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Abstract: In this paper, we propose a novel model to extract highly precise depth maps from missing
viewpoints, especially for generating holographic 3D content. These depth maps are essential
elements for phase extraction, which is required for the synthesis of computer-generated holograms
(CGHs). The proposed model, called the holographic dense depth, estimates depth maps through
feature extraction, combining up-sampling. We designed and prepared a total of 9832 multi-view
images with resolutions of 640 × 360. We evaluated our model by comparing the estimated depth
maps with their ground truths using various metrics. We further compared the CGH patterns created
from estimated depth maps with those from ground truths and reconstructed the holographic 3D
image scenes from their CGHs. Both quantitative and qualitative results demonstrate the effectiveness
of the proposed method.

Keywords: depth map estimation; 360-degree holographic contents; deep learning

1. Introduction

A depth map image represents information related to the distance between the cam-
era’s viewpoint and the object’s surface. It can be reconstructed based on the original
(RGB color) image and generally has a grayscale format. Depth maps are used in three-
dimensional computer graphics, such as three-dimensional image generation and computer-
generated holograms (CGHs). In particular, phase information, which is an essential el-
ement for CGHs, can be acquired from depth maps [1,2]. The 360-degree RGB images
and their corresponding depth map image pairs are required to observe 360-degree digital
holographic content. If a specific location does not have a depth map (missing viewpoint),
its corresponding holographic 3D (H3D) scene will not be visible. Depth map estimation
compensates for missing viewpoints and contributes to the formation of realistic 360-degree
digital hologram content. In this study, we propose a novel method for learning depth in-
formation from captured multi-view points and estimating depth information from various
missing viewpoints. An overall schematic of the proposed multi-view method is shown in
Figure 1.
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Figure 1. (a) Depth map estimation at missing viewpoints (II) using multi-viewed RGB-Depth map
set (I). Only RGB color image exists at each missing viewpoint. (b) The proposed HDD model
provides holographic 3D content (CGHs) with even missing viewpoints (II) covered to the full so
that the user can watch much richer 360-degree holographic AR movies (3D model of the deer in
figure was provided from TurboSquid, https://www.turbosquid.com/ko/3d-models/free-caribou-
3d-model/591531, accessed on 17 September 2022).

2. Previous Research

Many previous studies have estimated depth maps based on three distinct approaches.
The first is the monocular approach. Battiato et al. [3] proposed the generation of
depth maps using image classification. In this work, digital images are classified as
indoor, outdoor, and outdoor with geometric objects, with low computational costs.
Eigen et al. [4] proposed a convolutional neural network (CNN)-based model consist-
ing of two different networks. One estimates the global structure of the scene, whereas
the other estimates the local information. Koch et al. [5] studied the preservation of
edges and planar regions, depth consistency, and absolute distance accuracy from a single
image. Other studies adopting conditional random fields [6–8], generative adversarial
networks [9,10], and U-nets with an encoder–decoder structure have been introduced [11].
Alhashim et al. [12] applied transfer learning to a high-resolution depth map estimation,
which we refer to as conventional dense depth (CDD) for the remainder of this paper.

The second method is a stereo-view approach, which uses a pair of left and right color
images as input [13,14]. Wang et al. [15] recently applied self-supervised learning to single
depth map estimation based on stereoscopic color images. Their model used a pair of left
and right color images to synthesize a middle-view-pointed color image and estimated
its corresponding depth map. The stereo-view approach is different from the proposed
multi-view method as it can estimate the depth map of only a single-viewed image located
between the left and right images.

The third approach estimates a single depth map using multi-view images (more
than two RGB images). Many of them use the plane-sweep method [16], which is a basic
geometry algorithm for finding intersecting line segments. Choi et al. [17] used CNNs for
multi-view stereo matching, which combines the cost volumes with the depth hypothesis
in multi-view images. Im et al. [18] proposed an end-to-end model that learns a full
plane-sweep process, including the construction of cost volumes. Recently, Zhao et al. [19]
proposed an asymmetric encoder–decoder model that has improved accuracy for out-
door environments. Wang et al.’s work features a CNN for solving the depth estimation
problem on several image–pose pairs that are taken continuously while the camera is mov-
ing [20]. All of the above studies can generate only a single depth image using multi-view
RGB images.

To provide realistic holographic metaverse [21,22], Augmented Reality (AR) [23], or
Virtual Reality (VR) [24] content (see Figure 1b) to users, it is essential to estimate as many
highly precise depth maps as possible in a short time for each given narrow angular range.
Therefore, in this study, although we use the input data of multi-view RGB images, we do
not adopt either conventional stereo-view or multi-view methods because these methods

https://www.turbosquid.com/ko/3d-models/free-caribou-3d-model/591531
https://www.turbosquid.com/ko/3d-models/free-caribou-3d-model/591531
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use multiple RGB images as input to output only a single depth map. Our model can
generate new depth maps derived from new RGB images of the missing viewpoints, as
illustrated in (II) of Figure 1a. As a result, we were able to obtain 360-degree depth maps
of objects for realistic holographic 3D or AR/VR content. Furthermore, we performed
experiments to test the quality of the estimated depth maps by reconstructing holographic
3D scenes from the CGHs generated by the estimated depth maps. Our experimental
results show the effectiveness of our approach.

3. Proposed Method
3.1. Data Preparations

We first introduce a method that generates a 360-degree, multi-view RGB image–depth
map pair data set using the Z-depth rendering function provided by 3D graphic software,
Autodesk Maya 2018 [25]. Second, we present a neural network architecture that estimates
depth maps. Finally, the experimental results are discussed. In addition, we also show the
results of synthesizing CGHs, numerical reconstruction, and optical reconstruction using
RGB image–depth map pairs in the next section. In this study, a data set of multi-view
RGB image–depth map pairs was generated using Z-depth rendering provided by Maya
software. To extract the RGB image–depth map pairs in Maya software, we devised two
identical 3D objects located near the origin and a virtual camera with a light source that
shoots these two solid objects, so that the virtual camera could acquire depth difference
information between two solid figures during camera rotation around the origin. Depth
measurements along the Z-direction from the camera were made using a luminance depth
preset supplied by Maya software.

The virtual camera acquires 1024 pairs (for each shape of both RGB images and depth
maps) while rotating 360-degrees around the axis of rotation. Shapes of 3D objects that
we used for the study were a torus, cube, cone, sphere, dodecahedron, and icosahedron.
We used a total of 9832 images for the experiments in this study. Among them, 4916 are
RGB images and the remaining 4916 are depth map images. Both RGB images and depth
map images are classified into six shapes (torus, cube, cone, sphere, dodecahedron, and
icosahedron). The first four shapes (torus, cube, cone, sphere) are contained in data set 1
and were used in the first experiment where the depth map estimations were used during
the training phase. Of the total data, 60% were used for training and 40% were used for
the tests where each instance consists 1024 views. Four objects in data set 1 were learned
together without being separated.

The remaining shapes (dodecahedron and icosahedron) were used in the second
experiment where the estimations for their objects were only used for testing purposes.
We conducted this experiment to demonstrate our proposed method’s generalizability in
unseen shapes. Table 1 shows the camera settings used to create 3D objects, and Table 2
shows the data specification for the entire experiment.

Table 1. Camera settings for 360-degree 3D content.

Distance from virtual camera to 255 depth 11 cm
Margin from depth boundary to object 2 cm

Distance from virtual camera to 0 depth 28.7 cm
Distance between two objects (Center to center) 8.3 cm

Distance from 0 depth to 255 depth 14.2 cm
Radius of camera rotation path (R) 20 cm
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Table 2. Data sets in which RGB images and depth maps are prepared for training and test in
the research.

Data Set 1 (Depth Map Estimation for Objects Used in Train)

Generated sample Shape Training set/Test set

RGB images 4096

Torus 1024

Set for
training

614

Set for
test

410

Cube 1024 614 410

Cone 1024 614 410

Sphere 1024 614 410

Depth map
images 4096

Torus 1024

Set for
training

614

Set for
test

410

Cube 1024 614 410

Cone 1024 614 410

Sphere 1024 614 410

Data set 2 (Depth map estimation for objects not used in train)

Generated sample Shape Training set/Test set

RGB images 820
Dodecahedron 410 Set for

training
- Set for

test

410

Icosahedron 410 - 410

Depth map
images 820

Dodecahedron 410 Set for
training

- Set for
test

410

Icosahedron 410 - 410

3.2. Proposed Model

The proposed depth map estimation model HDD (Holographic Dense Depth) consists
of two components: the encoder and decoder, as shown in Figure 2 and Table 3. We
experimented with several encoders as seen in previous studies [4,8,12]. Then, we found
that deeper layers and more convolution operations do not necessarily lead to better depth
map estimation results and DenseNet-161 [26] is an optimal model for our purpose. The
encoder performs feature extraction and down-sampling of the input RGB images. Each
feature maps are connected by skip-connections to correspond the up-sampling layer in the
decoder. At this point, both layers are calculated as concatenation. The decoder performs
up-sampling by concatenating the extracted features based on the size of the RGB image.
The weights for both components are optimized by a loss function that minimizes the
discrepancy between the ground truth and the estimated depth map. CDD learns and
estimates the depth from a single viewpoint. On the other hand, the proposed model,
HDD, learns depth from multiple viewpoints and estimates the depth of viewpoints that
are not used for training (new viewpoints). We also adopted bilinear interpolation in the
up-sampling layer and ReLU as the activation function, of which are different from CDD.
Consequently, we obtained better depth estimation results.

Since Eigen et al.’s research [4]—which was an early CNN-based depth map estimation
study—in general, the loss function of depth map estimation has been based on a difference
between ground truth depth map and estimated depth map. Furthermore, in the compar-
ative model CDD [12], MSE (Mean Squared Error) and SSIM (Structural Similarity) [27]
were used together for loss function. They optimized coefficient of loss function for CDD’s
purpose (general depth map estimation). In this study, we experimentally explored the best
coefficient of loss function that gives the optimal depth estimation for our purpose (depth
map estimation for 360-degree holographic content). As a result from this experiment,
we concluded that the coefficient of 100% MSE and 0% SSIM is optimal for depth map
estimation for our data, of which are suitable for 360-degree holographic content. The
details of the loss function coefficient are shown in Figure S1.
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Figure 2. Pipeline for proposed model HDD and digital hologram reconstruction. Data set for RGB
color image and ground truth depth map is created using Autodesk Maya 2018, Maya Software
(https://www.autodesk.com/products/maya/overview, accessed on 17 September 2022).

Table 3. Main components in the proposed model HDD.

Architecture of Proposed Model

Input Input (RGB images) [ch = 3, shape = 640 × 360]

Convolution 7 × 7 convolution, stride 2 [ch = 96, shape = 320 × 180]

Encoder
(Pre-trained

DenseNet-161)

Batch normalization
ReLu

3 × 3 max pooling
[ch = 96, shape = 160 × 90]

Dense block (6 dense layers)
transition layer [ch = 192, shape = 80 × 45]

Dense block (12 dense layers)
transition layer [ch = 384, shape = 40 × 22]

Dense block (36 dense layers)
transition layer [ch = 1056, shape = 20 × 11]

Dense block (24 dense layers) [ch = 2208, shape = 20 × 11]

Batch normalization [ch = 2208, shape = 20 × 11]

https://www.autodesk.com/products/maya/overview
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Table 3. Cont.

Bottleneck 1 × 1 convolution [ch = 1104, shape = 20 × 11]

Decoder
(Dense Depth)

Up-sampling layer [ch = 552, shape = 40 × 22]

Up-sampling layer [ch = 276, shape = 80 × 45]

Up-sampling layer [ch = 138, shape = 160 × 90]

Up-sampling layer [ch = 69, shape = 320 × 180]

Convolution 3 × 3 convolution [ch = 1, shape = 320 × 180]

Output Bilinear interpolation [ch = 1, shape = 640 × 360]

Dense layer Transition layer Up sampling layer

Batch normalization Batch normalization Bilinear interpolation

ReLu ReLu Skip connection

1 × 1 convolution 1 × 1 convolution 3 × 3 convolution

Batch normalization 2 × 2 max pooling Batch normalization

ReLu - ReLu

3 × 3 convolution - 3 × 3 convolution

- - Batch normalization

- - ReLu

4. Experiment Results and Discussion

All experiments were performed in the following hardware environment: ASUS
ESC8000-G4 series with Nvidia Titan RTX × 8.

4.1. Quantitative Results

Figure 3a shows the loss curve averaged over four objects (torus, cube, cone, and
sphere) during training for the HDD model. Then, Figure 3b shows the typical trends of
PSNR (peak signal-to-noise) of HDD and CDD for the torus, where the x-axis represents
the step number over 90 epochs. In the case of the torus, Figure 3c shows the distribution
of ACC (accuracy) [28], indicating the similarity between the ground truth depth map
and the depth map estimated from HDD and from CDD, where the x-axis represents the
angular degree corresponding to viewpoints (see Figure 1). In addition, Figure 3d shows
the comparison between RMSE from the HDD and RMSE from CDD for each object. Table 4
shows the performance comparison between HDD and CDD by using various quantitative
metrics, for each one that is defined and explained in Equations (S1)–(S9).
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Figure 3. (a) Curve of the loss MSE averaged over all objects during training for the HDD model;
(b–d) comparison of HDD and CDD using PSNR trend, ACC distribution with ground truth depth
map for torus, RMSE difference for all objects after training.

Table 4. Quantitative comparison of HDD (proposed model) and CDD (reference model). (a–c): The
higher is better; (d–g): The lower is better.

Models
(a) SSIM (b) PSNR (dB)

Torus Cube Cone Sphere Torus Cube Cone Sphere

HDD 0.9999 0.9999 0.9999 0.9999 84.95 84.42 84.90 85.03

CDD 0.9999 0.9999 0.9999 0.9999 84.64 83.94 84.68 84.62

Models
(c) ACC (d) Abs rel

Torus Cube Cone Sphere Torus Cube Cone Sphere

HDD 0.9933
± 0.0040

0.9933
± 0.0030

0.9928
± 0.0037

0.9965
± 0.0012 0.022 0.018 0.022 0.017

CDD 0.9925
± 0.0039

0.9934
± 0.0027

0.9926
± 0.0036

0.9959
± 0.0013 0.019 0.017 0.016 0.017

Models
(e) Sq rel (f) RMSE

Torus Cube Cone Sphere Torus Cube Cone Sphere

HDD 0.0058 0.0046 0.0058 0.0043 0.0009 0.0007 0.0006 0.0005

CDD 0.0062 0.0052 0.0061 0.0047 0.0012 0.0013 0.0008 0.0013

Models
(g) LRMSE

Torus Cube Cone Sphere

HDD 0.0114 0.0117 0.0111 0.0110

CDD 0.0116 0.0122 0.0113 0.0112
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4.2. Qualitative Results of the Image Quality
4.2.1. Comparison of the Proposed Model (HDD) with the Ground Truth Using
Holographic 3D Images Reconstructed from CGH

Figure 4 shows the comparison between 3D images to be constructed from CGH using
estimated and ground truth depth maps, respectively. The 3D holographic images were
reconstructed by two different methods—numerical and optical reconstruction.

Figure 4. Results of numerical and optical reconstruction from CGHs using estimated depth maps
as well as ground truth for the torus. A focused object is indicated by an arrow mark. (Results for
entire viewpoints are shown in Videos S1 and S2. Results of numerical and optical reconstruction
with other objects can be seen in Figure S2).

The CGH image of each viewpoint is calculated by the Fast Fourier Transform (FFT)
algorithm [29,30] using RGB images and depth maps. During the FFT computational
process, either a pair of an RGB image and its corresponding ground truth or estimated
depth map is used as input per viewpoint. The function of CGH H(x,y) synthesized from
the the FFT-based algorithm contains complex numbers in general and can be written as

H(x, y) = |H(x, y)|eiΦ(x,y) (1)

where |H(x,y)| is the amplitude of H(x,y) and Φ(x, y) is its phase, respectively. After
the CGHs of 1024 views were prepared for each solid object, an additional process of
encoding called Lee’s scheme [29] was adapted so that they could be represented on an
amplitude-modulating spatial light modulator (SLM), that is, a reflective LCoS (liquid
crystal on silicon)-SLM that we used in the study. Lee’s method decomposes a complex-
value field into four real and non-negative coefficients, Lm(x, y) where m is the natural
number of 1 ≤ m ≤ 4; the decomposition of the hologram function by Lee’s encoding can
be expressed by

H(x, y) = L1(x, y)ei0 + L2(x, y)eiπ/2 + L3(x, y)eiπ + L4(x, y)ei3π/2 (2)

where at least two among four coefficients Lm(x, y) are equal to zero. The SLM that is used
for optical reconstructions can display an 8-bit grayscale with a resolution of 3840 × 2160
pixels, an active diagonal length of 0.62”, and a pixel pitch of 3.6 µm. A fiber-coupled,
combined beam from RGB laser sources (wavelengths: 633 nm, 532 nm, and 488 nm of the
MatchBox Laser Series) passed through an expanding/collimating optical device to supply
coherent, uniform illumination on the active area of the SLM. A field lens (focal length:
f = 50 cm) was positioned just after the LCoS-SLM, and an experimental observation of
the optically reconstructed images was performed using a DSLR camera (Canon EOD 5D
Mark III), whose lens was located within an observation window that was generated near
the focus of the field lens [30] (see Figure 5). The results of the camera-captured optical
reconstructions and numerical reconstructions from the synthesized CGHs are shown in
Figure 4. To prove the depth difference in a real 3D space between two objects based on the
prepared 360-degree holographic content, we demonstrated the accommodation effect with
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optically realized holographic 3D scenes. Each photograph in the optical reconstruction’s
column of Figure 4 presents the experimental demonstration to simultaneously indicate the
clear object and the blurred object in each picture when the camera lens is set either on the
rear object’s focal plane or on the front object’s focal plane, as shown from each photograph
in the optical reconstruction column of Figure 4.

Figure 5. Geometry of the optical reconstruction system for holographic 3D observation: (a) schematic
diagram to be used in numerical simulation, and (b) its optical experiment setup. Observer’s eye lens
in (a) is located at the position of the focal length of the field lens, corresponding to the observation
position of the Fourier plane away from holographic display (LCoS) in (b).

When the holographic 3D images based on the depth map estimated from the proposed
deep learning model are observed, there is a weak blurring in comparison with images
based on the ground truth depth map, as shown in Figure 4. This is because the difference
between depth values of the two objects on the basis of estimation has a minute deviation
from that between the depth values of the two objects on the basis of a reference (ground
truth). However, the photographs to monitor reconstructed scenes in Figure 4 indicate
that this actual deviation is small enough to well support the accommodation effect on
holographic 3D scenes for both deep learning and ground truth cases; when an object
between two objects exists on the camera’s focus, its photographic image is clearly sharp,
while an object that is out of focus is completely blurred. Results to observe reconstructed
3D scenes in the other objects are presented in Figure S2.

4.2.2. Comparison of the Proposed Model (HDD) with Previous Models (Using Four Kinds
of Objects Used in the Course of the Training Phase)

To qualitatively evaluate the depth map estimation performance of the HDD, we not
only compared the depth map estimations to verify the improvement of the proposed
HDD model over the CDD model (reference model), but we also compared the CGH
reconstruction results of these two models. Furthermore, to increase the reliability of
the proposed HDD model, we also compared the estimated depth map/image quality
of the holographic 3D reconstruction of our proposed model with another model called
AdaBins (state-of-the-art model), which was recently developed by Bhat et al. [31]. In
this experimental verification, we included the results of the ACC (accuracy test) of CGH
images. The AdaBins model, as a competitive model, was also trained using the same
training data set that we used for both HDD and CDD models. We mainly focused on
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comparing depth map estimation results and CGH’s reconstruction results from HDD with
those from AdaBins.

Figure 6 shows the depth map estimation results from HDD, AdaBins, and CDD, along
with the ground truth depth map for the torus. Figure 7 shows the 3D images reconstructed
from CGH for ground truth, HDD, AdaBins, and CDD. When we move the observer’s
focal point from one object to another for each given scene, as shown in Figure 7, a typical
focus–defocus effect is clearly observed between the two objects at the same viewpoint. This
effect manifests the accommodation by observing the holographic 3D images reconstructed
from CGHs.

Figure 6. Comparison of depth map estimations for the torus. The red box indicates the result
from the proposed HDD model. Information close to the camera are represented as brighter, and
information far to the camera are represented as darker. Results of depth map estimations with
other objects can be seen in Figure S3. The data set for the ground truth depth map is created
using Autodesk Maya 2018, Maya Software (https://www.autodesk.com/products/maya/overview,
accessed on 17 September 2022).

Figure 7. Comparison of numerical 3D reconstruction images from CGHs based on estimated depth
maps for the torus. (Each focused object is marked by an arrow. The red box indicates the result from
the proposed HDD model. Numerical 3D reconstruction results with other objects can be seen in
Figure S4).

To quantitatively compare the quality of CGH from the estimated depth map with
that of CGH from the ground truth depth map, we carried out a performance evaluation
using the ACC, which is defined as

ACC =
∑r,g,b(I · I′)√[

∑r,g,b I2
][

∑r,g,b I′2
] (3)

where I is the brightness of each color in the CGH image obtained using RGB image and the
depth map, estimated by each deep learning model, and I’ is the brightness of each color in
the CGH image obtained using RGB image and the ground truth depth map. When the
estimation result and ground truth are identical, or I = kI’ (k is a positive scalar), ACC = 1.
When a mismatch occurs between them, 0 ≤ ACC ≤ 1.

We synthesized and reconstructed CGHs using the depth maps estimated from
HDD/AdaBins/CDD and the ground truth. For these three types of models, Figure 8 shows

https://www.autodesk.com/products/maya/overview
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the ACC trend of CGHs to the observer’s rotation angles for the torus, where the individual
CGH is generated using the depth map result estimated from each deep learning model.

Figure 8. ACC trend of CGHs generated using the estimated depth map of each model to the
observer’s rotation angles for the torus. The x-axis represents the observation angle and the y-axis
represents the ACC of CGH. Gray-colored boxes indicate regions where two objects overlap for each
360-degree video scene. (Results of the other objects can be seen in Figure S5).

There are some sections where AdaBins’ CGH ACC is slightly higher than that of HDD.
These sections are mainly located in zones where the two objects do not overlap. However,
there are other sections where the CGH ACC of HDD is higher than that of AdaBins. These
sections are mainly located in the regions where the two objects overlap (gray-colored
boxes in Figure 8).

We first checked the depth map estimation results of the HDD and AdaBins models.
We then monitored the holographic 3D reconstruction results to determine the differ-
ent accuracies of the CGHs generated from these two models in two different scenarios.
Figures 9 and 10 show the depth map estimation results and the CGH reconstruction
results for a typical section where two objects overlap, respectively. When observing the
overlapped sections in each case for the torus, cube, and cone, as shown in Figures 9 and S6,
we find that the boundary between the front and rear objects is neat in the depth estimation
result of HDD, whereas it is uneven in the depth estimation result of AdaBins. In addition,
the depth estimation result of AdaBins shows that the area of the front object (brighter
area) invades the area of the rear object (darker area). This indicates that the HDD model
performs both near- and far-distance estimation tasks well without a shape distortion
problem, whereas the AdaBins model estimates the object located at a farther distance to be
located at a closer distance.

Furthermore, we observed that the AdaBins’ inaccuracy of the depth map estimation
near the boundary region overlapping between the front and back objects is again confirmed
through the image quality test of a holographic 3D reconstruction. Figure 10 shows the
holographic 3D reconstruction results simulated within the typical section in which the two
objects overlap. In the case of either a front-point or rear-point focused reconstruction, the
overlapped profile in Figure 10 shows that the shape-spreading/distortion phenomenon
is more pronounced in 3D reconstruction results based on the estimated depth map of
AdaBins in comparison with those based on the estimated depth map of HDD.

In 360-degree holographic video content, which represents dynamic movements
among various objects, the capability to express the exact boundary between two objects is
critical to holographic 3D image quality. In this aspect, although AdaBins is finely superior
to HDD when the objects do not overlap, it is not suitable in a scenario where they overlap
for 360-degree digital holographic movies because the AdaBins model does not accurately
perform the depth map estimation task. Conversely, it can be seen that the HDD model
estimates that depth map information—to a reasonable extent—provides general video
content in scenarios even where two objects do not overlap. Overall, we found that HDD is
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superior to AdaBins in terms of conserving the very detailed original shape information
within the region where two objects overlap, as demonstrated in Figures 9 and 10.

From the experiment, we concluded that the deep learning-based HDD model pro-
posed in the study can reasonably provide an adequate quality of depth map estimation,
which can be used to generate CGH for 360-degree holographic video content, especially
without noticeable shape distortion of the holographically reconstructed 3D image.

Figure 9. Depth map estimation comparison to the ground truth depth map for a typical section where
two objects overlap. The red box indicates the result from the proposed model. Results of the other
objects can be seen in Figure S6. Data set for RGB color image and ground truth depth map is created
using Autodesk Maya 2018, Maya Software (https://www.autodesk.com/products/maya/overview,
accessed on 17 September 2022).

Figure 10. CGH’s reconstruction results for a typical section where two objects overlap. (The red box
indicates the result from the proposed model. Results of the other objects can be seen in Figure S7).
In the case of AdaBins, it is observed that the shape of the holographically reconstructed object is
distorted because of the severe inaccuracy of depth map estimation by the AdaBins model near the
boundary regions between objects.

4.2.3. Comparison of the Proposed Model (HDD) with Previous Models (Using Two Kinds
of Complicated Objects Not Used in the Course of the Training Phase)

Unlike the previous experiment performed in Section 4.2.2, we present another ex-
periment of depth map estimation performed using new, complicated objects that are not
used in the course of the training phase so that we can demonstrate the superiority of
the proposed model (HDD) over AdaBins and CDD. In addition, we synthesized CGH
with the estimated depth map and then reconstructed a holographic 3D image to compare
the depth map estimation performance of the proposed model with the performance of
previous models. For this experiment, we chose an icosahedron and a dodecahedron as
the solid figures, which are more complicated than the four kinds of objects used for the
training phase. RGB color images of these two objects not used in the training process were
used as input data for each model and then the corresponding depth map images were

https://www.autodesk.com/products/maya/overview
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estimated from each model. The depth maps, as shown in Figure 11, were estimated under
the same conditions as the weights of each model which had been obtained in the course of
the training phase based on the four pre-existing objects (torus, cube, cone, and sphere).

Figure 11. Depth map estimation results for icosahedron, which was not used in the course of
the training phase. The red box indicates the result from the proposed model. Results of the
dodecahedron can be seen in Figure S8. The data set for RGB color image and ground truth depth
map for a pair of these solid objects was created using Autodesk Maya 2018, Maya Software (https:
//www.autodesk.com/products/maya/overview, accessed on 17 September 2022).

In Figure 11, it can be visually confirmed that the edge expressions in individual
objects from HDD or CDD are more accurate than the results from AdaBins for unlearned,
complicated objects. To compare the results of HDD with those of CDD, we calculated
values of the PSNR for these two objects (dodecahedron and icosahedron): the PSNR of
HDD is 73.02 dB for icosahedron and 72.96 dB for dodecahedron, while the PSNR of CDD
is 70.25 dB for icosahedron and 71.23 dB for dodecahedron.

Figure 12 shows the 3D images reconstructed from CGH for ground truth, HDD,
AdaBins, and CDD. As shown in Figure 12, a typical focus–defocus effect can be observed
between the two objects at the same viewpoint; the accommodation effect is typically
observed when holographic 3D images are reconstructed from CGHs.

Figure 12. Holographic 3D reconstruction from CGH using each set of RGB color and depth map
given in Figure 11. The focused object between two objects to confirm the accommodation effect
is marked by an arrow. (The red box indicates the result from the proposed model. Results of the
dodecahedron can be seen in Figure S9).

Figure 13 shows the ACC trend of CGHs to the observer’s rotation angle for the
unlearned icosahedron. The individual CGH is generated using the depth map result
estimated from each deep learning model. For the section where two objects do not overlap,
the ACC of each model shows a similar trend. However, some local spots exist (ranging
from angles 72° to 90°, and 216° to 234° in Figure 13) in which the ACC of Adabins is
significantly lower than that of HDD. Moreover, for the section where two objects overlap
(the gray boxes in Figure 13), the ACC of HDD is higher than that of AdaBins. From the
ACC test of CGHs in the case of unlearned, complicated objects, we found that the ACC
trend of CGHs that originate from AdaBins shows inconsistent behavior during a cycle of
the 360-degree scenes, and the AdaBins model is inferior to the HDD model in the ACC of
CGHs within the regions in which two objects overlap.

https://www.autodesk.com/products/maya/overview
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Figure 13. ACC trend of CGHs generated using the depth map estimated from each model to the
observation’s rotation angle for the shape of an icosahedron. The x-axis represents the observation’s
rotation angle and the y-axis represents the ACC of CGH synthesized from each model. Gray-colored
boxes indicate regions where two objects overlap for each 360-degree video scene. (Results of the
dodecahedron can be seen in Figure S10).

Figure 14 shows the depth map estimation results from HDD and from AdaBins for a
typical case of the section where two objects overlap. From the shapes of the icosahedron,
as presented in Figure 14, we observe that near the boundary region between the front and
rear objects, the depth map estimation quality of HDD is much better than that of AdaBins.
This result indicates that the proposed HDD model carries out both near- and far-distance
estimation tasks from the camera well without a distorted shape. Figure 15 shows the
holographic 3D reconstruction results simulated from CGHs, which were generated using
the same depth map estimations as we obtained in Figure 14. In the case of either a front-
point or rear-point focused reconstruction, it is observed that the shape distortion in the
case of AdaBins is more conspicuous than that of an HDD. The reason is that the inaccuracy
of depth map estimation by the AdaBins model becomes more severe near the boundary
region between objects as the object’s shape becomes more complicated. In conclusion,
through the experiments of depth map estimation, CGH synthesis, and reconstruction with
complicated objects not used in the training phase, we found out that the deep learning-
based proposed model (HDD) is superior to AdaBins and CDD in the ability to estimate
depth map for each 360-degree scene regarding unlearned, more complicated objects.

Figure 14. Depth map estimation comparison with respect to the ground truth depth map in a typical
section where two objects overlap. Each of these solid objects was an icosahedron, of which was not
used in the course of the training phase. The red box indicates the result from the proposed model.
Results of the dodecahedron can be seen in Figure S11. The data set for RGB color image and ground
truth depth map was created using Autodesk Maya 2018, Maya Software (https://www.autodesk.
com/products/maya/overview, accessed on 17 September 2022).
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Figure 15. Reconstruction results from CGHs in a typical section where two objects overlap, as seen
in Figure 14. (The red box indicates the result from the proposed model. Results of the dodecahedron
can be seen in Figure S12).

4.2.4. Further Comparison of the Proposed Model (HDD) with Previous Models (Using
Complicated Object)

We present a further experiment of depth map estimation performed using more
complicated objects that are not used in the course of the training phase so that we can
demonstrate the superiority of the proposed model (HDD) over AdaBins and CDD in
applications for 360-degree digital holographic content. We synthesized CGH with the
estimated depth map and then reconstructed a holographic 3D image to compare the depth
map estimation performance of the proposed model with the performance of previous
models. For this experiment, we chose an amorphous rock, which is as complicated as the
level of real objects. Since Section 4.2.4 is part of additional experiments, the data used in
this section were not included in the total number of data—9832 images—mentioned in this
paper. The depth maps, as shown in Figure 16, were estimated under the same conditions
as the weights of each model which had been obtained in the course of the training phase
based on the four pre-existing objects (torus, cube, cone, and sphere).

Figure 16. Depth map estimation results for a new scene which was composed of a pair of amorphous
solid rocks. The red box indicates the result from the proposed model (HDD) in comparison with
other models. The 3D model of each amorphous rock was provided from TurboSquid, https://www.
turbosquid.com/ko/3d-models/cave-rock-02-base-model-1944210, accessed on 17 September 2022).
Data set for RGB color image and ground truth depth map for a pair of these solid objects was created
using Autodesk Maya 2018, Maya Software (https://www.autodesk.com/products/maya/overview,
accessed on 17 September 2022).

In Figure 16, although the approximate trends of HDD and CDD are similar, it can be
visually confirmed that HDD is closer to the ground truth depth map compared to CDD. It
can be visually confirmed that the AdaBins estimated objects to be brighter than the ground
truth depth map. To compare the results of HDD with those of CDD, we calculated values
of the PSNR for an amorphous rock: the PSNR of HDD was 27.65 dB, while the PSNR of
CDD was 26.27 dB.

https://www.turbosquid.com/ko/3d-models/cave-rock-02-base-model-1944210
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The observational camera’s focus was placed on the head of the target object between
the two objects reconstructed from CGH, as marked with an arrow in Figure 17. Figure 17
shows the 3D images reconstructed from CGH for ground truth, HDD, AdaBins, and
CDD. As shown in Figure 17, a typical focus–defocus effect can be observed between the
two objects at the same viewpoint; the accommodation effect is typically observed when
holographic 3D images are reconstructed from CGHs.

Figure 17. Holographic 3D reconstruction from CGH using each set of RGB color and depth map
given in Figure 16. The focused object between two objects to confirm the accommodation effect is
marked by an arrow. (The red box indicates the result from the proposed model).

Figure 18 shows the ACC trend of CGHs to the observer’s rotation angle for unlearned
amorphous rock. The individual CGH is generated using the depth map result estimated
from each deep learning model. For the section where two objects do not overlap, the ACC
of each model shows a similar trend. However, for the section where two objects overlap
(the gray boxes in Figure 18), the ACC of HDD is significantly higher than that of AdaBins.
Similar to the simulation results in Section 4.2.3, from the ACC test of CGHs in the case
of unlearned, complicated objects, we found that the ACC trend of CGHs that originate
from AdaBins shows inconsistent behavior during a cycle of the 360-degree scenes, and the
AdaBins model is inferior to the HDD model in the ACC of CGHs within the regions in
which two objects overlap.

Figure 18. ACC trend of CGHs generated using the depth map estimated from each model to
the observation’s rotation angle for the shape of an amorphous rock. The x-axis represents the
observation’s rotation angle and the y-axis represents the ACC of CGH synthesized from each model.
Gray-colored boxes indicate regions where two objects overlap for each 360-degree video scene.

Figure 19 shows the depth map estimation results from HDD and from AdaBins for a
typical case of the section where two objects overlap. From the shapes of the amorphous
rock, as presented in Figure 19, we observe that near the boundary region between the
front and rear objects, the depth map estimation quality of HDD is much better than
that of AdaBins. This result indicates that the proposed HDD model carries out both
near- and far-distance estimation tasks from the camera well without a distorted shape.
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Figure 20 shows the holographic 3D reconstruction results simulated from CGHs, which
were generated using the same depth map estimations as we obtained in Figure 19. In the
case of either a front-point or rear-point focused reconstruction, it is observed that the shape
distortion in the case of AdaBins is more conspicuous than that of an HDD. The reason is
that the inaccuracy of depth map estimation by the AdaBins model becomes more severe
near the boundary region between objects as objects’ shape becomes more complicated.
In conclusion, through the experiments of depth map estimation, CGH synthesis and
reconstruction with complicated objects not used in the training phase, similar to the
simulation results in Section 4.2.3, we found out that the deep learning-based proposed
model (HDD) is superior to AdaBins and CDD in the ability to estimate depth map for each
360-degree scene regarding unlearned, more complicated objects.

Figure 19. Depth map estimation comparison with respect to ground truth depth map in a typical
section where two objects overlap. Each of these solid objects was a new amorphous 3D rock
which was not used in the course of the training phase. The red box indicates the result from the
proposed model. The 3D model of each amorphous rock was provided from TurboSquid, https://
www.turbosquid.com/ko/3d-models/cave-rock-02-base-model-1944210, accessed on 17 September
2022. the data set for RGB color image and ground truth depth map was created using Autodesk
Maya 2018, Maya Software (https://www.autodesk.com/products/maya/overview, accessed on 17
September 2022).

Figure 20. Reconstruction results from CGHs in a typical section where two objects overlap, as seen
in Figure 19. The observational camera’s focus was placed on the head of the target object between
the two objects reconstructed from CGH. (The red box indicates the result from the proposed model).

5. Discussion and Conclusions

In this paper, we proposed and demonstrated a novel CNN model that learns depth
map estimation from missing viewpoints, especially well-fit for holographic 3D. The
proposed model, which we call HDD, uses only MSE for better depth map estimation
performance in comparison with the CDD, which uses SSIM 90% and MSE 10% as the
loss function.

We designed and prepared 9832 multi-view images with a resolution of 640 × 360. In
the proposed model, HDD estimated depth maps by extracting features and up-sampling.

https://www.turbosquid.com/ko/3d-models/cave-rock-02-base-model-1944210
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The weights were optimized using the MSE loss function. For quantitative assessment, we
compared the estimated depth maps from HDD with those from CDD using the PSNR,
ACC, RMSE. As shown in Figure 3, the proposed HDD model is numerically superior
to CDD in terms of PSNR, ACC, and RMSE. In addition, as shown in Table 4, although
HDD is numerically inferior to CDD on the metrics of absolute relative error (Abs rel),
it is superior to CDD on the metrics of squared relative error (Sq rel) and LRMSE. To
qualitatively evaluate the depth map estimation performance of the HDD, we not only
compared the depth map estimation results to verify the improvement of the proposed
HDD model over the CDD model, but also compared the CGH reconstruction results of
these two models. Furthermore, to increase the reliability of the proposed model, we also
compared the estimated depth map image quality of the holographic 3D reconstruction of
our proposed model with another competitive model, AdaBins. Through the experiments
of depth map estimation, CGH synthesis, and reconstruction with both objects used in
the training and complicated objects not used in the training, we found out that HDD is
more suitable than AdaBins in scenarios such as objects overlapping for 360-degree digital
holographic movies. Furthermore, we found that HDD is superior to AdaBins and CDD
in the ability to estimate depth map for each 360-degree scene regarding unlearned, more
complicated objects.

The contributions of this study are as follows: First, we demonstrate the ability of
our proposed HDD to learn and produce depth map estimation with high accuracy from
multi-view RGB images. Second, we prove the feasibility of applying deep learning-based,
estimated depth maps to synthesize CGHs, with which we can quantitatively evaluate
the degree of accuracy in the performance of our proposed model for holography. Third,
we illustrate the effectiveness of CGHs synthesized via the proposed HDD through direct
numerical/optical observations of holographic 3D images.

The limitations of the proposed model covered in this study are the minute residual
images near the border area of each object and the weak background noise in the estimated
depth maps. To overcome these issues, one needs to find approaches to place relatively
large weights on these border areas and then enhance precision estimations of these areas.
It is also worth mentioning that the image resolution and extraction speed of deep learning-
based depth maps can be improved by adjusting the model’s parameters, such as filters and
filter sizes, and then optimizing the ratio of training/testing data. Moreover, we note that
only the diffraction efficiency element, that is, the direct observation of the reconstructed
holographic 3D image, was used as a comparative measure for the quality of the H3D image
in this study. We plan to supplement this measure through further analysis, considering
parameters such as the contrast ratio of intensity, clearness, and distortion to evaluate
H3D images. We plan a future study to optimize the interval of missing viewpoints.
Currently, without the standard appropriate for missing viewpoints, situations in various
viewpoints have been used to generate 360-degree holographic video content. Future
studies to optimize the interval of missing viewpoints are expected to contribute to AR,
VR, and holographic metaverse applications, leading to a low computational-cost method
in providing realistic 360-degree holographic content.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app12199432/s1, Figure S1: PSNR trend with respect to loss func-
tion (MSE-SSIM) coefficient; Figure S2: Results of CGH reconstruction for cube, cone, and sphere;
Figure S3: Depth map estimation result comparison for cube, cone, and sphere; Figure S4: Numerical
CGH reconstruction result comparison for cube, cone, and sphere; Figure S5: ACC trend of CGHs
generated using the estimated depth map of each model to the observer’s rotation angles for objects;
Figure S6: Depth map estimation comparison to ground truth depth map for a typical section where
two objects overlap; Figure S7: CGH’s reconstruction results for a typical section where two objects
overlap; Figure S8: Depth map estimation results for dodecahedron, which is not used in the course
of the training phase; Figure S9: Holographic 3D reconstruction from CGH for objects not used in
the course of training phase to confirm the accommodation effect; Figure S10: ACC trend of CGHs
generated using the depth map estimated from each model to the observation’s rotation angle for
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the shape of a dodecahedron; Figure S11: Depth map estimation comparison with respect to ground
truth depth map in a typical section where two objects overlap with the solid shape of dodecahedron
which is not used in the course of the training phase; Figure S12: CGH’s reconstruction results in a
typical section where two objects overlap with the solid shapes of dodecahedron, which is not used
in the course of the training phase; Video S1: Results of numerical CGH reconstruction for entire
viewpoints; Video S2: Result of optical CGH reconstruction for entire viewpoints.
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