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Abstract: Diabetic Retinopathy (DR) is a common complication associated with diabetes, causing
irreversible vision loss. Early detection of DR can be very helpful for clinical treatment. Ophthalmolo-
gists’ manual approach to DR diagnoses is expensive and time-consuming; thus, automatic detection
of DR is becoming vital, especially with the increasing number of diabetes patients worldwide. Deep
learning methods for analyzing medical images have recently become prevalent, achieving state-
of-the-art results. Consequently, the need for interpretable deep learning has increased. Although
it was demonstrated that the representation depth is beneficial for classification accuracy for DR
diagnoses, model explainability is rarely analyzed. In this paper, we evaluated three state-of-the-art
deep learning models to accelerate DR detection using the fundus images dataset. We have also
proposed a novel explainability metric to leverage domain-based knowledge and validate the reason-
ing of a deep learning model’s decisions. We conducted two experiments to classify fundus images
into normal and abnormal cases and to categorize the images according to the DR severity. The
results show the superiority of the VGG-16 model in terms of accuracy, precision, and recall for both
binary and DR five-stage classification. Although the achieved accuracy of all evaluated models
demonstrates their capability to capture some lesion patterns in the relevant DR cases, the evaluation
of the models in terms of their explainability using the Grad-CAM-based color visualization approach
shows that the models are not necessarily able to detect DR related lesions to make the classification
decision. Thus, more investigations are needed to improve the deep learning model’s explainability
for medical diagnosis.

Keywords: explainable deep networks; diabetic retinopathy; deep learning; Grad-CAM; convolutional
neural networks; ResNet; DenseNet

1. Introduction

Diabetes is a major cause of life-threatening systemic vascular complications, includ-
ing stroke, heart attacks, kidney failure, and blindness. According to the International
Diabetes Federation [1], around 463 million people had diabetes in 2019. The number of
people with diabetes had increased to 422 million in 2014 [2] and is estimated to rise to
700 million by 2045. Diabetic Retinopathy (DR) is a common complication of diabetes,
found in a third of diabetes patients, and remains the primary cause of avoidable vision
loss in working-aged people [3]. DR is caused by damage to the retinal blood vessels;
however, it might not have symptoms until it advances to the vision-threatening stage.
Early detection of DR is essential to reduce the avoidable vision loss threat of DR. DR
screening is performed through the examinations of fundus photographs by a trained
clinician to determine DR presence and severity. The severity of DR is determined by the
presence of DR lesions, including microaneurysms, hemorrhages, cotton wool spots, and
exudates, as demonstrated in Figure 1. Given the limited number of retina specialists and
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the increased number of diabetes patients worldwide, in-person assessments are impracti-
cal and unsustainable. These examinations could result in too-late detection of DR when
the treatment is not as effective as in the early stages of the disease. Thus, the necessity of
an automated DR screening approach has long been recognized. Significant progress has
been made in computer vision, pattern recognition, and machine learning. The automatic
detection of DR began to appear in 2010, and since then, analyzing fundus images for DR
detection has been performed using numerous approaches. These methods have been
applied at different levels of analysis, ranging from general image classification, lesion
detection, anatomical structure segmentation, and DR severity determination.
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Early methods were based on classical computer vision techniques and thresholds [4].
Later, traditional machine learning algorithms had also been applied to DR detection. For
example, in [5], Chowdhury et al. trained a random forest classifier on the DIARETDB1
dataset to detect abnormalities in fundus images. The experiment showed that the random
forest achieved a better classification accuracy of 93.58% than the Naïve Bayes classifier,
which reached 83.63%. Bourouis et al. in [6] developed a hybrid model for DR classification
using three kernels for an SVM-based classifier, including the Fisher, Kullback–Leibler,
and Bhattacharyya kernels. The experiments were conducted on multiple public DR
datasets and achieved 91.33% accuracy on the DRIVE dataset with the Bhattacharyya
kernel. Emon et al. in [7] evaluated eight different machine learning models on a dataset
consisting of 1151 instances and contained features extracted from the Messidor image set.
According to the study, the logistic regression algorithm resulted in the best performance
of 75% accuracy.

Artificial Intelligence (AI) algorithms, particularly deep learning (DL), have shown
great potential in almost all domains. In the medical imaging field, DL has demonstrated
effectiveness for various tasks such as pathologies detection, diagnosis, and prognosis of
diseases, for example, brain tumors, lung infections, and retinal disorders. DL is a subcat-
egory of machine learning consisting of a hierarchical, multilayer neural network model
for automatic feature extraction. CNNs are the most common DL approach for image
classification. CNNs are well-known DL architecture in which neurons are organized in
two-dimensional planes to extract basic features from overlapping regions at the lower
layers. Then, at the higher layers, these features are combined to form more complex
and comprehensive features. However, despite the wide application of DL in automatic
diagnosis systems, most DL algorithms remain as black boxes to medical experts.

A fully automated method with a lack of human verification would be unconscionable
and potentially dangerous in a clinical setting. The lack of transparency in such systems
and the inability to explain the rationale behind the DL models’ decisions could prevent the
clinical acceptance of integrating such components into the healthcare systems. Domain
experts, especially in the medical area, often require insights into the DL model’s decision-
making process to ensure the reasonableness of the predictions. The increasing demand
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for explainability by both the end-users and the researchers has led to some noteworthy
innovations in the last years. Thus, explainable AI (XAI) has experienced a surge in medical
imaging literature. However, how these explanation methods can be used to evaluate and
compare DL architectures is still not well explored [8].

The automatic detection of DR began to appear in 2010, and the early methods were
based on classical computer vision techniques and thresholds [4]. Later, traditional machine
learning algorithms were also applied to DR detection. For example, in [5], Chowdhury et al.
trained a random forest classifier on the DIARETDB1 dataset to detect abnormalities
in fundus images. The experiment showed that the random forest achieved a better
classification accuracy of 93.58% than the Naïve Bayes classifier, which reached 83.63%.
Bourouis et al. [6] developed a hybrid model for DR classification using three kernels for
an SVM-based classifier, including the Fisher, Kullback–Leibler, and Bhattacharyya kernels.
The experiments were conducted on multiple public DR datasets and achieved 91.33%
accuracy on the DRIVE dataset with the Bhattacharyya kernel. Emon et al. [7] evaluated
eight different machine learning models on a dataset consisting of 1151 instances and
contained features extracted from the Messidor image set. According to the study, the
logistic regression algorithm resulted in the best performance of 75% accuracy.

However, deep learning and CNNs have proved their superiority over other tra-
ditional machine learning algorithms for object detection and image classification tasks.
Thus, deep learning and CNNs have been applied and evaluated for the diagnosis of
DR [9]. Authors in [10] used the Kaggle DR dataset [11] to train a CNN model to classify
referable and nonreferable DR images. They achieved 98.2% accuracy in the Messidor-2
dataset [12]. Transfer learning, which has demonstrated promising results in medical
image diagnosis, uses state-of-the-art CNN models pretrained on a large general image
dataset. The knowledge learned on a primary task is utilized and transferred to a sec-
ondary task. Transfer learning mitigates the need for a vast amount of data and substantial
computational resources.

Thus, many recent studies also utilized transfer learning with CNN architectures. The
authors in [13] trained AlexNet, VggNet, GoogleNet, and ResNet on the publicly available
Kaggle platform and achieved 95.68% accuracy for the best model. The researchers in [14,15]
used a dataset provided by APTOS and Kaggle. In [14], the researchers trained ResNet50,
Xception Nets, DenseNets, and VGG, all pretrained on ImageNet, and the best model
achieved an accuracy of 81.3%, while in [15], the authors tried fine-tuning a pretrained
Inception-V3 model for five-class classification. They subsampled a smaller version of the
Kaggle DR classification challenge dataset for model training and achieved an accuracy of
90.9%. Table 1 summarizes the related approaches for the DR automatic detection task.

Table 1. Summary of some DR automatic detection approaches applied by other related works.

Reference Dataset Approach Accuracy

[5] DIARETDB1 Random Forest 93.58%
[6] Public DR datasets SVM with Bhattacharyya kernel 91.33%
[7] Messidor Logistic Regression 75.00%

[10] Kaggle DR dataset,
Messidor-2 CNN 98.20%

[13] Kaggle DR dataset AlexNet, VggNet, GoogleNet, and ResNet 95.68%
[14] Kaggle DR dataset ResNet50, Xception Nets, DenseNets, and VGG 81.30%
[15] Kaggle DR dataset Inception-V3 90.90%

In this paper, we pursue to evaluate some state-of-the-art DL models for the task of
DR detection fundus photographs in terms of their accuracy, sensitivity, and specificity.
Additionally, we aim to compare these algorithms based on their explainability. This would
increase the expert insights and help decide the most reasonable and trustworthy models
for DR detection from retinal photographs.

The key contributions of this paper are three-fold:
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1. Evaluate three state-of-the-art deep transfer learning algorithm models using color
fundus images for automatic DR detection;

2. Optimize the proposed transfer learning deep learning architectures through early
stopping and dropout techniques to control the models’ overfitting tendency.

3. Perform Grad-CAM analysis to provide human-interpretable explanations of the deep
architectures’ predictions of DR.

2. Materials and Methods

This section discusses our approach in detail, covering the dataset and the evaluated
deep learning models, followed by the prediction explainability techniques, performance
evaluation metrics, and proposed explainability measure.

2.1. Dataset

In this work, we used a publicly available dataset at Kaggle [16]. This would allow
further investigation and benchmarking comparison. This dataset consists of a wide variety
of retinal photographs as it was collected from multiple clinics using different cameras
and over an extended period of time. The images were rated by a clinician for the severity
of DR on a scale of 0 to 4: 0 for normal, 1 for mild, 2 for moderate, 3 for severe, and 4
for proliferative DR [16]. Images in this dataset may contain artifacts or are out of focus.
The level of variation in this dataset introduced complexity and difficulty for any classifier
model, and thus, it is very important to validate the models’ decisions. However, the dataset
was originally imbalanced, and most samples belong to the normal healthy retina class. In
addition, there were no samples dedicated to a validation set. Figure 2 shows the original
dataset distribution consisting only of training and test sets of 28,103 and 7022 samples.
Indeed, imbalanced training samples would generally lead to a naïve behavior classifier,
which tends to classify the samples according to the majority class to minimize the cost
function over all training samples.
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Figure 2. Original DR dataset distribution.

Moreover, the evaluation of imbalanced test samples is biased and misleading. Thus,
to overcome this challenge, we sample three sets of training, validation, and testing to
contain the same number of samples per class shown in Figure 3. The proliferative DR class
contains the least number of samples; thus, the sampling for the training, validation, and
test sets was based on the number of samples available for this class. This results in a total
number of images in the training set of 2200, 600 for the validation, and 700 for the test set.
We also converted the task into a binary classification to detect all abnormal cases in one
category; thus, as shown in Figure 4, all abnormal categories were grouped.
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2.2. CNN Models

The CNN models employed in this study were pre-trained on the large-scale ImageNet
dataset [17], which includes 1000 categories of different objects. These models normally
perform highly on general classification tasks, especially for the objects presented in the
training dataset. However, their performance can be lowered when applied to specific
domains, such as DR detection. In the following subsections, we start by describing the
basic architecture of the CNN model. Then, we briefly describe the three pre-trained models
used in this work and highlight their main characteristics.

2.2.1. Convolutional Neural Networks

CNNs are the most common artificial neural networks used for performing computing
vision tasks such as image classification, object detection, and segmentation. The advantage
of CNNs over other machine learning algorithms such as Support Vector Machine, K-
Nearest Neighbors, Random Forest, among others, is that the CNNs can automatically
learn representative features from the images and has a higher generalization capacity [18].
A CNN is typically divided into three main components: the convolutional, pooling, and
dense layers. A convolutional layer learns the features and passes the features to a pooling
layer to perform downsampling. A dense layer learns how to classify the extracted features
into different categories. The output layer usually uses the softmax activation function to
generate the probability distribution of each category in the problem domain.

2.2.2. Visual Geometry Group

The authors in [18] proposed the architecture of the Visual Geometry Group (VGG)
network in 2013 and submitted their model for the 2014 ImageNet Challenge. VGG model
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uses a small receptive field of size 3 × 3 throughout the entire network with a 1-pixel stride.
It is worth noting that the two consecutive 3 × 3 convolutional filter layers, without spatial
pooling in between, provide a receptive field of size 5 × 5, and the three 3 × 3 convolutional
layers filters result in a receptive field of 7 × 7. This unique characteristic allows the
network to converge faster, makes the decision functions more discriminative, and reduces
the number of weight parameters.

2.2.3. The Residual Network

ResNet architecture is one of the most popular and successful deep learning models
for computer vision tasks. The residual network has multiple variants, including ResNet-
16, ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-110, ResNet-152, ResNe-t164,
ResNet-1202, and so forth. The residual unit is the main building block of the ResNet. The
intuition behind the residual unit is to ease the costly training of the very deep networks
by using a direct connection that skips some layers in between [19]. This connection is
called a ‘skip connection’ or ‘shortcut connection’ and is the core of residual blocks. With
the introduction of skip connection, the output is changed to F(x) + x instead of F(x) in the
other layers. The skip connections in ResNet solve the vanishing gradient in deep neural
networks by allowing the gradient to flow through this alternate shortcut pathway [19].
The deep ResNet is a stack of residual units seen as small neural networks with a skip
connection. ResNet18 is a 72-layer architecture with 18 deep layers. The input size to the
network is 224 × 224 × 3, which is predefined.

2.2.4. DenseNet-121

DenseNet is another type of CNN that uses dense connections between layers through
the Dense Blocks [20]. Dense Blocks connect all layers directly with each other. However,
each layer obtains additional inputs from all previous layers and passes its feature maps to
all subsequent layers in a feed-forward process. DenseNets alleviate the vanishing gradient
problem, encourage feature reuse, and reduce the number of learnable parameters [20].
DenseNet-121 is the simple DenseNet network designed for the ImageNet dataset. It
consists of multiple dense and transition blocks. Transition Block performs as a 1 × 1 con-
volution with 128 filters, followed by a 2 × 2 pooling with a stride of 2, resulting in dividing
the size of the volume by dividing volume size and the number of feature maps in half.

2.3. Models’ Explainability Using Grad-CAM

Deep architectures take in more than a million parameters of complex, convoluted
operations. Thus, the interpretability of such algorithms is challenging. Class Activation
Mapping (CAM) is one technique proposed to enhance the explainability of deep learning
models. The basic idea behind CAM is to localize the deep discriminative features and
visualize the object parts detected by the CNN [21].

The study in [22] inspired this idea and demonstrates that convolutional layers of
CNNs behave as object detectors despite no supervision of the object’s location. To gen-
erate the CAMs, the predicted class weights are projected back to the activation maps of
the previous convolutional layer to highlight class-specific discriminative regions. This
approach provides visual explanations as each activation map contains different spatial
information about the input, and when the convolutional layer is close to the classification
layer, its activations are sufficiently high-level to provide a visual localization to explain
the final decision. Let f be a CNN-based classification model and c a target category. Given
an input image x and a convolutional layer of f , the CAM with respect to c can be defined
as a linear combination of the activation maps of the convolutional layer, as follows [23]:

CAMc(x) =
N f

∑
k=1

wc
k Ak (1)
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where N f denotes the number of filters of the convolutional layer, Ak is the kth filter of
the activation, and wc

k are weight coefficients indicating the importance of the activation
maps with respect to the target class c. However, CAM is restricted to having a global
average pooling (GAP) layer after the final convolutional layer and then a dense linear
layer. The GAP computes the average of each feature map for each corresponding class,
and the resulting vector is fed into the softmax activation layer, which outputs the class
probabilities. If the CNN-based model does not have a GAP in the final layer, CAM
requires removing the fully connected layer before the final output and replacing it with the
GAP [21]. Gradient-weighted Class Activation Mapping Grad-CAM has been suggested as
a generalization version of CAM, as it can be applied to any CNN-based models without
modifying their architectures [23]. Similar to the CAM, Grad-CAM employs the spatial
information preserved through convolutional layers to highlight the parts of an input
image that are important for the classifier decisions. However, Grad-CAM uses class-
specific gradient information produced by the feature maps of the last convolutional layer to
generate a class-discriminative localization heatmap corresponding to a particular class [23].
The importance of feature map k for the target class c is computed using the gradient of
the logits of class c with respect to the activation maps of the final convolutional layer, and
the gradients are averaged across each feature map, a ReLU nonlinearity is applied to only
consider the pixels that have a positive influence on the score of the target class [23]:

Lc
Grad−CAM = ReLU

 N f

∑
k=1

wc
k Ak

 (2)

2.4. Performance Evaluation Metrics

In this work, five evaluation metrics were employed to provide complete coverage
and unbiased analysis of the results. This includes the following:

• Accuracy: calculated as the percentage of the correctly classified images by:

Accuracy =
TP + TN

N
(3)

where N is the total number of images in the evaluated set, TP is the true positive, i.e.,
detected abnormal cases, and TN is the true negative, i.e., normal cases not detected
as abnormal.

• Precision: calculated as the number of TP divided by the sum of TP and false positives,
normal cases detected as abnormal.

Precision =
TP

TP + FP
(4)

• Sensitivity/Recall: calculated as the number of, divided by the sum of TP and false
negatives FN, abnormal cases detected as normal:

Recall =
TP

TP + FN
(5)

• F1-Score: defined as the harmonic mean of precision and recall:

F1 − Score = 2∗ Precision ∗ Recall
Precision + Recall

(6)

• Confusion matrix: A confusion matrix is a table used for summarizing a classifier’s per-
formance. The number of correctly and incorrectly classified samples are summarized
with count values and broken down by each category.
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2.5. Proposed Explainability Evaluation Metric

In this paper, we propose a novel explanatory metric to validate a deep learning
model’s decision, a model’s conformity that measures the proportion of model attention to
DR-related lesions. To calculate a model’s conformity over the whole test set, we average
the conformity of each instance in that set. We visualize the evaluated deep learning models’
Grad-CAM and evaluate the results using the conformity measure as follows:

conformity =


1
N

N
∑

i=1
1 − FDLi

1+FDLi
when Nl = 0

1
N

N
∑

i=1

TDLi
TDLi+FULi+FDLi

when Nl > 0
(7)

where N is the total number of images in the evaluated set, Nl . is the number of DR lesion
regions present in image i, TDLi is the number of correctly detected lesions, FULi. is
the number of undetected lesions, and FDLi is the number of incorrectly detected lesions.
When Nl = 0 , i.e., in the case of normal images, we assume that the whole image should
contribute to the classifier prediction. Thus, no specific region should be highly activated
and highlighted using Grad-CAM. Therefore, the conformity of a model, when tested on
image i, equals one in this case. In contrast, if the model highlights many irrelevant regions,
the conformity approaches zero. When Nl > 0 , i.e., in case of abnormal images, all lesions’
regions should be highlighted using Grad-CAM. The conformity would equal one if all
lesions’ regions were highlighted and approach zero if the classifier either detects false
regions or misses relevant DR signs regions.

3. Results

In this study, we first compared the performance of the three models on the test set
for both five classes and binary classification to see how well each model differentiates
abnormal and abnormal fundus photos in these two tasks. Then, we evaluated each
model’s explainability as measured by our proposed conformity metric to validate the
models’ performance. We visualized the Grad-CAM outputs to compute the conformity of
normal and abnormal retinal photographs. Finally, we discussed the correlation between
explainability and the models’ performance.

3.1. Model Performance on the Test Set
3.1.1. Binary Classification

Table 2 presents the three models’ performance evaluation on the test and train sets
for the binary classification of retinal images, i.e., whether normal or contains DR-related
signs. As shown, VGG-16 resulted in the highest accuracy on the test set with the least
variance between train and test set accuracies. On the other hand, Dense-Net121 clearly
overfits, resulting in much lower test accuracy than training accuracy.

Figure 5 shows the three models’ confusion matrices on the test and train sets also for
the binary classification of retinal images. As can be seen, VGG-16 resulted in the lowest
number of false positives and the highest number of true positives, while ResNet-18 has
the highest number of false positives and the lowest number of true positives.

Table 2. Performance evaluation on the test and train sets for DR detection.

Model Precision 1 Recall 1 F1-Score 1 Train Accuracy Test Accuracy

VGG16 0.87 0.52 0.65 78.07% 73.04%
ResNet-18 0.67 0.68 0.67 78.44% 67.14%

DenseNet-121 0.74 0.71 0.73 91.11% 72.95%
1 Calculated for the test set.
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3.1.2. Multiple Classification

Table 3 presents the three models’ performance evaluation on the test and train sets
for the five DR stages classification of retinal images. Again, as shown, VGG-16 resulted
in the highest accuracy on the test set with the least variance between train and test set
accuracies, and Dense-Net121 overfitted the train set, resulting in much lower test accuracy
than training accuracy.
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Table 3. Performance evaluation on the test and train sets for DR stages classification.

Model Precision 1 Recall 1 F1-Score 1 Train Accuracy Test Accuracy

VGG16 0.45 0.48 0.47 64.27% 48.43%
ResNet-18 0.44 0.48 0.46 76.18% 47.86%

DenseNet-121 0.42 0.46 0.44 83.05% 45.57%
1 Calculated for the test set.

Figure 6 shows the three models’ confusion matrices on the test and train sets for the
five DR stages classification of retinal images. It is worth noting that VGG-16 demonstrated
the highest classification accuracy between the two early stages of DR, which might mean
the ability to capture some DR lesions not seen by other models.
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3.2. Models Explainability on the Test Set

Table 4 demonstrates some examples of Grad-CAM outputs along with the original
fundus photos. Table 5 presents the results of the proposed explainability metric, conformity.
As can be seen from Table 4, classifiers might activate irrelevant background regions or
normal retinal structures such as the optic disc or the macula. Additionally, the deep
learning classifiers do not capture some clear lesion sign regions. For example, as shown
in Table 4, image b, ResNet-18 model decisions were based on the background regions.
Furthermore, in image c, ResNet-18 and DenseNet-121 models emphasized some irrelevant
regions and failed to find DR-related signs even though the DR lesions are distinctive.
Lastly, ResNet-18 and DenseNet-121 models are confused by the normal retina structure,
which caused false classification by these models.

Table 4. Examples of Grad-CAM output of the evaluated deep learning models.

Original Image VGG16 ResNet-18 DenseNet-121
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training and testing. This is usually due to the domination of normal over abnormal cases. 
Highly skewed data means the data are not evenly distributed. Machine learning models 
are designed to improve accuracy by reducing error and tend to produce biased and in-
accurate results when faced with imbalanced datasets. Evaluation of an imbalanced 
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Table 5. Model conformity measures.

Model Conformity with Normal
Retinal Photos

Conformity with
Abnormal Retinal Photos

Average
Conformity

VGG16 0.2000 0.2414 0.2207
ResNet-18 0.0294 0.0645 0.0469

DenseNet-121 0.0385 0.0286 0.0336

4. Discussion

In recent technological advancements, the diffusion of deep learning architectures
allows for more promising results corresponding to various applications, including medical
imaging and DR diagnosis. Despite achieving remarkable results in terms of model accura-
cies, deep learning-based methods have not achieved a significant deployment in clinical
settings. One major reason is the lack of tools to inspect the decisions of deep learning
models, as these models might make the right decision due to wrong reasoning. This is
a serious issue, which makes it essential to give more attention to analyzing the black box
nature of deep learning models. Another issue related to the performance evaluation of
deep learning models in the medical field is the skewness of the data used for training
and testing. This is usually due to the domination of normal over abnormal cases. Highly
skewed data means the data are not evenly distributed. Machine learning models are
designed to improve accuracy by reducing error and tend to produce biased and inaccurate
results when faced with imbalanced datasets. Evaluation of an imbalanced dataset using
accuracy metric, for example, can also be misleading as the minority class is normally the
class of interest, i.e., the disease cases.

In this work, we started by creating a balanced DR dataset by obtaining the same
number of instances for all classes. The main objective of dataset balancing is to train
unbiased models and to have an accurate and valid evaluation. In this work, balancing data
experiments reveal that the deep learning models tend to overfit the training set and do not
necessarily perform well on unseen fundus photographs. This highlights the importance of
giving more attention to this difficulty before feeding the algorithms with skewed data and
validating the experimental results.

To overcome the challenge of unexplained predictions, we proposed a new metric that
measures the models’ attention to the DR symptoms. We conducted two experiments to
classify the fundus images into two and five classes. We fine-tuned three state-of-the-art
deep learning architectures in both cases and visualized their decisions using Grad-CAM
techniques. Our conformity metric is designed to demonstrate the models’ capability to
generate a valid rationale for the classification decision. The conformity values range
between 1 if all DR signs regions are highlighted by the attention techniques and approach
zero if the classifier either detects false regions or misses relevant DR relevant regions.
Analyzing the three fine-tuned models results in their conformity and discloses some
interesting characteristics of these models and the attention methods. First, Grad-CAM,
as a class-discriminative localization technique, can generate visual explanations for all
three CNN-based models without requiring architectural changes or re-training. However,
visualizations lend insight into the failures of these models to capture the region of interest
related to the DR diagnosis task. Second, as shown in Tables 2, 3 and 5, the VGG-16 model
manifests the lowest generalization error and the highest conformity and explainability
capabilities. This could be due to the small receptive field size used throughout the entire
network and the lack of skip connections.

Third, as seen in Tables 2, 3 and 5, DenseNet-121 led to the highest generalization
error and overfitting of the training. Interestingly, the conformity metric of this model
is the lowest compared to the other models. This emphasizes the necessity for both the
data balancing step and the regularization of these models. Additionally, it highlights the
correlation between the models’ performance and our proposed explainability metric.
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5. Conclusions

In this paper, we evaluated three state-of-the-art models for DR binary and five-stage
classification using a fundus images dataset. First, we created balanced training, validation,
and test sets to ensure the validity of the evaluation results. Evaluating imbalanced sets
can be misleading, especially with a skewed dataset and the domination of one class
over another. Second, we optimized and fine-tuned the three models and evaluated their
performance. The results show that the complexity and depth of these models make them
prone to overfitting. Thus, their performance on the test degrades significantly. However,
VGG-16 resulted in the least gap between training and test set accuracies and achieved the
best generalization among the other models. Third, we proposed a new metric to compare
the classification performance of the three models from the explainability aspect, conformity.
The proposed metric utilizes the Grad-CAM technique to measure the proportion of model
attention to DR-related signs. The superiority of VGG-16 was further demonstrated when
evaluating the models using conformity metrics. VGG-16 achieved significantly higher
conformity and showed much more justified decisions than the other models. In the future,
we aim to evaluate other deep learning models’ explainability using our proposed metric
and to incorporate lesion detectors with a general classifier to achieve more interpretable
classification decisions.
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