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Abstract: The ship line often describes by the offset table of discrete data points, which leads to the
problems that three view coordinates may not correspond, the fitting error is large and the fitted curve
cannot be easily modified. This will seriously affect the subsequent ship performance evaluation and
op-timization. To solve this problem, this paper develops a B-spline curve fitting of hunger predation
optimization on ship line design (HPA), which contains knot guidance technology, hungry preda-tion
optimization technology and adaptive adjustment of algorithm input parameters. HPA transforms
the discrete ship line into a continuous B-spline curve description, which improves the accuracy and
modifiability of the ship line design. Through the real-time feedback of the results of each round of
iteration, the knot vector is adaptively adjusted towards a better fitness, and then the optimal control
point set that satisfies the error threshold can be obtained. The effectiveness and superiority of HPA
are verified by comparing with related research and engineering software.

Keywords: knot placement; b-spline curve fitting; ship line design; optimization algorithm; reverse engineering

1. Introduction

B-spline curve approximation has been a hot research topic in the field of computer-
aided geometric design in recent years. With the development of computer-aided design
(CAD) and the rise of advanced manufacturing technology, B-spline is widely used in
the design and manufacturing industry of free curves and surfaces [1–5]. In the field of
shipbuilding, the design of ship lines is the basis of shipbuilding [6]. The ship lines are
closely related to the dynamic characteristics and resistance characteristics of the ship.
Improving the design level of ship lines and then improving the design quality of ships has
become a hot research topic in the field of shipbuilding industry [7,8]. However, due to the
error in the design of the ship lines or the modification in the local smoothing process, the
coordinates of the corresponding points of the three views may not correspond, resulting in
the reduction of the accuracy of the ship line diagram [9]. In addition, the data points in the
ship line diagram are discrete, and two adjacent discrete points are connected by straight
line segments, resulting in poor smoothness, which brings trouble to the subsequent ship
line setting out and processing and affects the quality and efficiency of shipbuilding.

Due to the locality of B-spline, it can be more convenient to modify the curve locally.
The parameter continuity of B-spline can ensure that the fitting curve has good smoothness.
If the continuous B-spline method is used in the ship line design to replace the discrete offset
table method, the accuracy of ship line design will be greatly improved, and the subsequent
multi-disciplinary collaborative optimization and manufacturing will be facilitated.

Compared with interpolation, B-spline curve approximation can better reflect the
shape of curve, but the placement of knot vector is still an urgent problem to be solved.
Unreasonable knot vector arrangement may lead to unacceptable shapes [10]. Researchers
put higher fitting accuracy at the same knot number [11,12], fewer knot number under
the same accuracy requirements [13,14] and faster operating efficiency [15,16] as the main
pursuit goals of B-spline curve fitting.
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This paper develops a B-spline curve fitting of hunger predation optimization on
ship line design (HPA). In the previous dynamic knot method [17–22], the initial knots are
randomly selected from the interval [0, 1], so there are many unreasonable knot vectors.
Therefore, large population size and iteration number are required, which leads to low
efficiency of the algorithm. The knot guidance technology is designed to add knots in
the area with complex model shape at the initial knot selection stage. The premature loss
of population diversity in optimization algorithm leads to slow convergence and is easy
to fall into local optimality. A hunger search strategy is developed to make the hungry
individuals in the population approach the optimal solution more quickly, and the influence
of neighbors on the position adjustment is further considered. Aiming at the problem that
the previous dynamic knot method requires manual adjustment of key input parameters,
such as population size and iteration number, which is troublesome and time consuming.
An adaptive adjustment of key input parameters in the HPA algorithm is proposed, which
can quickly adapt to the replacement of model and fitting accuracy. HPA achieves the
goal of B-spline curve fitting with higher fitting accuracy at the same control points, less
control points under the same accuracy requirements, faster operation efficiency and better
universality; it can better solve practical engineering problems.

The rest of the paper is organized as follows. Section 2 introduces the basic B-spline
theory used in HPA algorithm and research on existing B-spline curve fitting. Section 3
proposes the HPA method, including a new knot guidance technology, a hungry predation
optimization technology, fitness function selection and the dimension calculation rule.
Section 4 analyzes the influence of population size, iteration number and error threshold
of HPA on curve fitting results, and an adaptive adjustment method of initial input pa-
rameters is proposed. Section 5 verifies the performance of HPA algorithm; we verify the
superior performance of HPA algorithm in fitting accuracy and convergence speed by com-
paring with typical static knot method, dynamic knot method and engineering commercial
software. Finally, we summarize this paper and look forward to future research directions.

2. Related Works
2.1. B-Spline Theory Knowledge

This section refers to the bibliography [23,24]. The knot vector U consists of the non-
decreasing parameter ui, U: u0 ≤ u1 ≤· · · ≤ un+ρ+1, where the dimensions and values
of the initial knot vector are random under certain constraints. After that, they will be
adjusted with each iteration. It will be introduced in detail in Section 3. So far, B-spline
basis function Ni,ρ(x) can be solved, as shown in Formula (1) and (2),

Ni,0(x) = 1, ui ≤ x ≤ ui+1 (i = 0, . . . , n)

0, other
(1)

Ni,ρ(x) =
x − ui

ui+ρ − ui
Ni,ρ−1(x)+

ui+ρ+1−x
ui+ρ+1 − ui+1

Ni+1,ρ−1(x) (2)

where the first subscript i represents the sequence number, and the second subscript ρ
represents degree (order ρ + 1) of curve.

Inappropriate degree may lead to the fitting curve cannot meet the accuracy require-
ment. Designers prefer to use piecewise low degree curves to describe complex curves, and
they do not want a curve to be divided into too many segments. Because the cubic curve is
not only a plane curve with inflection point, but also the lowest degree of spatial curves, it
is widely used [24].

A polynomial B-spline curve of degree ρ (or order ρ + 1) is a piecewise polynomial
curve given by

p(x) =
n

∑
i=0

di Ni,ρ(x) x ∈ [0, 1] (3)
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where di is the control point of the curve and Ni,ρ(x) is the ρ-degree-normalized B-spline
basis function.

According to Formula (3), it is necessary to obtain the control point di to realize the
curve fitting, and the solution of di adopts the standard least square method and endpoint
constraints. Interpolate the first and last data points P0= p(0), Pm= p(1), and other data
points Pi (i = 1, 2, · · · , m − 1) are approximated by the least-squares minimization method.

The given data points are parameterized by the normalized accumulation chord length,
as shown in Formula (4),

x0 = x∗0= 0

x∗i = x∗i−1 + |∆Pi−1| i = 1, 2, ···, m

xi =
x∗i
x∗m

(4)

where xi is the parameter value corresponding to the current data point, and ∆Pi − 1 is the
forward difference vector, ∆Pi−1 = Pi−Pi−1.

The objective function is the square difference between each data point and the corre-
sponding point on the curve fitted according to the new knot vectors obtained by HPA in
the previous iteration, as shown in Formula (5). Then we can get Formula (7) through the
transformation of Formula (6).

f =
m−1

∑
i=1

[ P i − p(x i) ]2 (5)

Let
ri= Pi − P0N0,ρ(x i) − PmNn,ρ(x i) i = 1, 2, · · · , m− 1 (6)

Then,

f =
m−1

∑
i=1

[r i −
n−1

∑
j=1

djNj,ρ(x i)]
2 (7)

The L-th derivative of it is shown in Formula (8), in order to minimize the objective
function f, the derivative of n − 1 control points dj needs to be 0, and then the final least-
square fitting in Formula (9) can be obtained to solve the control point dj in the current
number of iterations.

∂ f
∂dL

=
m−1

∑
i=1

[−2r i NL,ρ(xi)+2NL,ρ(xi)
n−1

∑
j=1

djNj,ρ(xi)] (8)

n−1

∑
j=1

(
m−1

∑
i=1

NL,ρ(x i)N j,ρ(x i))dj =
m−1

∑
i=1

ri NL,ρ(x i)] (9)

According to the obtained basis functions Ni,ρ(x) and control points dj, they are
brought into Formula (3) to complete the curve fitting.

2.2. Research Status

At present, many companies have developed relatively mature ship CAD software
systems such as AVEVA’s TRIBON Solution, DASSAULT’s Catia, NAPA’s NAPA system,
etc. In addition, In-Il Kim [25], Hyeon-deok Lee [26] and Dongkon Lee et al. [27] also
developed a special ship design system. The dedicated ship CAD system effectively
improves the efficiency and quality of ship design. However, it has not achieved a better
solution to the problem of discrete point processing in the offset table. For example, in
the research on the reconstruction of the segmented outer plate of the ship surface, Yu
Yong et al. [28] carried out the rapid inverse calculation of the non-uniform B-spline curve,
but the inverse calculation process is to interpolate the discrete points, which cannot
avoid errors. Nowadays, researchers prefer B-spline approximation. Moreover, the knot
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placement problem is a popular content that has been studied by many scholars in recent
years [29]. The existing research methods can be divided into the static knot method and
dynamic knot method according to whether the knot can be adjusted after selection. We
first introduce the relevant static knot methods. Piegl L and Tiller W [23] first proposed an
averaging technique and knot placement technique (KTP) in 1978, and knots are selected to
reflect the distribution of data points. On this basis, Piegl L and Tiller W put forward NKTP
technology [30]. Lyche T proposed a knot removal method (KRM) in 1988 [31,32]. However,
this method cannot capture the internal characteristics of data points, and the amount
of calculation is huge. In 1999, Razdan A [33] proposed to use the shape information
of data points for knot placement. In the research method of Park H and Lee J [34], the
idea of knot adaptation was proposed. Xu Jin, Ke Yinglin et al. [35] further proposed a
feature point including the crease point, inflection point and curvature maximum point. The
influence of curvature on fitting has also become a more concerned factor [36–39]. The static
knot method is usually simple to calculate and has higher efficiency; the knot calculation
comes from artificial assumptions and cannot be moved after placement. Compared with
the dynamic knot method, the static knot method requires more knots under the same
precision requirement. The dynamic knot method is mainly a combination of B-spline curve
fitting theory and optimization algorithm, and the overall algorithm performance largely
depends on the optimization algorithm. There are hundreds of existing optimization
algorithms, and the nature-inspired optimization algorithm [40–47] is one of the most
practical branches. According to the algorithm principle, it can be divided into three
categories, as shown in Figure 1. Yoshimoto F et al. [17] and Sarfraz M [18] proposed the
application of genetic algorithm. Özkan İNİK et al. [19] combined the grey wolf algorithm.
He Bingpeng et al. [20] combined the differential evolution algorithm. Kübra Uyar et al. [21]
combined the invasive weed optimization (IWO). Akemi Gálvez et al. [22] proposed the
combination of immune algorithm and B-spline curve fitting and improved the parameter
optimization and algorithm complexity. The dynamic knot method realizes the adaptive
adjustment of knot dimension and position in each iteration; it does not rely on artificial
assumptions and carries out forward calculation through multiple groups of initial random
knots. The fitting effect of dynamic knot method is often better than the static knot method,
but its operation efficiency is low.
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3. A B-Spline Curve Fitting of Hungry Predation Optimization Algorithm with
Knot Guidance
3.1. Knot Guidance Technology

In B-spline curve fitting, zero inner knots represent a straight line. As the shape com-
plexity increases, so does the inner knot number. The knot guidance technology proposed
in this paper mainly captures the feature points of the curve through the preprocessing
of the curve data points. The feature points include jump points (position discontinuity
points), sharp points (tangent discontinuity points), curvature discontinuity points, curva-
ture extreme points and inflection points. This paper mainly focuses on the engineering
application of ship line, which includes three types of feature points, as shown in the
Figure 2.

According to the Formula (10) [38],

Ki =
2∆Pi−1PiPi+1

lili+1l∗i
= sgn(∆Pi−1PiPi+1)

sinff i
l∗i

(i = 1, 2, . . . , m − 1) (10)
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where K is the curvature of the data point; P is the data point; subscript i is the serial
number of the corresponding data point; ∆Pi−1PiPi+1 is the triangular area composed of
data point Pi−1, Pi and Pi+1; sgn is the symbolic function; ∆Pi−1PiPi+1 is positive when the
order is counterclockwise; l is the chord length between two points; and αi is the angle of
the chord, as shown in the Figure 3.
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After obtaining the curvature of each point, find the position of the feature point and
the corresponding parameter value ui. In order to ensure the diversity of the population
size, half of population still take random values in the interval [0, 1]. The other half takes
values in each interval [ui − 1, ui + 0.1]; each knot has a 50% chance to mutate, and the
value interval after mutation is [0, 1]. The method of finding feature points is described in
reference [35].

3.2. Hungry Predation Optimization Algorithm

The adaptive adjustment of knots in HPA simulates the predator–prey behavior of
animals under starvation. Distinguish individual levels in the population based on fitness
function. Those with higher fitness are α, and the remaining individuals are collectively
referred to as ω.

The three groups of knot vectors with the best fitness and their coordinates are:

Uα1
p = (u 1

p, u2
p, ···, uDα1

p )

Uα2
p = (u 1

p, u2
p, ···, uDα2

p )

Uα3
p = (u 1

p, u2
p, ···, uDα3

p )

Traverse the population in turn, and the corresponding position coordinate is:

Ui= (u 1
i , u2

i , ···, uD
i )

If the individual is α, then its position remains unchanged. If the individual is ω, the
next position Ui+1 is described as Formulas (11)–(13),

a = 2 − Iter/Max_iter (11)

Uαk
i+1= Uαk

p − A|CUαk
p − Ui| k = 1, 2, 3 (12)
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Ui+1 =
3

∑
k=1

Uαk
i+1/3 (13)

where A is a random number between [−a, a], C is a random number between [0, 2] and
Iter is the current number of iterations.

At this time, the initial adjustment of the population position has been achieved, and
each individual has a 50% chance to become a hungry individual. The hungry individual
will further hunger search and move faster to the prey position.

First, use the Euclidean distance between the current position Ui and the position Uα

of the α1 to calculate the radius Ri of the neighbor range, as shown in Formula (14).

Ri =||U i−Uα1 || (14)

Then, traverse the population size to find neighbors, as shown in Formula (15).

Ni = {U j|D i
(
Ui, U j

)
≤ Ri} (15)

where Ni is the set of neighbors and Uj is the location of the neighbor.
Finally, move the position, as shown in Formula (16).

Ui+1 = Ur + (Ur− Ui) × S × cos(
Iter

Max_iter
− 0 .5) (16)

where Ur has a 50% probability of being the location of α, and 50% is the neighbor in the
population size. S is a random number between (0, 1).

3.3. Fitness Function Selection

As a key component of the algorithm, the selection of fitness function directly affects
whether it can find the optimal solution and the convergence speed of HPA. In the whole
process of population size search, it does not rely on external information, only based on
the fitness function. Individuals in a population adjust their positions based on fitness.

This paper proposes three fitness functions that can be applied to HPA.
(a) Bayesian Information Criterion (BIC) [22]: its fitness function is described as

Formula (17).
Fitness = −2Ln(L 1) + Ln(n 1) × Np (17)

where L1 is the likelihood function, n1 is the sample size and Np is the number of parameters.
(b) Maximum error of a single point of the curve is described as Formula (18).

Fitness = Max(P ir − Pif

)
(18)

where Pir is the actual given data point, and Pif is the point on the corresponding fitting
curve.

(c) Overall standard deviation of curve is described as Formula (19).

Fitness =

√√√√∑n
i=1 (P ir−Pif

)2

Nk
(19)

where Nk is the number of knot vertices.
The BIC method considers the complexity of the calculation model and avoids the

over fitting problem by adding the penalty term of model complexity. When the number of
knots and control points is small, the BIC value will decrease with increasing the number
of knots until it reaches the minimum value. Then, as the number of knots continues to
increase, the accuracy of the curve improves slowly, and the BIC value will increase. In
practical engineering application, Formulas (18) and (19) are more intuitive and convenient.
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3.4. Dimension Calculation Rule

In the iterative calculation of population position, different individuals have different
internal knot rates λ, which causes the dimensions to be different for each individual, as
shown in Figure 4. The dimension corresponds to the number of internal knots. In order
to find fewer control points to complete the curve fitting, we must ensure the diversity of
individuals. When ωi moves towards or away from α, its dimension remains unchanged.
We deal with α whose dimension is different from ωi. Then we can get Uα1

p , Uα2
p and Uα3

p ,
and all of them have the same dimensions with ωi.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 21 
 

Fitness = Max(Pir - Pif) (18)

where Pir is the actual given data point, and Pif is the point on the corresponding fitting 
curve. 

(c) Overall standard deviation of curve is described as Formula (19). 

 Fitness = ඨ∑ (Pir-Pif)
2   n

i=1

Nk
 (19)

where Nk is the number of knot vertices. 
The BIC method considers the complexity of the calculation model and avoids the 

over fitting problem by adding the penalty term of model complexity. When the number 
of knots and control points is small, the BIC value will decrease with increasing the num-
ber of knots until it reaches the minimum value. Then, as the number of knots continues 
to increase, the accuracy of the curve improves slowly, and the BIC value will increase. In 
practical engineering application, Formulas (18) and (19) are more intuitive and conven-
ient. 

3.4. Dimension Calculation Rule 
In the iterative calculation of population position, different individuals have different 

internal knot rates λ, which causes the dimensions to be different for each individual, as 
shown in Figure 4. The dimension corresponds to the number of internal knots. In order 
to find fewer control points to complete the curve fitting, we must ensure the diversity of 
individuals. When ωi moves towards or away from α, its dimension remains unchanged. 
We deal with α whose dimension is different from ωi. Then we can get Up

஑భ, Up
஑మ 𝑎𝑛𝑑 Up

஑య, 
and all of them have the same dimensions with ωi.  

 
Figure 4. Dimensions of different individuals. 

First, the dimensions of α are judged. If the dimension is higher than that of the cur-
rently selected ωi, calculate the extra number of dimension N1 and the difference Mi be-
tween every two adjacent inner knots of the high-dimensional individual. 

The probability pi of each point to be deleted is shown in Formula (20): 

      pi= Mi ∑ Mi
m
i=0

 (i = 0, 1, ···, m) (20)

Randomly delete a knot according to the probability pi, and this process is repeated 
N1 times until two individuals have the same dimension. 

If the dimension is lower than that of the currently selected individual, calculate the 
extra number of dimension N1 and the difference Mi between every two adjacent inner 
knots of the high-dimensional individual. Randomly add a new knot in the interval with 
the largest inner knot difference Mi and repeat this process to N1 times, so that the dimen-
sions of the two individuals are the same.  
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First, the dimensions of α are judged. If the dimension is higher than that of the
currently selected ωi, calculate the extra number of dimension N1 and the difference Mi
between every two adjacent inner knots of the high-dimensional individual.

The probability pi of each point to be deleted is shown in Formula (20):

pi =
Mi

∑m
i=0 Mi

(i = 0, 1, · · · , m) (20)

Randomly delete a knot according to the probability pi, and this process is repeated
N1 times until two individuals have the same dimension.

If the dimension is lower than that of the currently selected individual, calculate
the extra number of dimension N1 and the difference Mi between every two adjacent
inner knots of the high-dimensional individual. Randomly add a new knot in the interval
with the largest inner knot difference Mi and repeat this process to N1 times, so that the
dimensions of the two individuals are the same.

3.5. Algorithm Flow

The overall algorithm flow of HPA is shown in Figure 5.
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Step 1: Import the data points of the curve, order the data points and carry out the
parameterization of the standard accumulation chord length to obtain the corresponding
parameter values.

Step 2: Set the error threshold, population size and iteration number, which are
adjusted adaptively according to the feature points and error threshold, which is introduced
in Section 4. The corresponding internal knots are obtained through the knot guidance
technology.

Step 3: Based on the existing knot vector, curve degrees and data point, the respective
control points are obtained by using the least-squares minimization method, in which the
curve degrees and data point parameters are fixed values, and the value and dimension of
each individual’s knot vectors may change after each iteration.

Step 4: According to the existing knot vectors and the control points obtained in Step 3,
a B-spline curve can be fitted by using Formula (3).

Step 5: Give a fitness function, calculate the fitness of each individual.
Step 6: Judge whether the curve fitted by each individual meets E. If the individual

meets E, and its dimension is not the largest among the population, then go to step 7. If it
does not meet E or the individual’s dimension is the largest among the population, go to
step 8.

Step 7: Determine the minimum dimension D of population that satisfies the condition,
remove individuals whose dimension is greater than D, supplement the population with
the same number of individuals with dimension of D or D−1 and return to step 3.

Step 8: Use the hungry predation optimization technology to adjust the position of
each individual.

Step 9: Judge whether the current iteration number reaches the set value Max_iter. If it
reaches, output the current optimal result. If it does not reach Max_iter, return to step 3.

4. Key Parameter Settings

There are four key parameters of the HPA:
(1) Population size W, which determines how many individuals find the optimal

solution in the population size at the same time.
(2) Internal knot rate λ: The range of λ depends on the number of given data points,

usually select interval [0, 0.5], which can be reduced with the increase of data points. The λ

is different for each individual.
(3) Error threshold E, which ensures that the error value of the final fitted curve is less

than E.
(4) Iteration number Max_iter, which determines the number of iterations of the whole

optimization process, iterates to the Max_iter time and outputs the current optimal solution.
In previous studies [17–22], the population size and iteration number have been based

on different fitting models and fitting error thresholds, relying on intuitive experience or
multiple attempts to give appropriate values, which is troublesome and time consuming.
This section takes two continuous semicircle models with radius 1 as an example, as
shown in Figure 6. We further explore the impact of population size, iteration number and
error threshold on curve fitting effect, and give the setting formula of population size and
iteration number.
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The population size determines the number of parallel solution paths. When the
iteration number Max_iter is 20 and the error threshold E is 0.1, the population size W is set
to 10, 20 and 50, respectively; the fitting result is recorded as shown in Figure 7.
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Figure 7. Influence of population size W on curve fitting, (a) W = 10, (b) W = 20 and (c) W = 50.

The inner knots of Figure 7a are 0.4328 and 0.5771, and the fitting accuracy is 0.0186.
The inner knots of Figure 7b are 0.4612 and 0.5376, and the fitting accuracy is 0.0207. The
inner knots of Figure 7c are 0.4076 and 0.5924, and the fitting accuracy is 0.0169. It can be
seen from Figure 7 that the fitting result with W = 20 is worse than W = 10 in this experiment.

The setting of the iteration number affects the step size of each iteration. The more the
iteration number, the more carefully the algorithm searches. However, when the iteration
number is large enough, increasing the iteration number will have little effect on the curve
fitting accuracy. Besides, a large iteration number will improve the operation time of the
algorithm. When the error threshold E is 0.1, multiple experiments are carried out by
changing the population size W and iteration number Max_iter. The results are shown in
Figure 8.
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Figure 8. Fluctuation of curve fitting accuracy when (a) Max_iter is 20 and W varies from 10 to 100,
and when (b) W is 20 and Max_iter varies from 10 to 50.

As shown in Figure 8a, Max_iter is 20. When W is 10 and 20, the result fluctuates
greatly, and the fluctuation is relatively small when W is 30. In Figure 8b, W is 20, and the
fluctuation is small after 30 iterations.

The setting of the error threshold determines the fitting accuracy of the B-spline curve.
The HPA algorithm can better implement the B-spline curve with the least number of
control points when the error threshold is satisfied. Set W to 30, Max_iter to 20 and set E to
0.1, 0.01 and 0.001, respectively; the fitting results are shown in Figure 9.



Appl. Sci. 2022, 12, 9465 10 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 21 
 

                       
                         (a)     (b) 

Figure 8. Fluctuation of curve fitting accuracy when (a) Max_iter is 20 and W varies from 10 to 100, 
and when (b) W is 20 and Max_iter varies from 10 to 50. 

As shown in Figure 8a, Max_iter is 20. When W is 10 and 20, the result fluctuates 
greatly, and the fluctuation is relatively small when W is 30. In Figure 8b, W is 20, and the 
fluctuation is small after 30 iterations.  

The setting of the error threshold determines the fitting accuracy of the B-spline 
curve. The HPA algorithm can better implement the B-spline curve with the least number 
of control points when the error threshold is satisfied. Set W to 30, Max_iter to 20 and set 
E to 0.1, 0.01 and 0.001, respectively; the fitting results are shown in Figure 9. 

 
Figure 9. When E is (a) 0.1, (b) 0.01 and (c) 0.001, the influence of their changes on curve fitting. 

The least-squares fitting accuracies of Figure 9a–c are 0.0207, 0.0016, and 0.0004, re-
spectively. It can be seen from the results that as E decreases, the final curve fitting result 
is getting better, and more control points are required. 

Adjust E from 1 to 0.0001, and the change of inner knot number required for the fitted 
curve, which is shown in Figure 10. 

 
Figure 10. Influence of error threshold on the inner knot number. 

(a) (b) (c) 

Figure 9. When E is (a) 0.1, (b) 0.01 and (c) 0.001, the influence of their changes on curve fitting.

The least-squares fitting accuracies of Figure 9a–c are 0.0207, 0.0016, and 0.0004,
respectively. It can be seen from the results that as E decreases, the final curve fitting result
is getting better, and more control points are required.

Adjust E from 1 to 0.0001, and the change of inner knot number required for the fitted
curve, which is shown in Figure 10.
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The optimization algorithm in the field of B-spline curve fitting is to solve the ex-
tremum problem, and the solution is a number of interrelated decimals arranged in ascend-
ing order from 0 to 1. The setting of population size and iteration number is mainly related
to the number and distribution of solutions. It is affected by factors such as error threshold
and model complexity. A small numerical setting will make it difficult to find the optimal
solution, and a large numerical setting will lead to the algorithm low efficiency. Therefore,
before the algorithm runs, we need to set a reasonable population size W and iteration
number Max_iter. This paper gives the relational Formulas (21) and (22).

W =b−In
(

E
LMAX

)
×1.2Log10(

LMAX
E )+1.5× Cpc (21)

Max_iter = 2 × W (22)

where LMAX is the maximum side length of the model, Cp is the number of model feature
points and bc is rounded down.

The design of Formulas (21) and (22) makes the HPA algorithm only need to input
the model data points and the required error threshold, and the HPA algorithm can adap-
tively adjust the population size and iteration number. The whole algorithm has better
universality, and it is ensured that the algorithm can obtain a better fitting effect at a higher
operating efficiency.

5. HPA Algorithm Test

The experiment is divided into two parts. Section 5.1 compares the static knot method
and dynamic knot method, and Section 5.2 compares with the existing commercial Software
Solidworks2022 (Dassault, US) and Catia2017 (Dassault, France).
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5.1. Comparison with Existing Research

When we deal with the problem of knot placement, except for the method of combining
optimization algorithm, B-spline curve fitting based on adaptive curve refinement using
dominant points (DOM), KTP, NKTP, KRM etc. are the best representative methods, as
shown in Table 1. Figure 11 is a comparison example of HPA in this paper and DOM
method. Park H compared related algorithms, as shown in Figure 12. Furthermore, we add
the fitting results of GWO and HPA to Figure 12. Compared with related methods, HPA
uses less control points under the same accuracy.

Table 1. Comparison of related fitting methods.

Incremental Method
Using KTP or NKTP Knot Removal Method KRM Incremental Method Using

DOM
Adaptive Adjustment

Using HPA

Preprocessing 1 Parameterization 1 Parameterization
2 Interpolation of all points

1 Parameterization
2 Selection of seed points

1 Parameterization
2 Find feature points

Iteration process

1 Knot placement
2 Least-squares
minimization

3 Deviation check

1 Selection of a candidate knot
2 Deviation check

3 Knot removal

1 Knot placement
2 Least-squares
minimization

3 Deviation check
4 Selection of a new

dominant point

1 Knot placement
2 Least-squares
minimization

3 Comparative fitness
4 Knot adaptive

adjustment
Ref. [23,30] [31] [34] Our method
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KRM, GWO and HPA.

As shown in Figure 11, the same face contour is fitted with the same 15 control points.
From the fitting results, it can be seen that the HPA proposed in this paper can better
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represent the curve shape of face contour, especially at specially marked 1, 2 and 3 points,
which are fuller at the tip of nose and more prominent at the chin compared with DOM.

Operational efficiency is an important criterion for judging the pros and cons of an
algorithm. However, due to the different research periods of each algorithm, there are
differences in both software and hardware. It is not objective to simply compare the running
time with previous literature. The optimization algorithms of the natural heuristic class
take a similar time for each iteration, and it is fairer to compare the convergence of the
same number of iterations. This paper selects six representative optimization algorithms
for face contour fitting: Genetic Algorithm [40], Differential Evolution Algorithm [41], Grey
Wolf Algorithm [42,43], Whale Algorithm [44], Particle Swarm Algorithm [45] and Gravity
Algorithm [46]. The search ability and convergence efficiency of HPA and other algorithms
are compared when using 15 control points, as shown in Figure 13.
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It can be seen from the above experiments that after knot guidance technology, the
algorithm can find a better solution in the first generation. Compared with other algorithms,
HPA tends to have higher fitting accuracy and achieve faster convergence at the same num-
ber of iterations. Besides, DE, WOA and HPA demonstrate stronger search capabilities. The
DE algorithm uses a greedy algorithm, which makes the entire calculation time approach
twice that of other algorithms.

The paper further selects the six models mentioned in the literature [19] for testing, as
shown in Table 2, and compares them with the GWO method mentioned in the literature.
The results of fitting the model are shown in Figure 14 and Table 3.

Table 2. Test six models mentioned in the literature. (Adapted with permission from Ref. [19]).

Fuction Description Variable Range

1 Data point [48]
2 f2(x) = 10x

(1+100x 2)
[−2, 2]

3 f3(x)= 0.2e−0.5xsin 5x + 4 [0, 4π]
4 f4(x) = 100

e|10x−5| +
(10x − 5)5

500
[0, 1]

5 f5(x)= sin x + 2e−30x2 [−2, 2]
6 f6(x)= sin 2x + 2e−36x2

+2 [−2, 2]

It can be seen that the fitting results of the HPA method proposed in this paper for
the six models are much better than GWO method at the same population size, iteration
number, data points and number of knots.

The test function f 4(x) is a more challenging function in the field of B-spline fitting [22],
and there is a sharp point at x = 0.5, which is a commonly used example in the B-spline
curve fitting literature. Existing fitting methods based on optimization algorithm and their
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fitting results are shown in the Table 4; PESA, MOGA, FFA and some other methods cannot
fit the f 4(x) function well. BIC is a criterion for many researchers to judge the pros and
cons of an algorithm. However, each scholar has a slightly different understanding of the
parameters in the BIC formula. Therefore, the BIC judgment formula in the B-spline curve
fitting application is different.
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Table 3. The experimental results for all functions.

Fuction Degree of
Curve

Population
Size

Number of
Iteration

Number of
Point

Number of
Knot

Number of
Control Point

MSE
(GWO)

MSE
(HPA)

1 3 50 100 49 16 20 0.024 3.21 × 10−3

2 3 50 100 90 53 57 0.010 6.32 × 10−7

3 3 50 100 200 77 81 0.008 2.31 × 10−6

4 3 50 100 201 40 44 1.395 3.18 × 10−3

5 3 50 100 201 46 50 0.032 2.43 × 10−4

6 3 50 100 201 37 41 0.026 7.58 × 10−4

Table 4. Existing fitting methods based on optimization algorithm and their fitting results. (‘×’ means
that the method can not fit the function f 4 well).

Authors, Year and Reference Method Iteration Number Knot Number BIC

Yoshimoto et al. [17] Genetic algorithms (GA) 200 5 1188
Sarfraz and Raza [18] GA and Detection Algorithms 120 × ×
Özkan İNİK et al. [19] Gray Wolf Optimization (GWO) 100 40 704
Kübra Uyar et al. [21] Invasive Weed Optimization (IWO) 15 6 430

Gálvez et al. [22] Artifificial Immune Systems (AIS) 100 5 1121
Ulker and Arslan [49] Artifificial Immune Systems 500 × ×

Ulker [50] Pareto Envelope-Based Selection Algorithm (PESA) 500 × ×
Valenzula et al. [51] Multi-Objective Genetic Algorithms (MOGA) 120 × ×

Gálvez and Iglesias [52] Fireflfly Algorithm (FFA) 500 × ×

Yuan et al. [53] Adaptive Multiresolution Basis Set with Lasso
Selection Method Variable × ×

In the AIS [22] method, the BIC calculation method is shown in Formula (23).
BIC = N × LN(Q 1) + (LN(N))(2Nod − 3ρ ∗+2)

Q1 =
N
∑

i=1
(X 1i − X2i)

2+(Y 1i − Y2i)
2 (23)
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where N is the number of data points, Nod is the number of knots and ρ* is the order of the
curve; X1i and X2i are the X coordinate values of the i-th point on the actual curve and the
fitted curve, respectively; Y1i and Y2i are the Y coordinate values of the i-th point on the
actual curve and the fitted curve, respectively.

In the testing process of the AIS method, 201 data points are selected at equal distances.
The degree of curve ρ is 3 (ρ* = 4). In order to further test the ability of the algorithm to
withstand interference, a normal fluctuation with a mean of 0 and a variance of 1 was
applied to the data points. The minimum BIC value is 1121.09 when k = 5. Under the same
BIC calculation formula, the HPA algorithm obtains the smallest BIC value of 1040.57 when
k = 9, as shown in Table 5.

Table 5. BIC values of AIS and HPA methods at the same knot.

Inner Knot Number Method Q1 RMSE BIC

κ = 3 HPA 500.889 1.578 1313.12
AIS 593.977 1.719 1336.79

κ = 4 HPA 329.117 1.279 1239.32
AIS 381.871 1.378 1258.60

κ = 5 HPA 169.758 0.919 1116.86
AIS 182.761 0.953 1121.09

κ = 6 HPA 142.331 0.842 1092.05
AIS 181.051 0.949 1129.81

κ = 7 HPA 122.786 0.782 1072.96
AIS 178.013 0.941 1137.01

κ = 8 HPA 102.723 0.715 1047.71
AIS 176.391 0.936 1145.78

κ = 9 HPA 94.045 0.684 1040.57
AIS 174.515 0.931 1154.24

κ = 10 HPA 92.984 0.680 1043.60
AIS 172.218 0.919 1159.61

In the Gray Wolf Optimizer (GWO) for knot placement in B-spline curve fitting [19],
the BIC calculation formula is shown in Formula (24). The HPA proposed in this paper is
much better than GWO in fitting the function f 4(x).

BIC = N × LN(MSE) + (LN(N))2 × (2 × Nod + ρ ∗
)

MSE = 1
N

N
∑

i=1

√
(X 1i − X2i)

2+(Y 1i − Y2i

)2 (24)

where N is the number of data points, Nod is the number of knots and ρ* is the order of the
curve; X1i and X2i are the X coordinate values of the i-th point on the actual curve and the
fitted curve, respectively; Y1i and Y2i are the Y coordinate values of the i-th point on the
actual curve and the fitted curve, respectively.

The design of the BIC value in this article refers to the mean square error. Compared
with the variance, the value will be smaller under the same fitting situation and may even
be negative. When the optimal solution fitted by the GWO method is 40 knots, the BIC
value is 704. However, the HPA algorithm obtains a minimum BIC value of 230.31 at k = 4,
as shown in Table 6. Figure 15 records the fitting results of different numbers of knots of
test function f 4(x).

When the number of knots is small, the increase of knots can greatly improve the
curve fitting accuracy, and the BIC value will decrease accordingly. When the inner knot
is 4, the shape of the curve can be better fitted. At this time, the BIC value reaches the
minimum value. As the number of knots continues to increase, the improvement of fitting
accuracy begins to decrease, and the BIC value begins to increase.
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In the GWO method, when 40 knots are used, the minimum BIC value [19] is obtained,
and the fitting result of the test function f 4(x) shows that the final fitting effect is not ideal, as
shown in Figure 14. It can be seen that the HPA algorithm proposed in this paper achieved
an accurate fitting of data points when using 40 knots, while the GWO method still cannot
solve the cusp fitting when there are 40 knots. We guess that the use of heavy knots may be
ignored in GWO.

Table 6. BIC value and knot distribution of HPA with different knot number.

Inner Knot Number MSE BIC Knot Distribution

κ = 2 2.737 446.37 0.311, 0.372
κ = 3 1.015 268.32 0.282, 0.528, 0.604
κ = 4 0.756 230.31 0.192, 0.505, 0.505, 0.505
κ = 5 0.735 245.76 0.152, 0.472, 0.472, 0.472, 0.717

κ = 6 0.707 259.12 0.151, 0.476, 0.476, 0.476, 0.697,
0.819

κ = 7 0.643 261.50 0.230, 0.309, 0.470, 0.470, 0.530,
0.673, 0.785
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5.2. Fitting of Ship Line

Figure 16 shows the offset table and ship line diagram of a ship. The ship has a total
length of 189.98 m, a shape width of 32.26 m and a shape depth of 16 m.

Solidworks and Catia are popular design softwares at present. In particular, Catia
has more prominent capabilities in complex surface design and reverse engineering. They
are widely used in shipbuilding, aviation and other industries. Take the complex ship
line on the cross section, longitudinal section and waterline surface and fit it through the
existing design software Solidworks, Catia and HPA. Figure 17 compares the maximum
error of Solidworks, Catia and HPA fitting curves under the condition of the same number
of control points.
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Figure 17. Maximum error of fitting using Solidworks, Catia and HPA at the same number of
control points.

Input the same data points into Solidworks and Catia and use 10 control points to fit
the ship line of the cross section stern, 6 control points to fit the cross section bow, 14 control
points to fit the longitudinal section and 12 control points to fit the waterline surface. From
the fitting results, it can be seen that under the same number of control points, Catia’s
fitting accuracy is higher than Solidworks, but both of their overall fitting results are less
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effective, especially in the part with continuous curvature change. Given the same data
points and the same number of control points, the HPA proposed in this paper has higher
precision and can better represent the shape of the curve than Solidworks and Catia.

Figure 18 records the fitting of the ship line of cross section bow, cross section stern,
longitudinal section and waterline surface by Solidworks, Catia and HPA. We test the
number of control points required by different methods when the fitting accuracy is similar.
Figure 19 shows the fitting results with the same number of control points described in
Figure 17.
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Figure 19. Fitting results of ship line of (a) cross section stern, (b) cross section bow, (c) longitudinal
section and (d) waterline surface with Solidworks, Catia and HPA.

Through the fitting results, it can be seen that under the input of the same data
points and the approximate fitting accuracy, compared with the existing design software
Solidworks and Catia, HPA can complete the fitting with the same effect with fewer control
points, which better proves the superiority of the method proposed in this paper.
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6. Discussion and Conclusions

This paper develops a B-spline curve fitting of hunger predation optimization on
ship line design (HPA). In the previous dynamic knot method, the initial knot is randomly
selected from the interval [0, 1], which causes many unreasonable knot vectors. Therefore,
a large population size and iteration number are required, which leads to a decrease in
the efficiency of the algorithm. The knot guidance technology is designed to add knots
in the area with complex model shape at the initial knot selection stage. This aims at the
problem that the population loses diversity prematurely in the optimization algorithm,
which leads to slow convergence and easy to fall into local optimality. A hunger algorithm
search strategy is developed to make the hungry individuals in the population size appear
near the optimal solution more quickly, and the influence of the neighbors in the population
size on their position adjustment is further considered. This aims at the problem that the
previous dynamic knot method requires manual adjustment of key input parameters such
as population size and iteration number, which is troublesome and time consuming. An
adaptive adjustment of key input parameters in HPA algorithm is proposed, which can
quickly adapt to the replacement of model and fitting accuracy. We compared with the
typical static knot method, dynamic knot method and the existing commercial Software
Solidworks and Catia, and the feasibility and superiority of HPA algorithm, are verified.
HPA achieves the goal of B-spline curve fitting with higher fitting accuracy at the same
control points, less control points under the same accuracy requirements, faster operation
efficiency and better universality. HPA can better solve practical engineering problems.

Future work includes extending HPA to B-spline surface fitting, the application of the
hunger predation algorithm in other fields and further improving the fitting accuracy and
fitting efficiency of B-spline curve fitting.
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