] conducted a study to
evaluate the potential of using PLGA NPs loaded with methotrexate (MTX)-functionalized
magnetide against the SK-BR-3 line. The results of the study showed similar cytotoxicity to
MTX. In addition, based on the accumulation of particles at the target site, they concluded
that such a combination could reduce the side effects of MTX [72].

An overview of the PNPs used in the treatment of ovarian cancer and breast cancer is
presented in Table 4.
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Table 4. PNPs as a drug delivery system in breast and ovarian cancer treatment.

PNPs Formulation Method Size
(nm) Drug Dose In Vitro/In Vivo Cancer Ref.

D,L-PLGA Modified
nanoprecipitation ~70 Cur 1 mg In vitro—A2780, A2780CP Ovarian [73]

PLGA-PEG-HA Single emulsion
solvent evaporation ~268 SN-38 3 mg/mL In vitro—SKOV-3, CHO Ovarian [74]

PEG-b-PLA Single emulsion
solvent evaporation ~112 Bortezomib 500 µg In vitro—MDA-MB-468, HCC1937

In vivo—NOD/SCID and ICR mice TNBC [75]

Chitosan-
EGFRvIII

Ionotropic gelation
technique ~146 Gemcitabine 5 mg In vitro—OVAR-8 Ovarian [76]

PEG-PLA Single emulsion
solvent evaporation ~88 DOX 10 mg In vitro—MDA-MB-231

In vivo—NOD/SCI mice Breast [77]

PEG-PLA Double emulsion
solvent evaporation ~79 DAC 5 mg In vitro—MDA-MB-231

In vivo—NOD/SCI mice Breast [77]

mPEG-PLGA Nanoprecipitation ~101 Nos 5 mg In vitro—4T1
In vivo—BALB/c mice Breast [78]

PCEC Double emulsion
solvent evaporation ~28 PTX and Cur 3 mg/mL In vitro—MCF-7

In vivo—BALB/c mice Breast [79]

mPEG-PLGA Single emulsion
solvent evaporation ~165 Piperine 8.5 mg In vitro—MDA-MB-488, BT-549 TNBC [80]

PCL Single emulsion
solvent evaporation ~154 PTX and

IR780
140 µg and

148 µg
In vitro—SKOV-3, ST30
In vivo—BALB/c mice Ovarian [81]

Chitosan-PLGA Ionic gelation ~156 Carboplatin n/d In vitro—PEO1 Ovarian [82]

PEG-PLA-FA Nanoprecipitation ~192 PTX 50 mg
In vitro—SKOV-3, HO-89110,

A2780
In vivo—BALB/c mice

Ovarian [83]

PLGA-PEG-
maleimide

Single emulsion
solvent evaporation ~209 PTX 5 mg In vitro—LM2

In vivo—BALB/c mice TNBC [84]

PLGA with
anti-CD133 mAb

Single emulsion
solvent evaporation ~320 PTX 6 mg

In vitro—MCF-7,
MDA-MB-231-luc

In vivo—BALB/c mice
Breast [85]

D,L-PLGA—poly(D,L-lactide-co-glycolide); Cur—curcumin; HA—hialuronic acid; PEG—polyethylene glycol;
SN-38—7-ethyl-10-hydroxy-camptothecin; PEG-b-PLA—poly(ethylene glycol)-block-poly(D,L-lactide); D,L-PLA—
poly(D,L-lactide); TNBC—triple-negative breast cancer; EGFRvIII—epidermal growth factor receptor variant
III; DOX—doxorubicin; DAC—decitabine; mPEG—methoxy polyethylene glycol; Nos—noscapine; PCEC—
poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone); PTX—paclitaxel; ε-PCL—poly(ε-caprolactone);
FA—folic acid; mAb—monoclonal antibody.

Increasingly, polymers are also being used to coat nanoparticles, with the aim of
improving their potency. Undoubtedly, one such polymer is polyvinyl alcohol (PVA) [86].
In 2022, Shahrousvand et al. [86] obtained poly(vinyl alcohol-2-hydroxyethyl methacrylate)
(PVA-PHEMA) nanoparticles by hydrolyzing PVAc-PHEMA copolymers. They observed
that the nanoparticles prepared in this way acquired pH-sensitive properties and increased
release of the drug in the acidic medium, which may contribute to the accumulation within
the tumor [86]. In addition, the nanoparticles were shown to be biocompatible and, upon
the staining of cells, it was shown that PVA-HEMA copolymer nanoparticles exhibited the
properties of intelligent particles affecting the death of neoplastic cells [86]. PVA was also
used as a coating for the nanoparticle codelivery of MTX and gemcitabine in the treatment
of bone cancer [87].

Due to the fact that PNPs are increasingly being used in research on new potential
methods for drug delivery to tumor cells, several clinical trials using PNPs have been
conducted. An overview of clinical trials for breast, ovarian and colorectal cancer using
nanoparticles for potential therapeutic applications is presented in Table 5, which was
generated from data available in the database https://clinicaltrials.gov/ (accessed on 14
September 2022).

https://clinicaltrials.gov/
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Table 5. Clinical trials using PNPs in selected cancer therapy based on https://clinicaltrials.gov/
(accessed on 10 September 2022).

Identifier Drug Delivery
System Title Cancer Phase Status

NCT03774680 PNPs
Targeted Polymeric Nanoparticle Loaded

With Cetuximab and Decorated With
Somatostatin Analogue to Colon Cancer

Colon Cancer I Unknown

NCT02010567 PNPs
Neoadjuvant Chemoradiotherpay With

CRLX-101 and Capecitabine for
Rectal Cancer

Rectal Cancer II Terminated

NCT03505528 Nab–paclitaxel

An Early Phase Study of Abraxane
Combined With Phenelzine Sulfate in Paient
With Metastatic or Adcanced Breast Cancer

(Epi-PRIMED)

Breast Cancer I Completed

NCT02788981 Nab–paclitaxel

Abraxane® With or Without Mifepristone
for Advanced, Glucocorticoid

Receptor-Positive, Triple-Negative
Breast Cancer

TNBC I Active

NCT04249167 Nab–paclitaxel
Cryoablation, Atezolizumab/Nab-paclitaxel
for Locally Advanced or Metastatic Triple

Negative Breast Cancer
TNBC I Withdrawn

NCT00499252 Nab-paclitaxel

Paclitaxel Albumin-Stabilized Nanoparticle
Formulation in Treating Patients With

Recurrent or Persistent Ovarian Epithelial
Cancer, Fallopian Tube Cancer, or Primary

Peritoneal Cancer

Ovarian Cancer II Completed

NCT03942068 Nab–paclitaxel
Apatinib With Albumin-bound Paclitaxel in
Patients With Platinum-resistant Recurrent

Ovarian Cancer
Ovarian Cancer II Unknown

NCT01652079 PNPs
CRLX101 in Combination With

Bevacizumab for Recurrent
Ovarian/Tubal/Peritoneal Cancer

Ovarian Canacer II Completed

NCT00313599 Nab–paclitaxel Lapatinib and Paclitaxel in Treating Patients
With Advanced Solid Tumors Ovarian Cancer I Completed

NCT03719326 Nab–paclitaxel

A Study to Evaluate Safety/Tolerability of
Immunotherapy Combinations in

Participants With Triple-Negative Breast
Cancer or Gynecologic Malignancies

TNBC, Ovarian
Cancer I Completed

NCT00989131 PNPs Study of Paclitaxel in Patients With
Ovarian Cancer Ovarian Cancer III Completed

PNPs—polymeric nanoparticles; Nab–paclitaxel—nanoparticle albumin-bound paclitaxel; TNBC—triple-negative
breast cancer.

6. Polymeric Nanoparticles in Glioblastoma Multiforme Therapy

Glioblastoma multiforme (GBM) is a primary malignant brain tumor characterized by
a high mortality rate [88,89]. Combination of surgery, radiotherapy and local chemotherapy
consisting of implantable drug formulation appears to be most promising methods for
treatment [90]. However, a significant disadvantage of commonly used chemotherapeutics
is the short half-life in blood circulation, leading to difficulty in transporting and releasing
the drug at the proper pathological lesion [91]. PNPs, due to their diversity and the
possibility of loading them with various drugs, are of major interest. Furthermore, they
can be modified to penetrate the BBB and reach cancer cells [88]. The above factors are
associated with improved penetration of the drug into the tumor, reduced side effects
on healthy tissues and increased concentration of the drug in the pathologically altered
area [88]. Several routes of PNP administration for GBM can be distinguished, i.e., focused
ultrasound, which uses the ability to temporarily open the BBB; convection-enhanced
delivery, based on delivering the drug to the brain region using pump systems; intranasally,

https://clinicaltrials.gov/
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whereby the nanoparticles are absorbed through the olfactory pathways; and the use of
polymeric hydrogels intracranially (Figure 6) [92].

Liang et al. [93] developed anti-EGFRvIII-modified conjugated polymer nanoparticles.
Poly [2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene] was used as the core. The
developed system exhibited high reactive oxygen species generation ability under white-
light irradiation. By studying their effect on the LN229 cell line, they observed not only
that the fluorescent targeting effect can enable neurosurgeons to clearly identify the tumor
boundary during the neurosurgical operation, but also that the release of reactive oxygen
species promotes the death of EGRFvIII-positive cells, as well as adjacent cells not carrying
this mutation [93]. Currently, the interest of many researchers is focused on the use
of biodegradable polymers to produce nanoparticles [94–96]. Some other research on
nanoparticles for GBM therapy is presented in Table 6.

Table 6. Polymeric nanoparticles in glioblastoma multiforme treatment.

PNPs Formulation Method Size
(nm) Drug Dose In Vitro/In Vivo Ref.

D,L-PLGA Nanoprecipitation ~250 Cur 1 mg In vitro—DKMG/EGFRvIII,
DK-MGlow [94]

mPEG-PLGA Nanoprecipitation <150 PTX and
etoposide 5 mg In vitro—U87, C6

In vivo—Wistar rats [95]

D,L-PLGA Nanoprecipitation ~212 PTX and MTX 2.5 mg In vitro—U87MG, B65 [96]

mPEG–PTMC Single emulsion
solvent evaporation ~49 PTX 10 mg In vitro—U87MG

In vivo—Sprague Dawley rats [97]

mPEG-PLGA Double emulsion
solvent evaporation ~206 PTX and TMZ

0.2 mg/mL
and

4.4 mg/mL

In vitro—U87, C6
In vivo—BALB/c mice [98]

D,L-PLGA Single emulsion
solvent evaporation ~135 PTX 5 mg In vitro—C6

In vivo—Sprague Dawley rats [99]

D,L-PLGA Double emulsion
solvent evaporation ~110 DOX 23 mg/mL In vivo—Wistar rats [100]

mPEG-(LA)-
(TBPC) Nanoprecipitation ~68 DOX 2 mg/mL In vitro—U87, GIN-8, GIN-28,

GIN-31 [101]

Receptor
-mediated
D,L-PLGA

Modified
single emulsion

solvent evaporation
~187 TMZ 1 mg In vitro—U87, U215, NHA [102]

D,L-PLGA Emulsion solvent
evaporation techniques ~200 TMZ 3.3 mg/mL In vitro—U87 [103]

D,L-PLGA—poly(D,L-lactide-co-glycolide); Cur—curcumin; mPEG—methoxy polyethylene glycol; PTMC—
poly(trimethylene carbonate; LA—lactid acid; TBPC—t-butyloxycarbamoyl-protected cyclic carbonate; PTX—
paclitaxel; MTX—methotrexate; TMZ—temozolomide; DOX—doxorubicin.

Figure 6. Administration routes for polymeric nanoparticles in the treatment of GBM. Reprinted with
permission from Ref. [92]. Copyright 2022 MDPI.
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7. PNPs as a Drug Delivery System in Cancer-Associated Gene Therapy

The main advantages of using a drug delivery system in cancer treatment are the
possibility of reducing side effects of the drug, better acceptance by the patient, the use of a
lower effective dose of the drug and the possibility of controlling the rate of drug release at
a precise location, while increasing the stability and efficacy of the active substance [28].
Due to these features, as well as advances in genetic engineering and biotechnology, PNPs
are increasingly being used as DDSs used to introduce molecules into cells [104,105].
Biopolymers such as chitosan, dextran or pullulan are of particular importance due to
their easy production process and nonimmunogenicity, biocompatibility and biodegrad-
ability [104]. Synthetic polymers such as poly (beta-amino ester) (PBAE) or D,L-PLGA
are also used [104,106]. Ease of interaction with DNA molecules is also provided by the
use of cationic polymers, which are capable of interacting with anionic groups in nucleic
acid [11,105]. The mechanism of action of polymeric nanoparticles as gene carriers in anti-
cancer therapy works by overcoming both extracellular and intracellular barriers [107,108].
A PNP loaded with a molecule such as DNA, oligonucleotides (ONs), etc., binds to the
surface-specific receptor of a cancer cell, undergoes endocytosis and in the form of an
endosome is transported into the cytoplasm [107,108]. The degrading nanoparticle releases
its contents. In the case of a DNA molecule, the particle is transported to the cell nucleus,
where it affects the process of gene transcription [107]. In the case of mRNA, protein
synthetase is disrupted, while in the case of siRNA or miRNA, it binds to the RISC protein
complex, leading to silencing of gene expression [107]. Each of the events leads to inhibition
of proliferation of the neovascular cells and ultimately their death (Figure 7) [108].

Figure 7. Mechanism of action of PNPs as gene delivery systems for cancer treatment. Reprinted
with permission from Ref. [108]. Copyright 2021 MDPI.
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In order to better eradicate the cancer tumor, immunotherapy is also widely used, fo-
cusing in particular on the activation of cells of the immune system, mainly T lymphocytes
and cells with a CD8+ surface antigen, to eliminate cancer cells of a specific tumor type [109].
The most commonly used technique is the so-called adoptive T-cell immunotherapy, which
is based on the use of patient-derived cells, their modification and reintroduction into the
patient’s body [110]. Inherent in the course of neoplastic diseases, as mentioned earlier, is
the presence of TME, which consists of many cell types that produce both growth factors,
chemotactic factors and cytokines. Due to this, a chronic presentation of the neoplastic
antigen is produced, resulting in the acquisition of tolerance by T cells, which is associated
with a decrease in the level of activation and proliferation of T cells involved in the eradica-
tion of neoplastic cells through receptor-related disorders, i.e., programmed death receptor
1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) [109,110]. Therefore,
a promising approach seems to be the use of methods based on antibodies that block
receptors contributing to PD-1 inhibition and simultaneously activate T cells. One solution
is to use nanoparticles that target both of these elements and, at the same time, avoid
nonspecific binding to the receptors. In a study conducted by Mi et al. [111] on C57BL/6
mice, the effect of mPEG-PLGA nanoparticles conjugated with PD-1 and OX40 antibodies
obtained by nanoprecipitation on the ability to activate T lymphocytes was evaluated. The
results of the study showed that the use of such a combination allows better activation
of the mentioned cells, and thus increased therapeutic efficacy compared to antibodies
administered in free form. Thus, the possibility of combining immunotherapy methods and
nanotechnology undoubtedly broadens the scope of research into new potential anticancer
therapies [111]. Examples of the use of PNPs in gene therapy are presented in Table 7.

Table 7. Examples of PNPs as gene delivery system in cancer therapy.

PNPs Formulation
Method

Size
(nm) Molecule Dose In Vitro/In Vivo Cancer Ref.

D,L-PLGA Double emulsion
solvent evaporation ~197 BLC2 siRNA 50 µg In vitro—SKOV3-TR.

A2780-CP20 Ovarian [112]

HA-PLGA Double emulsion
solvent evaporation ~232 PTX; FAK

siRNA
900 µg and 125

µg

In vitro—SKOV3, TR,
HeyA8, MDR

In vivo—BALB/c mice
Ovarian [113]

Chitosan Solvent evaporation
method ~135 NEAT siRNA 1:1 In vitro—LoVo, SW480,

HCT116 CRC [114]

Chitosan Polyelectrolyte
complexation ~172 DOX,CMD and

siRNA

2.5 µg/mL,
1 mg/mL and

5 µL
In vitro—HCT-116 CRC [115]

D,L-PLGA Double emulsion
solvent evaporation ~159 AFP siRNA 100 µL In vitro—HepG2, HeLa,

MDA-MB-231

HCC,
cervical
breast

[116]

PBAE-PEI-HA Solvent evaporation
technique ~182 EMB and

pTRAIL 1.33 mg In vitro—MCF-7,
MDA-MB-231 TNBC [117]

D,L-PLGA Double emulsion
solvent evaporation ~145 PNA targeting

miRNA-155 1 µM In vitro—HeLa,
SUDHL-5,

Cervical,
lymphoma [118]

PLGA/PLA-
PEG-FA

Single emulsion
solvent evaporation ~232 miRNA-204-

5p n/d
In vitro—HT-29,

HCT-116
In vivo—BALB/c mice

CRC [119]

PLGA-chitosan
with 5TR1

Double emulsion
solvent evaporation ~222 Epirubicin 2 mg/mL In vitro—MCF7, CHO

In vivo—BALB/c mice Breast [120]

AS1411 aptamer
PLGA-PEG

Double emulsion
solvent evaporation ~113 Cisplatin;

miR-21
8.4 mg/mL;
10 mg/mL In vitro—A2780 S/R Ovarian [121]

PCL-AC Nanoprecipitation ~194 LCS-1 n/d In vitro—HCT116 CRC [122]
AS1411 aptamer

PLGA
Single emulsion

solvent evaporation ~200 Paclitaxel 10 µg/mL In vitro—GI-1 Glioblastoma [123]

D,L-PLGA—poly(D,L-lactide-co-glycolide); siRNA—small interfering RNA; HA—hialuronic acid; PTX—paclitaxel;
FAK—focal adhesion kinase; CRC—colorectal cancer; DOX—doxorubicin; CMD—carboxymethyl dextran; AFP—
α-fetoprotein; HCC—hepatocellular carcinoma; PBAE—poly(beta-amino ester); PEI—polyethyleneimine; EMB—
embelin; pTRAIL—tumor necrosis factor-related apoptosis-inducing ligand plasmid; TNBC—triple-negative
breast cancer; PNA—peptide nucleic acid, miRNA—microRNA; D,L-PLA—poly(D,L-lactide); PEG—polyethylene
glycol; FA—folic acid; ε-PCL—poly(ε-caprolactone); AC—aminocellulose; LCS-1—superoxide dismutase in-
hibitor.
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Undoubtedly, the use of polymeric nanoparticles as molecule delivery system is one
of the most promising. The reason for this is that in the case of gene therapy, polymer
nanoparticles have less toxicity and immunogenicity than traditional methods based on
vector systems [105]. In addition, due to the use of nanoparticles, it is possible to transport
molecules such as miRNAs, siRNAs or gene-editing systems, etc., which directly affect
transcription or correction of an abnormal gene [105]. However, despite this, there are still
some limitations, mainly related to the lower efficiency of cell transfection compared to
viral systems, which may be resolved in the future due to the significant development of
biotechnology and nanomedicine [105].

8. Conclusions

Cancer is one of the most common causes of death worldwide, and current treatments
are not fully effective and have many negative side effects. Because of this, alternative drug
delivery methods are currently being sought to help overcome the limitations of cancer
therapy, reduce systemic toxicity and prevent multidrug resistant on cytostatic agents.
The use of polymeric nanoparticles in cancer therapy appears promising, especially those
derived from D,L-PLGA, a copolymer approved by the FDA for use in active pharmaceutical
ingredient delivery systems. These carriers act in an active or passive mechanism and have
been proven effective against a variety of cells. The results of numerous studies show great
potential for the use of PNPs as chemotherapeutic delivery systems in colorectal cancer,
breast cancer, ovarian cancer and glioblastoma multiforme. In addition, PNPs are currently
being investigated as carriers in gene therapy. Additionally, worthy of much attention is
the fact that some of the PNPs are being evaluated in clinical trials, and some are approved
by the FDA for treatment.

Based on a review of the literature, it should be noted that there are a growing number
of studies on improving the effectiveness of polymeric nanoparticles. A considerable
amount of research suggests that by manipulating the structure and coating of compounds,
i.e., PEG, it is possible to significantly control the residence time in the system and reduce
undesirable interactions with plasma proteins. This is an important aspect, as it can be
concluded that it has a significant impact on the process of drug delivery. Depending
on the type of tumor, the location and target site of nanoparticle delivery should also
be taken into account. In the case of gastrointestinal cancers, the main limitation is the
varying environment depending on the gastrointestinal tract. Therefore, it is suggested
that in such a situation it is best to use pH-sensitive nanoparticles coated with an enteric
coating to protect the PNPs from early degradation. In addition, to improve the efficacy of
nanoparticles, it is necessary to take into account individual patient factors arising from
variability in the number and expression of surface receptors of neoplastic cells, as well as
individual morphological and structural features of the entire tumor microenvironment.
In this aspect, it is undoubtedly important to assess the occurrence of MDR, which, as
studies indicate, can be abolished by using codelivery of drugs with synergistic effects.
Therefore, in order to improve the overall quality and efficacy of treatment with polymeric
nanoparticles, it is crucial to precisely analyze the patient’s profile, tumor type and genetic
status, as well as to select the appropriate polymer and manufacturing method depending
on the encapsulated drug. However, the problem in this aspect is still the high individual
variability of tumor heterogeneity, as well as difficulties at the production stage related
mainly to the low encapsulation efficiency of some chemotherapeutics.

Nevertheless, nanotherapy is a rapidly developing scientific field, and the results
of published research in recent years demonstrate that PNPs can be used as carriers for
anticancer drugs, giving hope for the development of more effective treatment methods
and regimens for cancer patients.
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