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Abstract: The lack of transparency of powerful Machine Learning systems paired with their growth
in popularity over the last decade led to the emergence of the eXplainable Artificial Intelligence (XAI)
field. Instead of focusing solely on obtaining highly performing models, researchers also develop
explanation techniques that help better understand the system’s reasoning for a particular output.
An explainable system can be designed, developed, and evaluated from different perspectives,
which enables researchers from different disciplines to work together on this topic. However, the
multidisciplinary nature of XAI systems creates new challenges for condensing and structuring
adequate methodologies to design and evaluate such systems. This paper presents a survey of Human-
centred and Computer-centred methods to evaluate XAI systems. We propose a new taxonomy
to categorize XAI evaluation methods more clearly and intuitively. This categorization gathers
knowledge from different disciplines and organizes the evaluation methods according to a set of
categories that represent key properties of XAI systems. Possible ways to use the proposed taxonomy
in the design and evaluation of XAI systems are also discussed, alongside with some concluding
remarks and future directions of research.

Keywords: explainable artificial intelligence; evaluation methods; human-centred; computer-centred;
literature review

1. Introduction

Machine Learning (ML) systems have significantly grown in popularity in the last
decade. They are currently being used in several fields with increasing task-solving ca-
pabilities, from a human’s everyday life (e.g., language translation) to decision-making
in high-stake domains (e.g., clinical decision support) . However, most ML systems are
labeled as “black-box” models because their underlying structures are complex, nonlinear,
and difficult to explain. These characteristics prevent domain experts from understanding
the reasoning behind specific decisions, a vital requirement on domains such as medical
diagnosis, criminal justice, or financial decision-making.

ML algorithms’ opacity brought up the need for interpretable algorithms creation, the
main focus of the eXplainable Artificial Intelligence (XAI) field. According to Vilone and
Longo [1], there are three motivating factors: (i) the demand to produce more transparent
models; (ii) the need for techniques that enable humans to interact with them; and (iii) the
requirement of trustworthiness of their inferences. Moreover, the recently approved General
Data Protection Regulation (GDPR) document [2] introduced the right of explanation. These
guidelines aim to give individuals the right to obtain an explanation of the inference(s)
automatically produced by a model, confront, and challenge an associated recommendation,
particularly when it might negatively affect an individual legally, financially, mentally,
or physically.

Since explainability is an inherently human-centric property, XAI research has received
increasing attention from scholars of several different domains in the research community.
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As stated in [3], “currently, there is a broad array of definitions and expectations for XAI,
which require multidisciplinary research efforts, as existing communities have different
requirements and often have drastically different priorities and areas of specialization”. For
instance, ML engineers aim to create either interpretable models or explain black-box mod-
els with post-hoc techniques. Meanwhile, Human–Computer Interaction (HCI) researchers
are mainly focused on building solutions that satisfy end-user needs, independently of the
technical approach adopted. There are also relevant discussions on the fields of Philosophy,
Psychology, and Cognitive Science, particularly in merging the existing research regarding
how people generate or evaluate explanations into current XAI research [4]. This evident
multidisciplinary nature makes the design and evaluation of XAI systems an intrinsically
challenging task. In fact, the effectiveness of explainability is founded on the “perception
and reception of the person receiving the explanation”, which means that the user’s explain-
ability needs greatly influence technical choices, both in terms of design and evaluation.
As a result, designing and evaluating a XAI system can be considered as much of a design
challenge as an algorithmic one [5].

The contributions of this work are threefold. First, we aim to provide an overview
of the most relevant evaluation methods already proposed in the literature to evaluate
XAI systems. Our extensive literature review identified an urgent need to standardize
the categorization and terminologies used for the different explanations’ proprieties and
respective evaluation methods. Thus, our second contribution focuses on providing a new
taxonomy to organize the already available XAI evaluation methods clearly and intuitively.
The multidisciplinary nature of XAI research was considered an essential requirement
during the design of this taxonomy, which resulted in a clear separation between Human-
centred and Computer-centred methods. Third, we discuss possible ways to use the
proposed taxonomy in the design and evaluation of XAI systems.

The conducted literature review examined relevant papers from five prominent aca-
demic databases and bibliographic search engines, namely ScienceDirect, Engineering
Village, ACM Digital Library, Arxiv and Google Scholar. To identify and select potential
research articles, we used a keyword-based search using terms such as “XAI”, “Explainable
Artificial Intelligence”, “XAI Evaluation”, “Human-centred”, and “Computer-centred”. We
restricted the research to articles published between 2017 and 2022. This initial list was
then filtered in terms of relevance and quality of the papers. We then used the reference
list of the selected articles to identify and include additional papers in our literature re-
view. These papers were thoroughly examined, and an effort was made to identify the
research questions the authors addressed in their works, if not clearly stated. This process
supported the extraction of the XAI aspects evaluated in each revised research work, which
subsequently facilitated its respective categorization according to the taxonomy presented
in Section 3.

This paper is structured as follows: Section 1 summarizes the motivation and objectives
of the work; Section 2 presents relevant background information for the evaluation of XAI
systems; in Section 3, the proposed taxonomy for XAI systems’ evaluation methods is
presented; Sections 4 and 5 give an overview of the most relevant Human-centred and
Computer-centred evaluation methods, respectively; Section 6 contains the takeaways from
this research work and discusses how the proposed taxonomy can be used in the design
and evaluation of XAI systems; and finally the conclusions and future work are drawn in
Section 7.

2. Background

In this section, we address general background topics that are crucial to understand
the current state of XAI evaluation methods, namely: (i) types of ML explanations; (ii) the
importance of XAI evaluation; (iii) current taxonomies for XAI evaluation; and (iv) current
pitfalls of XAI evaluation methods.
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2.1. Types of ML Explanations

The ML explanation methods can be divided into three different types [6]:

• Attribution-based explanations: These type of explanations aim to rank or assign
an importance value to input features based on their relevance to the final predic-
tion. These are, arguably, some of the most common explanations to be evaluated in
the literature.

• Model-based explanations: These explanations are represented by models used to
interpret the task model. These can be the task model itself or other more interpretable
post-hoc models created for that purpose. Common metrics to evaluate these are
related to model size (e.g., decision trees depth or number of non-zero weights in
linear models).

• Example-based explanations: As the name implies, Example-based explanations pro-
vide an understanding of the predictive models through representative examples or
high-level concepts. When analysing specific instances, these methods can either re-
turn examples with the same prediction or with different ones (counterfactual example).

2.2. Importance of XAI Evaluation

As XAI-based solutions are becoming ever more frequent (and necessary), it is vital
to properly evaluate their explainability components. This assessment can have several
purposes, such as asserting that the explanations are faithful to the associated ML model, or
ensuring that they are actually effective and useful to the end users. Current XAI research
is mainly focused on creating new methods to improve explainability while simultaneously
ensuring high predictive performance [1], often demonstrating that XAI explanations
can positively impact the user understanding and Trust on an ML system. However,
some authors also defend that the mere presence of explanations can cause these effects,
regardless of their content [7] and consequentially give a false sense of security. Moreover,
there is also an inherent human bias towards simpler explanations, which could contribute
to systems with more persuasive explanatory outputs being adopted, instead of more
transparent ones [8]. As such, it is imperative that explanatory methods and artifacts
produced by XAI systems are thoroughly evaluated both before and throughout their
deployment in a production environment.

2.3. Current Taxonomies for XAI Evaluation

Doshi-Velez and Kim [9] proposed a taxonomy based on the participation of real
humans in the evaluation, and whether the task is equal to the real use case task or is a
simpler version. The taxonomy is structured as follows: (a) Application-grounded eval-
uation (end task)—Requires conducting end user experiments within a real application;
(b) Human-grounded evaluation (simple task)—Refers to conducting simpler human-
subject experiments that maintain the essence of the target application. The difference
is that these experiments are not carried out with the domain experts, but with layper-
sons; (c) Functionally-grounded evaluation (proxy task)—Requires no human experiments.
In this type of evaluation, some formal definition of Interpretability serves as a proxy
to evaluate the explanation quality, e.g., the depth of a decision tree. In order to link
these types of evaluation, the authors describe a set of open problems and approaches to
tackle them, ultimately advocating for the creation of large repositories containing prob-
lems that correspond to real-world tasks which require human input. With this structure
in place, ML methods could be used to identify latent dimensions representing certain
Interpretability factors.

In a more recent work, Zhou et al. [10] take this previous categorization and split
the evaluation methods between the ones involving real human participation and those
that do not. Complementing this, the authors go a step further by specifying the adequate
metrics for the application and human-grounded evaluation methods, discerning between
subjective and objective metrics. As for the functionally-grounded methods, the authors
distinguish between three types of explanations (Model, Attribution or Example-based),
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serving as inspiration for this work. Additionally, a set of quantitative metrics is presented
together with the explainability properties they evaluate for each explanation type.

Finally, Mohseni et al. [3] published a very extensive survey on the evaluation of
XAI systems. The authors believe in a multidisciplinary approach to XAI since various
research fields have explored the Interpretability of ML systems and can bring significant
improvements to the creation of more robust XAI techniques. Moreover, they propose a cat-
egorization for XAI design and evaluation methods consisting of two attributes: (a) design
goals—which are gathered from multiple research domains and organized between three
target user groups; and (b) evaluation measures—which are obtained from evaluation
methods present in literature.

2.4. Shortfalls of Current XAI Evaluation

As previously mentioned, XAI evaluation is a complex problem since it relies not only
on the potential technical approach adopted but also on the fulfillment of user’s needs.
Despite recent works with very positive outcomes towards improving the Interpretability
and effectiveness of XAI systems, some pitfalls still need to be tackled.

Lack of evaluation: A recent survey by Anjomshoae et al. [11] focused on reviewing
works for explainable agents and robots and indicated that 97% of the 62 evaluated articles
point out that explanations serve a user need, but 41% did not evaluate their explanations
with such users. Moreover, from the papers that performed a user evaluation, relatively few
provided a good discussion of the context (27%), results (19%) and limitations (14%) of their
experiment. Another survey from Adadi and Berrada [12] reviewed 381 papers and found
that only 5% had an explicit focus on the evaluation of the XAI methods. Although the
evaluation of XAI techniques is vital to ensure they fulfill the desired goals, these reviews
show that only a small portion of efforts are directed towards exploring such evaluation.

Lack of consensus: When comparing the existing taxonomies for XAI evaluation,
it is possible to identify a lack of consensus in several aspects, from categorization and
terminology to the considered properties and evaluation metrics. In terms of categorization,
Mohseni et al. [3] focus their research on Human-Centered based evaluation methods,
which require the use of participant feedback. Their proposed categorization is very
detailed and complete with regard to the existing evaluation methods and their respective
evaluation goal. Vilone and Longo [1] and Zhou et al. [10] distinguish between Human-
centred evaluation and AI-based evaluation, which relies only on the AI system itself to
execute the evaluations. However, the former type of evaluations are described with a lower
level of granularity that lacks the detail provided by Mohseni et al. [3]. Another example
is the uneven usage of the terms “subjective” and “objective” across literature. Zhou
et al. [10] and Vilone and Longo [1] state that the “subjective” term requires the involvement
of a human in the explanation’s evaluation, while the “objective” term concerns only
evaluation aspects that do not depend on the judgements of the participants. At the same
time, Mohseni et al. [3] uses them with a distinct purpose, being both used for evaluation
methods that involve collecting user feedback. These conceptual incompatibilities make the
usage of current taxonomies a challenging task for systematic and standardised evaluation
of XAI systems.

Lack of multidisciplinarity: Another pitfall for several XAI techniques and their
evaluation is the disregard of a multidisciplinary approach to the creation and evaluation
of such techniques. As most methods are created on a more technical environment, they
usually ignore the potential contributions that other areas like HCI might bring to the table.
Similar to Mohseni et al. [3], Liao and Varshney [5] defend that a broad view is necessary
for XAI research because users tend to prefer to have a holistic understanding of the system.
Since explainability is an inherently human-centric property, the authors believe that the
HCI can bring great contributions towards solving XAI algorithms limitations, highlighting
three main arguments: Firstly, there is no one-size-fits-all solution for producing useful
explanations. Therefore, the technical choice for a particular XAI method should be guided
by the explainability needs of the different kinds of users, which is where HCI can offer
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important insights and methodological tools; secondly, problems may arise on empirical
studies with real users that technical knowledge cannot solve alone. Design approaches can
be paired with the technical views in order to overcome these issues; in addition, thirdly,
theories on Human Cognition and Behaviours provide conceptual tools that may motivate
new computational and design frameworks for XAI.

Lack of standardized evaluation procedures: Although XAI techniques can usually
be applied in several contexts, the same is not true for the evaluation procedure of such
methods (in the case there is one), where there is a lack of standardized evaluation pro-
cedures that enable an efficient and exhaustive evaluation of explanations. As a result,
researchers adopt new ways of evaluating explanation methods tailored to each new use
case they come across, which deteriorates the ability to interpret and compare the outcomes
of these experiments. Nevertheless, there has been some efforts to standardize the evalua-
tion procedures and tools used. For instance, Quantus is an open-source toolkit proposed
by Hedström et al. [13] that consists of a collection of computer-based evaluation metrics
for evaluating explanation methods. Regarding human-centered evaluation procedures,
the task of standardizing an evaluation procedure becomes even more challenging, due
to the subjective nature and variety of the methods in this category. While some works
put effort into describing the process of these evaluation methods like [1], others like [3]
go a step further and propose a list of guidelines that can help navigating through a XAI
evaluation procedure. Nevertheless, the effectiveness of both procedures and guidelines
still lacks experimental proof in literature.

Lack of incorporation of cognitive processes: According to [11], subjective evalu-
ation measures obtained from interviews or user feedback about Satisfaction, Trust, or
explanation Usefulness are much more prevalent than objective measures. While objective
measures can be less ambiguous and reliant on the user itself, subjective measures enable
collecting insights on how the user perceives the explanation and the system. Nevertheless,
subjective measures can mislead the design and evaluation of XAI systems if the cognitive
processes of how people generate and evaluate explanations are not carefully considered.
As an illustrative example, Liao and Varshney [5] recently highlighted the importance of
dual-process theories [14] for XAI research, which assume that people can engage in two
different systems to process information and decide upon it. While System 1 involves
intuitive thinking, following mental shortcuts and heuristics created from past experiences,
System 2 is analytical thinking, relying on careful reasoning of information and arguments.
A wide range of current XAI techniques implicitly assume that the end-user mostly uses
System 2 thinking and will attend to every bit of explanation provided. However, in
reality, people are more likely to engage in System 1 thinking they lack either the ability
or motivation to perform analytical thinking. Therefore, providing an extremely detailed
XAI explanation does not guarantee that the end-user will use all the supplied information,
which can be misleading during the evaluation of the provided explanations.

Lack of visualization and interaction strategies: In [4], the authors defend that much
XAI research is based on researchers’ intuitions of what constitutes a good explanation,
rather than a Human-centred approach that considers user’s expectations, concerns and
experience. Likewise, current XAI research still does not properly address how end-
users interact, visualize, and consume the information supplied by XAI systems. This
lack of customized strategies significantly influences XAI evaluation procedures, since
it will directly impact how end-users perceive, process, use, and consequently evaluate
AI explanations.

As far as this research goes, the remarkable advances that already proposed tax-
onomies brought for XAI evaluation are unquestionable. Nevertheless, none of those
taxonomies fully satisfied all the conditions we considered crucial on a XAI evaluation
taxonomy. By building upon these previous works, in this paper, we merge, complement
and standardize their different contributions, resulting in a new taxonomy for XAI evalua-
tion that aims to foster a more systematic and standardised evaluation of XAI systems. We
believe our contributions in this work can aid in the definition of more reliable and robust
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XAI evaluation methods, while also increasing the community awareness regarding this
critical topic. It is paramount to ensure that XAI evaluation is a priority when designing,
implementing and deploying XAI systems and that it encompasses both the technical and
the human interaction side of any ML system. Moreover, the proposed taxonomy can help
solving the lack of standardization for terminologies and methods within the XAI topic,
while illustrating the perspectives from which it is possible to conduct XAI evaluation.

3. Taxonomy for XAI Systems Evaluation Methods

A variety of terminologies and categorization for XAI evaluation methods have surged
in literature as a direct consequence of the multidisciplinary nature of research efforts. Al-
though it would be ideal to create a “one-size-fits-all” taxonomy to sort these methods,
each knowledge domain looks at the XAI evaluation issue from a different perspective.
As such, it is very challenging to reach a single taxonomy that encompasses knowledge
from each one of those perspectives. For this reason, in this work, we decided to maintain
the “multidisciplinary” essence of XAI research while adopting a new taxonomy (repre-
sented in Figure 1), whose purpose is to be a map for XAI evaluation methods during the
development process of XAI solutions. The first step for building this taxonomy was to
split the XAI evaluation methods into two big families: Human-centred and Computer-
centred methods. While the former corresponds to methods that require conducting user
experiments with human subjects, the latter involves other methods that take advantage of
formal definitions of Interpretability to evaluate the quality of explanations. Furthermore,
each family was divided into different categories, and each category can also have a set of
sub-categories.

Figure 1. Proposed taxonomy for XAI systems’ evaluation methods.

Human-centred evaluation methods were split into four categories, each one corre-
sponding to the target XAI concept being evaluated (see Table 1). These concepts are specific
XAI constructs considered relevant in literature from several research areas, which help
paint a picture of the value added to the user experience by a XAI system. The definitions
for each Human-centred category and sub-category were obtained from different reviewed
works (e.g., Mohseni et al. [3], Gunning and Aha [15]) and from multidisciplinary research
efforts on XAI conducted by our team.

Regarding Computer-centred methods, the categorization and respective terminolo-
gies were inspired in the work of Zhou et al. [10]. In particular, the methods were divided in
two major categories, which then were split into five different sub-categories (see Table 2).

The following Sections 4 and 5 provide the state-of-the-art review for Human-centred
and Computer-centred XAI evaluation methods, respectively. We structured these two
sections in a similar way: (i) start by providing a brief introduction that explains the
rationale behind the selection of the considered categories and sub-categories; (ii) create a
sub-section for each category, where the most relevant research works for each category
are briefly presented and discussed; and (iii) present a summary of all the research works
reviewed (in a table format), including the most relevant works discussed in the sub-
sections referred in (ii).
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Table 1. Human-centred evaluation methods: categories and sub-categories.

Category Sub-Category

Trust: a variable factor shaped by user interaction across time and usage, which
affects how comfortable the user is when using the XAI system. User perception
influences its beliefs on the XAI system outputs.

User’s Perceived System Competence: depicts the user
position on how capable an ML system is when solving a
particular task.

User’s Compliance with the System: focused on
understanding if the user would rely on the system’s
decision or not to act upon a task.

Evolution of User Trust: represents how a user’s Trust can
vary across time and usage of a particular ML system.

Explanation Usefulness and Satisfaction: two inherently connected aspects
relevant to assess user experience. The same explanation can imply different levels
of Usefulness, depending on the information revealed, and can also lead to a
different level of user Satisfaction.

Understandability: the ability to outline the relation between the input and output
of a particular system with respect to its parameters. It is usually defined as a user’s
mental model of the system and its underlying functions.

User’s Perceived Understandability: depicts the user
understanding of system’s underlying functions.

User Prediction of Model Output: focused on
understanding if the user is able to define model behaviour
on a particular instance or kind of data.

User Prediction of Model Failure: focused on
understanding if the user is correctly able to identify the
scenarios where the system fails a particular task.

Performance: the performance of ML systems usually depends not only on the
models but also on their respective users. Evaluating the performance of both agents
and their interaction is essential to assess the expected performance on real scenarios.

Table 2. Computer-centred evaluation methods: categories and sub-categories.

Category Sub-Category

Interpretability: implies that the explanation should be understandable to humans,
being important to manage the social interaction of explainability.

Clarity: implies that the explanation should be
unambiguous.

Broadness: describes how generally applicable is an
explanation.

Simplicity: implies that the explanation is presented in a
simple and compact form.

Fidelity: implies that the explanations should accurately describe model behaviour
in the entire feature space, being important to assist in verifying other model
desiderata or discover new insights of explainability.

Completeness: implies that the explanation describes the
entire dynamic of the ML model.

Soundness: describes how correct and truthful is an
explanation.

4. Human-Centred Evaluation Methods

Human-Centred Evaluation methods follow a human-in-the-loop approach, which
involves the interaction of individuals with the system to test one or more of its properties.
The main goal is to provide insights on the expected end-users’ perspective of the system,
by highlighting strengths and weaknesses of the XAI method and its application, as well as
possible opportunities for improvement.

Although literature has a high diversity of techniques, there are some that are more
widely used than others. Firstly, Think-Aloud is a method in which participants can freely
express any thought regarding the task at hand, which might not be directly related to XAI
explanations. A similar, yet more focused in explanations methods, is User Self-Explanation
where participants expose their thoughts in a more structured manner, particularly towards
explaining their reasoning in particular actions.
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Another commonly used evaluation method is the Interview, where a set of pre-
structured questions is asked to the participants. These questions can be either closed or
open-ended and allow researchers to gather more specific information about a particular
aspect of the system/method. The interviews could be conducted during or after partici-
pants interact with the system, depending on the goal. Finally, Likert-scale questionnaires
are also widely used across literature. These questionnaires focus on evaluating specific
properties with the Likert-scale, a well-known method developed by the psychologist
Rensis Likert. The Likert scale is typically a five-, seven- or nine-point scale that measures
the level of agreement or disagreement of the participant.

Figure 2 presents an overview of a XAI system evaluation process from a Human-
centred perspective. The diagram was adapted from the work of Gunning and Aha [15].
The adaptation was necessary as the original diagram intended to represent the entire
explanation process, while our work is focused solely on the evaluation of such process.
Moreover, the terminology originally used did not entirely fit the structure of the taxonomy
proposed in Section 3. As such, the main strategy of adaptation involved replacing the
“XAI Measurement Category” boxes of the original diagram by the “Evaluation Categories”
detailed in Table 1. Some relations between each Category and other components of the
diagram were also reformulated.

Figure 2. Human-centred evaluation process diagram (adapted from [15]) .

Sections 4.1–4.4 describe each evaluation category considered in the proposed tax-
onomy for the Human-centred methods, namely Trust, Understandability, Explanation
Usefulness and Satisfaction and Performance, respectively. These descriptions were
based on explainability concepts presented in previously works [1,3,10,15] and adapted to
our taxonomy vision. The most relevant evaluation methods for each category are briefly
presented and discussed, being also presented a summary of these methods and respective
categorization in Section 4.5.

4.1. Trust

User Trust is a critical requirement when deploying an ML system that profoundly
affects the user’s perception of such system, which in turn influences the ability to believe in
its outputs without fearing any danger [16]. It is inherently related to the user’s confidence
and to how comfortable the user is when using that system on a real task. Initially, a user’s
Trust is set according to prior knowledge and existing beliefs. As the user explores the
system, the levels of Trust and confidence can fluctuate, depending on the use cases that
the user comes across. Therefore, user Trust is a variable factor that is shaped by the user
interaction, where he might experience different Trust and mistrust feelings [3].
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Most scholars do not evaluate user Trust directly because it is hard to pin down what
system factors influence Trust the most. Therefore, each work usually chooses a particular
aspect of a XAI system and assesses its impact on user Trust.

Firstly, we can evaluate user Trust through interviews and user self-explanations
during or after the user experiments with the system, like in Bussone et al. [17] and
Cahour and Forzy [18]. Moreover, Likert-scales questionnaires are also used widely across
literature, such as in Berkovsky et al. [19], Bussone et al. [17], Cahour and Forzy [18] and
Nourani et al. [20]

Another way of assessing user Trust is through the User’s Perceived System Com-
petence, which shows the user position on how capable an ML system is when solving
a particular task. For example, Yin et al. [21] evaluated the impact of the accuracy of
an image classification model on user Trust. The results show that a user’s Trust can be
influenced by both the actual model’s accuracy and by the model’s perceived accuracy.
Nourani et al. [20] also explored how the user’s perception of accuracy is affected by
the inclusion of explanations and their level of meaningfulness. The results indicate that
it is not only important to have explanations, but also to have human-meaningful ones,
since “weak” explanations that the user cannot understand might lower the user perceived
accuracy. Moreover, authors also state that the “understanding of processing logic is more
important for user Trust than the history of observed results alone”. Therefore, the User’s
Perceived Understandability is another important factor that influences user Trust (see
Understandability Section 4.2 for more details).

One could also study the User’s Compliance with the System, which focuses on
understanding if the user would rely on the system decision or not to act upon a task.
Berkovsky et al. [19] evaluated the impact of several recommendation interfaces and
content selection strategies on user Trust. The method considered nine key factors from
Trust, divided into three categories, one of them involving explanations. Eiband et al. [7]
experimented with “placebic” explanations (explanations that convey no information) in
mindlessness of user behaviour. The method consisted of understanding if this type of
explanation would influence user Reliance on the system. The results suggest that “placebic”
explanations can increase the levels of Trust in a similar way to real explanations. The
authors also propose that they could be used in a future work as “baseline” explanations
that would serve as a comparison basis for other explanations.

Another way of measuring any of the above aspects of user Trust is to compare
explanations generated by an AI system with ones provided by humans. Kunkel et al. [22]
used this strategy on a recommender system to explore the perceived quality of explanations
created by two different sources: a personal source (i.e., other humans) or an impersonal
source (a machine). The results show that users tend to trust explanations created by other
humans more than the explanations generated by a machine. Follow up evaluations to
these results could be understanding in what way personal explanations are different from
impersonal ones, and how the latter could be improved to either be more trustworthy or
mimic the former.

As previously stated, Trust is not a static property. Besides the system itself, user’s
experience and learning over time can make the user’s Trust evolve positively or negatively.
Holliday et al. [23] assessed Trust and reliance in multiple stages of working with an
explainable text-mining system. Results showed that, as the user became more familiar and
experienced with the system, the level of Trust also changes over time. Yang et al. [24] also
explored how the level of Trust evolved as the user experience with the system increased
utilizing two different Trust measures on their experiments.

For this reason, monitoring the levels of users’ Trust over time appears crucial when
evaluating any ML system, with or without an explanatory component, to help understand
how Trust progresses with experience over time.
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Finally, Zhang et al. [25] conducted a case study that explores how model features
can influence user Trust and the joint Performance of the Human-AI system. The study
was divided into two experiments, each one with a particular goal in mind. The first
experience was based on an income prediction task, where subjects had to predict whether
a person’s annual income would exceed $50K or not, based on a set of attributes. Three
experimental factors were used across different scenarios: the AI’s confidence level, the AI’s
prediction and the amount of user additional knowledge compared to the system. For each
scenario, user Trust was measured using two behavioural indicators that are not reliant
on a subjective user self-report. The first one was a “switch percentage”, which shows
the proportion of trials were the participant chose to use the AI’s prediction instead of his
own. The second on was the “agreement percentage” is the percentage of trials were both
the participant’s and AI’s prediction was equal. Results showed that the main influence
factor was whether the user had access to the AI’s confidence level. In those cases, the
user would switch to the AI’s prediction more often. The second experience focused on the
effect of local explanations on user Trust. The setup was equal to the previous experiment,
but local explanations generated using SHAP values were presented to the user instead
of confidence levels. Using the same indicators as in the previous experiments, results
did not indicate that explanations had a significant impact on user Trust, compared to the
baseline scenario.

4.2. Understandability

Understandability can be defined as “the ability to characterize the relation between
the input and output of a system with respect to its parameters” [26]. For a system to
be understandable, one could say that it must “support user understanding of system’s
underlying functions” [3].

In the cognitive psychological field, a user’s understanding is usually defined as the
user’s mental model. Researchers in HCI analyze these users’ mental models to evaluate
the level of understanding of a system, a method that can be applied to ML systems. In the
case of XAI systems, users come across explanations that help them build a mental model
of how the system works, supposedly more accurately than in a non-XAI version of the
same system. Therefore, studying these users’ mental models in XAI systems is a method
of assessing the effectiveness of explanations in increasing Understandability.

Explanations and their relationship with understanding have been studied for several
years in human–AI interaction research, focusing mainly on figuring out what are the
important characteristics of an ideal explanation [27].

Firstly, user understanding could be assessed through user expectations, which would
also tell researchers what type of explanations should be generated. Rader and Gray [28]
investigated user understanding of algorithmic curation in Facebook’s News Feed, and
whether they believed that all their friends’ posts appeared on their feed. The results
showed a wide range of beliefs and causal inferences which were highly dependent on the
personal experience of each user. Consequently, these perception differences also affect
how the user interacts with the system. Lim and Dey [29] conducted two experiments to
understand what information users are interested in when interacting with a few real-world
applications. The authors defined a set of types of explanations the user might want, and
tried to define if that information would satisfy the user’s need.

As mentioned in the User Trust section, Nourani et al. [20] stated that “understanding
of processing logic is more important for user Trust than the history of observed results
alone”. This work assessed User’s Perceived Understandability through an image classifi-
cation review task. The experiments showed a significant difference between strong and
weak explanations, where the tendency was to have lower user Trust when the subjects
did not understand the explanation. Without human-meaningful explanations, people
expected the system to fail more based on past observations.
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Nothdurft et al. [30] also evaluated the perceived Understandability using trans-
parency explanations and justifications on a system with “unexpected negative events”.
The results support the authors’ hypothesis that explanations can help reduce the user’s
Trust loss when he faces one of those events, in comparison to an incomprehensible system
that does not produce justifications for them.

User Prediction of Model Output is connected to the user expectations of a model
and can be used to evaluate the level of Understandability of a model. Ribeiro et al. [31]
applied a set of evaluation methods to their proposed XAI methods, LIME and SP-LIME,
where one of them was focused on evaluating if the generated explanations lead users
to relevant system insights. The authors intentionally trained a bad classification model,
and subjects had to answer a couple questions regarding their understanding of the model
output and what were the relevant features used by the model in that scenario. Results
suggested that explanations were very useful in providing model insights and in deciding
when not to trust the model and why. In a follow-up work [32], the same authors proposed
another XAI method, Anchors, which represent local and “sufficient” conditions for a
model’s prediction. The user study compared these explanations with linear explanations
on the same classification model and evaluated the ability of users to accurately predict the
model output.

Similar to Trust, users’ mental models of a system are also consolidated over time, and
not on a single use. Moreover, it is common practice for developers to regularly update
AI systems, whether it is training the same model with higher quality data or replacing
the algorithm for a better one. Although such updates improve the system Performance
on the validation set, their impact on the end-users is not linear. Bansal et al. [33] studied
these updates to AI systems and how they influence both user understanding and task
Performance. They introduced the concept of “compatibility” of an update, defining two
score metrics to evaluate an update to a classifier, one for local and the other for global
compatibility level. This compatibility was evaluated with regard to the user’s mental
model and how it is affected by the update.

Model Understandability could also be measured through User Prediction of Model
Failure. Bansal et al. [34] states that with the rise of human-AI teams in high-stake domains
decisions (healthcare, criminal justice, etc.), it is increasingly important to focus on the team
Performance that is dependent on both the AI system and the user. The authors studied
the user awareness of an AI system, particularly on the system’s error boundary, which
is vital when the user decided to accept or override an AI-based recommendation. The
experiments’ goal was to build insights on how the user model is affected by the system’s
error boundary and how relevant it is in the resulting team Performance. Results suggested
that certain error boundary properties can influence the effectiveness and efficiency of the
collaboration between an AI system and its users.

Nushi et al. [35] affirm that understanding the details of system’s failure is vital for
identifying areas for refinement, communicating the reliability of a system in particular
scenarios, and defining appropriate human oversight and engagement. Nevertheless, the
characterization of failures and shortcomings is a complex task on ML systems, and the
existing evaluation methods have limited capabilities. The authors propose a set of hybrid
human–machine methods named Pandora for component-based AI systems that can help
list the conditions of a system’s malfunction. The experimental tests on an image captioning
system indicate that these methods can discover failure details that go unnoticed when
using only traditional metrics.

Shen et al. [36] studied the impact of visual interpretations on understanding incor-
rectly predicted labels produced by image classifiers. Although one would expect that
explanations would help the subjects identify incorrect labels more accurately, experimental
results suggested otherwise. In fact, the group of users that had access to the explanations
and the labels performed worse than the group with only the labels, which suggests that
the interpretations presented were ineffective. Further investigation would be needed to
figure out the reason for these results.
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Finally, some studies on the literature focused on assessing Understandability through
interviews and think aloud approaches [37,38], as well as Likert-scale questionnaires [39,40].
In short, Understandability is characterised by the ability to make a human understand and
attribute meaning to the explanations provided by the system. While this favours increased
user Trust in the system, it is not enough to make the user’s task more efficient. In practice,
an explanation can be understandable, but not useful or relevant to the user.

4.3. Explanation Usefulness and Satisfaction

The ultimate goal of any system is to satisfy a particular user need. Therefore, in a XAI
system, it is also important to evaluate how useful explanations are to the user and how
satisfied the user is with them. A large portion of literature follows a qualitative evaluation
of user Satisfaction of explanations, using questionnaires and interviews [29,41,42]. One
possibility to consider is to conduct expert case studies. Compared to lay people, experts
have more knowledge on the subject around the system and can provide a more complete
and in-depth opinion [43,44].

Some authors study the explanation Usefulness, which helps understand whether
explanations are valuable to the user or not. For example, Coppers et al. [45] studied the
Satisfaction level of expert translators when using either an intelligible or a non-intelligible
version of the same system. The results show that the added explanations do not necessarily
lead to a significant change in user experience. Participants stated that the intelligibility
was only valuable when the information provided was beneficial to the translation process,
or when it added information that the expert was not immediately aware of.

Besides the Usefulness of explanations, it is also important to consider the amount of
information those explanations present to the user. Poursabzi-Sangdeh et al. [46] conducted
a series of experiments focused on evaluating the effect of presenting different information
to the user on the ability to fulfil a particular task. In a few cases, although users had access
to either more information about the model or about its prediction process, they also were
less able to identify and correct models’ mistakes, seemingly due to information overload.
Lim and Dey [29] also refer this information overload as an important problem to consider
when developing systems for real-world applications, since those scenarios are usually
more complex. On another work, Gedikli et al. [41] evaluated a recommender system
according to some explainability goals. One of those was efficiency, which can be defined
as how good an explanation is in reducing the decision time. The authors concluded that
explanations helped users decide more quickly, but they do not guarantee there would be
no implications on the decision quality or the user Satisfaction.

Despite the interpretability benefits of explanations, they also bring costs to the user.
In the case that the explanations are too extensive, the user might need more time to process
the information presented. Bunt et al. [47] investigated this aspect by conducting two
studies on low-cost decision support systems: one on the comprehensibility and perceived
cost of explanations and the other on the user desire for explanations. The results show that
most users are interested in having a “sufficient” transparency level, while access to too
much information leads to a viewing cost that outweighs the benefit of the explanations.

Lim et al. [42] studied the effectiveness of different types of explanations. On the
one hand, the users had “why” explanations, which showed why the system behaved in
a certain way. On the other hand, the users had access to “why not” explanations, which
showed why the system did not behave in a certain way. Results showed that the former
contributes to a better understanding and stronger feeling of trust on the model when
compared to the latter. This strategy could be used when researchers want to compare
case-based explanations versus counterfactual explanations, which correspond to the “why”
and “why not” scenarios.
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Thus, Understandability and Usefulness are mutually complementary explanation’s
attributes. The latter enables us to assess an explanation’s real benefit towards users’
needs. Ultimately, the Usefulness of explanations may translate into gains in users’ Task
Performance, another metric we now describe.

4.4. Performance

One of the XAI research main goals is to support end-users’ decisions and help them be
more successful in the task they have at hand. Therefore, Task Performance is an important
measure to consider. Although Performance can be evaluated separately on the model and
end-user, it is much more relevant to observe the overall Performance of the Human-AI
system, since it is in that condition that systems will function in real-life scenarios. There
is not a lot of quantity and diversity in Performance evaluation of XAI systems. Most
human-in-the-loop approaches are focused on the Explainability concepts described in
the previous sections. Nevertheless, there are still ways of including Performance in an
evaluation process.

A more direct approach to Performance evaluation would be to compare the Perfor-
mance in two scenarios: one where the user had access to the system’s output generated
explanations and other where only the system’s output was known. Despite having a
different goal in mind, this approach has been described in previous sections. It would
only be necessary to take the experiment outcomes and look at them from a Performance
perspective. For example, consider a case with two subject groups where one had access
to a classification model output and explanation and the other only was able to see the
output. If each subject had to decide to either agree or disagree with the model’s deci-
sion, the accuracy of each subject could be calculated and compared between the two
subject groups.

Bansal et al. [33] studied these updates to AI systems and how they influence both
user understanding and task Performance. A more detailed description of this work
was provided in a previous Section 4.2. Through the proposed metrics, authors were
able to evaluate the trade-off between the Performance and the compatibility of an AI
system update.

While evaluating any Human-AI system, researchers can also take advantage of eval-
uation results to improve the current Model Performance. For instance, when adopting
a method focused on the User Prediction of Model Failure, one could take the chance to
identify the cases where the model fails and retrain it on more data like those same cases.
Moreover, this could also be useful to identify cases where the generated explanations
fail and opens the opportunity for improving them in future iterations. Ribeiro et al. [31]
concluded that users were able to detect wrong explanations in a text classification model,
which enabled the training of better classifiers, with improved Performance and explana-
tions quality.

4.5. Summary

Table 3 summarizes the previously described state-of-the-art methods by presenting a
condensed view of the research questions, evaluation methods/metrics used and the type of
XAI explanation generated for each work. Each row represents a Method/Category pair, as
there are situations where the same work proposes different metrics for different categories.
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Table 3. Human-centred evaluation methods for machine learning explanations.

Reference Category Sub-Category Research Question Methods and/or Metrics XAI Type

Coppers et al., 2018 [45]
Explanation
Usefulness and
Satisfaction

-

What is the impact of
intelligibility on the Perceived
Value, Trust, Usage, Performance,
and User Satisfaction for
different translation aids?

SUS questionnaire and 5-point Likert scale to evaluate Perceived
Usefulness, general Usability and the perception of the following
features: understandable, useful, enjoyable, trustworthy, improves
quality and efficiency.

Attribution-based

Bunt et al., 2012 [47]
Explanation
Usefulness and
Satisfaction

-

To what extent does the
participant want to know more
about how the system generates
its intelligent behaviour?

Qualitative interviews, 2-week diary study and 7-point Likert scale
to evaluate perceived utility, perceived accuracy and matching
expectations.

Example-based

Lim et al., 2009 [42]
Explanation
Usefulness and
Satisfaction“

-

How to evaluate if different types
of explanations improve the
users perception of system’s
Usefulness and Satisfaction?

Survey that asked users to explain how the system works and to report
their perceptions of the explanations and system in terms of
Usefulness, Satisfaction, Understandability, and Trust.

Model-based

Ribeiro et al., 2016 [31] Performance - Can non-experts improve a
classifier through explanations?

Iterative model Performance assessment through explanations based
on feature importance. Attribution-based

Ribeiro et al., 2018 [32] Performance -

How do explanations influence
user Performance when trying to
predict model behaviour on
unseen instances?

Coverage: fraction of instances predicted after seeing the explanation;
Precision: Fraction of correct predictions; Time: Seconds the user took
to complete the task per prediction.

Attribution-based

Bansal et al., 2019 [34] Performance -
How updates to an AI system
can affect human-AI team
Performance?

ROC: Team Performance metric; Compatibility score: fraction of
examples on which the older model version recommends the correct
action, the new model version also recommends the correct action;
Locally-compatible update: Whether the action given by the new
model version affect the a user’s mental model created during an older
model version usage; Globally-compatible update: Update is
compatible for all mental-models (users).

Model-based

Lim et al., 2009 [42] Performance -
How to evaluate if different types
of explanations lead to better task
Performance?

Task Performance: evaluated total learning time and average time
completion. Model-based

Holliday et al., 2016 [23] Trust Evolution of User Trust How does user trust evolve over
time?

7-point Likert scale to indicate the extent of agreement with a
statement of trust in the system before and after performing a task
assisted by the system; Think aloud protocol: through which authors
identified four factors of trust: perceived system ability, perceived
control, perceived predictability, and perceived transparency.

Attribution-based
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Table 3. Cont.

Reference Category Sub-Category Research Question Methods and/or Metrics XAI Type

Yang et al., 2017 [24] Trust Evolution of User Trust

How does user trust evolve and
stabilize over time as humans
gain more experience interacting
with automation?

TrustEND: trust rating elicited after the terminal trial T); TrustAUTC:
Area Under the Trust Curve; and Truste: Trust of entirety; Response
Rates (RR) and Response Times (RT) of system Reliance (trusting the
automation in the absence of threat alarms) and system compliance
(trusting the automation in the presence of one or more threats).

Model-based

Eiband et al., 2019 [7] Trust User’s Compliance with
the System

Do placebic explanations invoke
similar levels of Trust as real
explanations?

5-point Likert scale questionnaire to evaluate user’s perception of
Trust. Attribution-based

Nourani et al., 2019 [20] Trust User’s Perceived System
Competence

How local explanations influence
user perception of model’s
accuracy?

Implicit perceived accuracy: percentage of responses where
participants predicted correct system classifications; Explicit perceived
accuracy: users’ numerical estimate of the system’s accuracy on a scale
0 to 100%.

Attribution-based

Kunkel et al.., 2019 [22] Trust User’s Perceived System
Competence

How to evaluate the impact of
explanations on user Trust in
recommender systems?

5-point rating scale to evaluate explanations quality. Example-based

Yin et al.., 2019 [21] Trust User’s Perceived System
Competence

How model’s stated accuracy
affects Trust?

Agreement fraction: percentage of tasks in which users’ final
prediction matched model’s predictions; Switch fraction: percentage
of tasks in which the users revised their predictions to match model’s
predictions.

Model-based

Zhang et al., 2020 [25] Trust User’s Perceived System
Competence

How Trust, Accuracy and
Confidence score on Trust
calibration are affected by: (1)
showing AI’s prediction versus
not showing, and (2) knowing to
have more domain knowledge
than the AI?

Switch percentage: how often participants chose the AI’s predictions
as their final predictions); Agreement percentage: trials in which the
participant’s final prediction agreed with the AI’s prediction).

Model-based

Samuel et al., 2021 [48] Trust,
Understandability

User Prediction of Model
Output

What is the impact of showing AI
Performance and predictions’
explanations on people’s Trust in
the AI and the decision outcome?

Human subject experiments with 5-Likert scale surveys to evaluate
predictability, reliability and consistency. Attribution-based

Kim et al., 2018 [39] Trust,
Understandability

User Prediction of Model
Output

How to quantitatively evaluate
what information saliency maps
are able to communicate to
humans?

10-point Likert scale to evaluate how important they thought the
image and the caption were to the model. 5-point Likert scale for
evaluating how confident they were in their answers. Evaluated
accessibility, customization, plug-in readiness and global
quantification.

Model-based
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Table 3. Cont.

Reference Category Sub-Category Research Question Methods and/or Metrics XAI Type

Shen et al., 2020 [36] Understandability User Prediction of Model
Failure

How useful is showing
machine-generated visual
interpretations in helping users
understand automated system
errors?

Accuracy of human inferences on model misclassification. Attribution-based

Nushi et al., 2018 [35] Understandability User Prediction of Model
Failure

How detailed Performance views
can be beneficial for analysis and
debugging?

Human Satisfaction: Indicates whether the user agrees with the image
/ caption pair presented; System Performance / Prediction Accuracy:
Accuracy of the system prediction compared to ground truth (defined
by human Satisfaction).

Model-based

Ribeiro et al., 2016 [31] Understandability User Prediction of Model
Output Do explanations lead to insights?

A counter of how many models each human subject trusts, and
open-ended questions to indicate their reasoning behind their
decision.

Attribution-based

Ribeiro et al., 2018 [32] Understandability User Prediction of Model
Output

How do explanations influence
user Understandability when
trying to predict model
behaviour on unseen instances?

Coverage: fraction of instances predicted after seeing the explanation;
Precision: Fraction of correct predictions; Time: Seconds the user took
to complete the task per prediction.

Attribution-based

Nourani et al., 2019 [20] Understandability User’s Perceived
Understandability

How human perceived
meaningfulness of explanation
affects their perception of model
accuracy?

Post-study questionnaire and think-aloud approach to evaluate
implicit perceived accuracy and explicit perceived accuracy. Attribution-based

Nothdurft et al., 2014 [30] Understandability User’s Perceived
Understandability

How different explanations goals
affect human-computer Trust?

Evaluate Perceived Understandability, Perceived Technical
Competence, Perceived Reliability, Personal Attachment and Faith. Attribution-based

Lim et al., 2009 [42] Understandability User’s Perceived
Understandability

How to evaluate if different types
of explanations help users better
understand the system?

User understanding: evaluated correctness and detail of reasons
participants provided by participants in a Fill-in-the-Blanks test and a
Reasoning test.

Model-based
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5. Computer-Centred Evaluation Methods

Human-centred methods are more commonly applied to evaluate XAI systems than
Computer-centred, partially due to the complexity associated with judging certain prop-
erties such as Trust or Understandability from a non-human point of view. Nevertheless,
Human-centred approaches also have identifiable drawbacks. In particular, Herman [8]
indicates that the human bias towards simpler explanations can result in more persuasive
explanations as opposed to transparent systems [3]. As such, explanation evaluation meth-
ods disconnected from the human user must also be considered. Doshi-Velez and Kim [9]
categorize these methods as functionally grounded evaluations, suggesting that they are
better employed after human validation of the model or system, with the exceptions of
when these are not yet mature enough or human experimentation is unethical.

Two commonly found properties used to evaluate this type of explanations are their
Interpretability and Fidelity. Interpretability can be described as the ability to explain in
understandable terms to a human [9], while Fidelity indicates how accurately a model’s
behaviour is described by an explanation [6]. These properties can be further subdivided
into more specific characteristics. More specifically, within the Interpretability category,
it is also possible to identify the Broadness sub-property, which measures how generally
applicable an explanation is [10] as well as the Simplicity (also known as Parsimony)
and Clarity characteristics, with the former indicating if an explanation is presented in
a compact or not too complex form and the latter the unambiguity associated with an
explanation [6]. As for the Fidelity property, we can sub-divide it into the Soundness and
Completeness categories. The first informs on how truthful an explanation is to the task
model, while the last indicates if an explanation provides sufficient information to compute
the output for a given input [6]. According to [1], Completeness is a measure of how many
input features that affect the decision process are captured in an explanation.

These properties are, at times, also accompanied by other ones aimed at evaluating
the XAI system as well, such as the Sensitivity to input perturbation and model parameter
randomization. ElShawi et al. [49] did precisely this, evaluating the LIME, anchors, SHAP,
LORE, ILIME and MAPLE Interpretability frameworks, albeit with different methods
and metrics. More specifically, they based their work on the three axioms proposed by
Honegger [50]. These pertain to the Identity (identical instances must have identical
explanations), Stability (instances belonging to the same class must have comparable
explanations) and Separability (dissimilar instances must have dissimilar explanations) of
the XAI system. It should be noted that these proprieties could be considered ramifications
of the Soundness sub-category. Thus, we considered that including a third hierarchical
level in our proposed taxonomy would bring an unnecessary level of complexity that could
compromise its practical use.

Given this, we considered that the best approach to structure the Computer-centred
evaluation methods would be to follow the categorization already proposed by Zhou
et al. [10]. Sections 5.1 and 5.2 describe each evaluation category considered in the pro-
posed taxonomy for the Computer-centred methods, namely Interpretability and Fidelity,
respectively. These descriptions were based on explainability concepts presented in pre-
vious works [6,9,10] and adapted to our taxonomy vision. The most relevant evaluation
methods for each category are briefly presented and discussed, a summary of these methods
and respective categorization also presented in Section 5.3.

5.1. Interpretability

The non-human assessment of the Interpretability of a XAI system can be more
challenging than its Fidelity, in part due to the inherent subjectivity of what is considered
an interpretable explanation. Nevertheless, several authors propose distinct methods to
obtain a measure of this property. Nguyen and Martínez [51], for example, define the
Effective Complexity metric which, when having a low value, is an indication of simple
and broad explanations. They also indicate a Diversity measure which reflects the degree of
integration of an explanation. Other common metrics to evaluate this property are related



Appl. Sci. 2022, 12, 9423 18 of 31

to the model size, such as the Depth of decision trees or the number of non-zero weights
in linear models, as noted by Ribeiro, Singh and Guestrin [31]. Slack et al. [52] used a
simple metric as well to assess the Interpretability of their models: the number of runtime
or arithmetic operations for a given input.

Alternatively, Hara and Hayashi [53] utilize the number of regions in which the input
space is divided as a different metric to judge the complexity of their simpler models used
as interpretable versions of tree ensembles. Deng [54] also proposed a framework for
interpreting tree ensembles, using several metrics to evaluate the rules extracted, namely
the Frequency of a rule (or the proportion of instances satisfying the rule condition), its
Error (the quotient between the number of incorrectly and correctly classified instances by
the rule) and its Complexity or length, defined as the number of variable-value pairs in
its condition.

Lakkaraju et al. [55] proposed a framework as well, although aimed at interpreting
black box models through learned decision sets (if-then rules). The evaluation of these
rules/explanations involves simplistic Interpretability metrics, such as the total number of
rules in the set, the maximum width of all the elements in it, the total number of predicates
and unique neighbourhood descriptors, and the number of instances which satisfy two
different rules, for every pair of rules. In an earlier but similar work (also based on decision
sets), Lakkaraju et al. [40] evaluated the Interpretability of the framework through other
metrics, such as the degree of overlapping between every pair of rules in the set, the fraction
of data points not covered by any rule, the average rule length (number of constituting
predicates), the total number of rules and the fraction of class labels that are predicted by at
least one rule. In another work, Bhatt, Weller and Moura [56] also define several metrics for
evaluating XAI explanations, one of which aims at assessing their complexity by computing
the entropy of the fractional contribution of every feature to the total magnitude of the
attribution. In another work, Bau et al.’s [57] proposed a framework aimed at a different
scenario, more specifically the evaluation of CNN latent representations (activation maps).
This is accomplished by measuring the intersection between the internal convolutional
units and pixel-level semantic concepts previously annotated in the image. In this manner,
if there is a high overlap between a unit and a concept in several images, it can be said that
the unit represents that particular concept.

Zhang, Wu and Zhu [58] used an evaluation metric previously proposed in [59] for
similar cases denoted as location instability. In their work, the feature map of a filter f is
first computed and the inference location of f determined by the convolutional unit with
the highest activation score (whose receptive field’s centre is backpropagated to the image
plane). From here, the in-image distance between this location and certain ground-truth
landmarks is registered. For example, in order to investigate if a filter represents a cat,
some landmarks could be its head, legs and tail, as the distance from these to a perceived
activation centre should remain stable. In this manner, it is possible to judge whether a
filter consistently represents the same concept by analysing the deviation between each
activation-landmark pair calculated across several images.

5.2. Fidelity

The assessment of XAI system Fidelity seems to be significantly more addressed in the
literature when compared with its Interpretability, probably due to its more objective nature.

For instance, Nguyen and Martínez [51] present several pertinent metrics for this
task as well, such as the monotonicity associated with the feature attributions, calculated
through the Spearman’s correlation coefficient between these values and the corresponding
estimated expectations (computed using the outputs of the model). In this manner, it is
possible to assess if the attributed feature importance values are correct by checking if
they are monotonic or not. They also evaluate the Broadness of these explanations by
using the mutual information between a random variable and its corresponding value after
feature extraction. The lower this value, the broader the explanation. In addition to this,
the authors also propose a non-sensitivity measure to ensure that only features to which
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the model is not functionally dependent on can be assigned a zero-importance value. They
present a non-representativeness metric as well which measures the Fidelity associated
with an explanation, although high values can also indicate factual inaccuracy.

Laugel et al. [60] proposed a method for measuring the risk of generating unjustified
counter-factual examples, i.e., examples that do not depend on previous knowledge and
are instead artefacts of the classifier, through the number of such unjustified and justified
examples encountered in the neighbourhood of a particular example. In a different ap-
proach, Ribeiro, Singh and Guestrin [31] proposed a type of explanations referred to as local
interpretable model-agnostic explanations (LIME) and multiple ways to evaluate them.
These explanations can be seen as intrinsically explainable models (and the properties
possible to retrieve from them) fitted on slight variations of the instance being analysed.
They evaluate if these approximations are faithful to the model by generating a gold set
of features relevant to it (which was itself interpretable in that case) and computing how
many were retrieved in the explanations. Afterwards, the trustworthiness of the individual
predictions and model were also assessed by deeming a set of features as untrustworthy
in the first case and adding noisy features in the second, followed by the analysis of the
predictions of the model in the face of these changes.

Taking inspiration from the previous work, Plumb et al. [61] introduced a method
towards regularizing models for explanation quality at training time. To accomplish this, it
made use of two separate metrics, namely the Fidelity of the explanations, characterized by
how well an explainable model approximates the original one around a particular instance,
and their Stability, which can be described by the degree to which the explanation changes
between the instance’s generated neighbourhood points. These metrics are approximated
through two algorithms and linked with a standard predictive loss function, encouraging
the model to be interpretable around a particular instance.

In the already mentioned work of Bhatt, Weller and Moura [56], another metric is pro-
posed by the authors to evaluate the faithfulness of an explanation by iteratively replacing
random subsets of given attributions with baseline values and then measuring the correla-
tion between the differences in function outputs and the sum of these attribution subsets.
Similarly, Alvarez-Melis and Jaakkola [62] also measure this property by calculating the
correlation between the model’s Performance drops when removing certain features from
its input and the relevance scores (attributions) on various points. In another work [63], the
authors define an additional method to evaluate the robustness of the explanatory model
through a local Lipschitz estimate.

Contrastingly, Sundararajan, Taly and Yan [64] propose a set of axioms the XAI
method(s) must satisfy instead of measuring individual properties. The first one is re-
lated to the Sensitivity of the explanations, stipulating that “(. . . ) for every input and
baseline that differ in one feature but have different predictions than the differing feature
should be given a non-zero attribution”. Moreover, they also add a complement to this
axiom indicating that if a model’s function does not mathematically depend on some vari-
able, then the attribution associated with that variable is always zero. The second axiom is
that of implementation invariance, meaning that the attributions generated by a method
should always be identical for functionally equivalent models or networks (systems whose
outputs are equal for the same inputs). This axiom is similar to Montavon, Samek and
Müller’s [65] definition of continuity, stating that nearly equivalent points should also
have nearly equivalent explanations, something which can be assessed by measuring the
maximum variation of the explanation in the input domain. Kindermans et al. [66] also
defined an axiom related to the invariance of the explanations but in this case in relation
to the model’s input, indicating that an explanation method (in this case saliency-based)
needs to mirror the Sensitivity of the predictive model with respect to transformations of
the input.

Kim et al. [39] introduced concept activation vectors (CAVs) for quantitatively mea-
suring the Sensitivity of black-box model predictions to previously defined concepts at a
given layer of the model. According to the authors, a CAV is essentially the normal to a
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hyperplane separating examples with and without a concept in the model’s activations
and can be represented by a binary linear classifier. They expand on this by introducing
another measure representing the fraction of a class inputs whose layer activation concept
vector was positively influenced by a certain concept, comparing the obtained results with
their own saliency map evaluations for validation.

Ylikoski and Kuorikoski [67] also touch on the subject of Sensitivity, defining it as a
measure of how much an explanation changes in the face of background alterations. More
precisely, they consider that, as Sensitivity increases, the explanatory relationship weakens.
Similarly, Yeh et al. [68] consider a variant of this property known as max-sensitivity which
measures the the maximum change in the explanation with a small perturbation of the
input. The authors also present an explanation infidelity measure based on the notion of
the goodness of an explanation, or rather its ability to capture how the predictor function
changes in response to significant perturbations. Deng et al. [69] used this metric to evaluate
the attribution methods tested, as well as the ratio of the number of bounding-box pixels
that had a high value attributed to them, representing the localization accuracy. Similarly,
Kohlbrenner et al. [70] evaluate attribution localization in object detection problems by
computing the ratio between the sum of positive relevance inside a bounding box and the
total positive sum of relevance in the image. The authors also defined a weighted variant
of this metric to avoid numerical issues in edge cases related to the bounding box size.

Hooker et al. [71] proposed a different approach to measure the accuracy of attribution
estimates in deep neural networks aimed at image classification tasks. Their method,
referred to as “Remove and Retrain” or ROAR, involves replacing the top t most relevant
pixels (according to the importance estimates) with the per-channel mean, effectively
removing them from the original image, and through this process generating new training
and test datasets on which the model is re-trained and evaluated. From there, the accuracy
of the new model is calculated and compared with the original one: if there was a noticeable
decrease, then it is likely that the removed inputs were informative and that the importance
estimates were accurate; if not, then the removed inputs were either uninformative or
redundant, and therefore the importance estimates were not of high quality. A similar
method was also proposed by Samek et al. [72] in which the most relevant regions/pixels
were replaced with values randomly sampled from a normal distribution.

Adebayo et al. [73] evaluate explanations based on saliency maps through two tech-
niques. The first consists of comparing the output of one of the saliency methods on a
trained model with the output of the saliency method on a randomly initialized untrained
network with the same architecture. Similarly, in the second technique, the authors measure
the distance between the outputs of a saliency method trained on a given dataset and the
outputs of the same method trained on the same architecture but with a copy of the dataset
containing randomly permutated labels. Finally, Ignatiev [74] proposed a distinct explana-
tion system based on if-then rules, or rigorous explanations, obtained through abductive
reasoning. The validity of the outputted explanations was assessed by computing the
percentage of incorrect and redundant rules.

5.3. Summary

The previously described state of the art methods are summarized in Table 4, as well
as the corresponding research questions, evaluation methods/metrics and XAI explanation
type outputted. Each row represents a Method/Category pair, as there are situations where
the same work proposes different metrics for different categories.
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Table 4. Computer-centred evaluation methods for machine learning explanations.

Reference Category Sub-Category Research Question Methods and/or Metrics XAI Type

Lakkaraju et al., 2016 [40] Fidelity Completeness How to evaluate Completeness of
rule-based models?

Fraction of classes: Measures what fraction of the class labels in the data
are predicted by at least one rule (optimal value is 1 - every class is
described by some rule).

Model-based

Ignatiev, 2020 [74] Fidelity Completeness How to evaluate if explanations hold in the
entire instance space? Correctness: percentage of correct, incorrect and redundant explanations. Model-based

Nguyen et al., 2007 [51] Fidelity Soundness
How to measure the strength and direction
of association between attributes and
explanations?

Monotonicity: Spearman’s correlation between feature’s absolute
Performance measure of interest and corresponding expectations.

Attribution-
based

Nguyen et al., 2007 [51] Fidelity Soundness
How data processing changed the
information content of the original samples
(target-level analysis)?

Target Mutual Information: Measured between extracted features and
corresponding target values (e.g., class labels).

Attribution-
based

Nguyen et al., 2007 [51]
Ylikoski et al., 2010 [67] Fidelity Soundness How robust is an explanation to

unimportant details?

Non-sensitivity: Cardinality of the symmetric difference between features
with assigned zero attribution and features to which the model is not
functionally dependent on.

Attribution-
based

Bhatt et al., 2020 [56] Fidelity Soundness
Does the explanation captures which
features the predictor used to generate an
output?

Faithfulness: Correlation between the differences in function outputs and
the sum of random attribution subsets replaced with baseline values.

Attribution-
based

Bhatt et al., 2020 [56] Fidelity Soundness How sensitive are explanation functions to
perturbations in the model inputs?

Sensitivity: If inputs are near each other and their model outputs are
similar, then their explanations should be close to each other.

Attribution-
based

Alvarez-Melis et al., 2018 [62] Fidelity Soundness Are relevance features scores indicative of
”true“ importance?

Faithfulness: Correlation between the model’s Performance drops when
removing certain features and the attributions.

Attribution-
based

Alvarez-Melis et al., 2018 [63]
Plumb et al., 2019 [61] Fidelity Soundness How consistent are the explanations for

similar/neighboring examples? Robustness: Local Lipschitz estimate. Attribution-
based

Sundararajan et al., 2017 [64] Fidelity Soundness How sensitive are explanation functions to
small perturbations in the model inputs?

Sensitivity: Measures the degree to which the explanation is affected by
insignificant perturbations from the test point.

Attribution-
based

Sundararajan et al.,2017 [64] Fidelity Soundness
Are attributions identical for functionally
equivalent networks with different
implementations?

Implementation invariance: Measures the similarity between
explanations provided by two functionally equivalent networks.

Attribution-
based

Montavon et al., 2018 [65] Fidelity Soundness
How fast the prediction value goes down
when removing features with the highest
relevance scores?

Selectivity: Measures the ability of an explanation to give relevance to
variables that have the strongest impact on the prediction value.

Attribution-
based
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Table 4. Cont.

Reference Category Sub-Category Research Question Methods and/or Metrics XAI Type

Kindermans et al., 2019 [66] Fidelity Soundness

Is the explanation method input invariant,
i.e., mirrors the behaviour of the predictive
model with respect to transformations of
the input?

Input invariance: Method that demonstrates that there is at least one input
transformation that causes a target explanation method to attribute
incorrectly.

Attribution-
based

Yeh et al., 2019 [68] Fidelity Soundness How sensitive are explanation functions to
small perturbations in the model inputs?

Max-sensitivity: Calculated based on the maximum change in the
explanation when adding small perturbations to the input.

Attribution-
based

Yeh et al., 2019 [68] Fidelity Soundness
Does the explanation method captures how
the predictor function changes in the face of
perturbations?

Explanation infidelity: Expected difference between the dot product of the
input perturbation to the explanation and the output perturbation (i.e., the
difference in function values after significant perturbations on the input).

Attribution-
based

Kohlbrenner et al., 2020 [70] Fidelity Soundness

Does the explanation method reflect the
object understanding of the model closely,
i.e., both predictions and explanations are
only based on the object itself?

Attribution localization: Ratio between the sum of positive relevance
inside a bounding box and the total positive sum of relevance in the image.

Attribution-
based

Hooker et al., 2018 [71] Fidelity Soundness
How to avoid that distribution shift
influences the estimated feature
importance?

Remove and retrain (ROAR): Remove the data points estimated to be
most important, and retraining the model to measure the degradation of
model Performance.

Attribution-
based

Samek et al., 2016 [72] Fidelity Soundness
How predictions change when the most
relevant data points are progressively
removed?

Region perturbation via MoRF (Most Relevant First): Measure how the
class encoded in the image disappears when the information is
progressively removed from the image using an ordered sequence of
locations by relevance.

Attribution-
based

Adebayo et al., 2018 [73] Fidelity Soundness How to assess similarity between two
visual explanations?

Spearman rank correlation with absolute value (absolute value), and
without absolute value (diverging); SSIM: The structural similarity index;
Pearson correlation: Correlation of the histogram of gradients (HOGs)
derived from two maps.

Attribution-
based

Kim et al., 2018 [39] Fidelity Soundness How to quantify the concept importance of
a particular class?

TCAV score (TCAVq): measures the positive and negative influence of a
defined concept on a particular activation layer of a model.

Attribution-
based

Laugel et al., 2019 [60] Fidelity Soundness
How to evaluate the behaviour of a
post-hoc Interpretability method in the
presence of counterfactual explanation?

Justification score: Binary score that equals 1 if the counterfactual
explanation is justified, 0 if unjustified; Average justification score:
Average value of the justification score computed over multiple instances
and multiple runs.

Example-based

Ribeiro et al., 2016 [31] Fidelity Soundness How to evaluate if explanations retrieve the
most important features for the model?

Recall of important features: Measures the amount of a gold set of
features considered important by the model that are recovered by the
explanations.

Model-based
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Table 4. Cont.

Reference Category Sub-Category Research Question Methods and/or Metrics XAI Type

Ribeiro et al., 2016 [31] Fidelity Soundness
How explanations can be used to select
between competing models with similar
Performance?

Trustworthiness: Prediction analysis after adding noisy and
untrustworthy features. Model-based

Lakkaraju et al., 2017 [55] Fidelity Soundness

How to evaluate if transparent
approximations used as explanations
capture the black-box model behaviour in
all parts of the feature space?

Disagreement: Percentage of predictions in which the label assigned by
the model explanation does not match the label assigned by the black box
model.

Model-based

Plumb et al., 2019 [61] Fidelity Soundness How each feature influences the model’s
prediction in a certain neighborhood?

Neighborhood-fidelity (NF): Accuracy of the model in a certain
neighborhood. Model-based

Nguyen et al., 2007 [51] Fidelity Completeness How to measure the representativeness of
Example-based explanations?

Non-representativeness: Performance measure of interest
(e.g.,cross-entropy) between the predictions of interest and model outputs,
divided by the number of examples.

Example-based

Nguyen et al., 2007 [51] Interpretability Broadness and
Simplicity

How data processing changed the
information content of the original samples
(feature-level analysis)?

Feature mutual information: Measured between original samples and
corresponding features extracted for explanations.

Attribution-
based

Nguyen et al., 2007 [51] Interpretability Broadness and
Simplicity

How to assess the effects of non-important
features?

Effective complexity: Minimum number of attribution-ordered features
that can meet an expected Performance measure of interest.

Attribution-
based

Montavon et al., 2018 [65] Interpretability Clarity
If model response to certain data points are
nearly equivalent, are the respective
explanations also nearly equivalent?

Continuity: Measures the strongest variation of the explanation in the
input domain.

Attribution-
based

Bau et al., 2017 [57] Interpretability Clarity How to evaluate explanations’ Clarity using
human-labeled visual concepts?

Network Dissection: Measure the intersection between the internal
convolutional units and pixel-level semantic concepts previously annotated
in an image.

Attribution-
based

Zhang et al., 2018 [58] Interpretability Clarity
How to evaluate explanations’ Clarity
through the semantic meaningfulness of
CNN filters?

Location instability: Measured by the distance between known image
landmarks and inference locations (areas with highest activation scores).

Attribution-
based

Lakkaraju et al., 2017 [55] Interpretability Clarity
How to measure the unambiguity of
transparent approximations used to explain
rule-based models?

Rule overlap: For every pair of rules, sum up all the instances which
satisfy both rules’ conditions simultaneously (optimal value is zero); Cover:
The number of instances which satisfy the condition of the target rule
(optimal value is the size of the entire dataset).

Model-based
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Table 4. Cont.

Reference Category Sub-Category Research Question Methods and/or Metrics XAI Type

Lakkaraju et al., 2016 [40] Interpretability Clarity How to evaluate Clarity of rule-based
models?

Fraction uncovered: Computes the fraction of data points which are not
covered by any rule. Model-based

Bhatt et al., 2020 [56] Interpretability Simplicity How complex is the explanation? Complexity: Entropy of the fractional contribution of every feature to the
total magnitude of the attribution.

Attribution-
based

Nguyen et al., 2007 [51] Interpretability Simplicity How to measure the diversity of
Example-based explanations?

Diversity: Distance function in the input space between different
examples, divided by the number of examples. Example-based

Ribeiro et al., 2016 [31] Interpretability Simplicity How to measure the complexity of
explanations?

Complexity: Decision tree depth, number of non-zero weights in linear
models. Model-based

Hara et al., 2016 [53] Interpretability Simplicity How to measure the Interpretability of tree
ensembles?

Tree ensembles complexity: Measured by the number of regions in which
the input space is divided. Model-based

Deng, 2019 [54] Interpretability Simplicity How to measure the quality of rules
extracted from tree ensembles?

Rule complexity: Measured by the length of the rule condition, defined as
the number of variable-value pairs in the condition; Rule frequency:
Proportion of data instances satisfying the rule condition; Rule error:
Number of incorrectly classified instances determined by the rule divided
by the number of instances satisfying the rule condition.

Model-based

Lakkaraju et al, 2017. [55] Interpretability Simplicity

How to measure the complexity and
intuitive representation of transparent
approximations used to explain rule-based
models?

Size: The number of model rules; Max width: The maximum width
computed over all the elements; No. of predicates: Number of predicates
(appearing in both the decision logic rules and neighborhood descriptors);
No. of descriptors: the number of unique neighborhood descriptors;
Feature overlap: For every pair of a unique neighborhood descriptor and
decision logic rule, number of features that occur in both.

Model-based

Lakkaraju et al., 2016 [40] Interpretability Simplicity How to evaluate Simplicity of rule-based
models?

Average rule length: The average number of predicates a human reader
must parse to understand a rule. Model-based

Slack et al., 2019 [52] Interpretability Simplicity
How to evaluate simulatability, i.e., user’s
ability to run an explainable model on a
given input?

Runtime operation counts: Measure the number of Boolean and
arithmetic operations needed to run the explainable model for a given
input.

Model-based
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6. Discussion

Nowadays, XAI tools and techniques are more accessible than ever, for researchers and
practitioners to build XAI solutions for several applications. The demand for explanations
expanded beyond researchers that aim to comprehend the models better, to end-users
of the developed XAI system to increased Trust and AI adoption. Nevertheless, there is
still work to be done regarding how users perceive explanations generated by machines,
and what their impact is on real world scenarios. Therefore, it is crucial to ensure reliable
and trustworthy practices are applied to assess the impact of such explanations on the
end-users’ decision-making. However, the evaluation of explanations has been neglected in
a significant number of works found in literature. On the one hand, there are works that do
not conduct a complete validation of their proposed methods, nor do they compare them
to other state of the art methods. On the other hand, when works describe the evaluation
process for the proposed explanation methods, it is tailored to the specific context and
target user, making it difficult to apply them in other scenarios.

This review gathers works that contributed with methods and/or insights of the eval-
uation of explanation methods. The proposed taxonomy is a structure for organizing such
methods, which can be extended to other XAI properties, encompassing both subjective
and objective categories with Human-centred and Computer-centred categories, respec-
tively. The ability to organize the spectrum of evaluation methods into a single taxonomy
brings several advantages to future research works. Firstly, a taxonomy condenses disperse
knowledge into a categorization scheme that generally makes concepts more accessible.
Secondly, it solves the already identified issue of having to understand different termi-
nologies from different authors, since it standardizes the concepts. Finally, it also helps
researchers identifying potential research gaps in this field, thus motivating the community
to tackle new challenges that were unknown before.

Due to the lack of standardized evaluation procedures and the diversity of methods
and metrics, identifying the most commonly used ones is a very extensive and challenging
process. Even though it was possible to join distinct works into each category, the majority
of them adopt methods and metrics purposely created for each work, for both Human-
Centred and Computer-Centred Evaluation methods. The only exceptions are Likert-scale
questionnaires from the Human-Centred family, which is used in 8 out of the 23 works
highlighted in the respective section.

The following takeaways resulted from an analysis on the reviewed methods, which
provide valuable guidelines for any evaluation process of XAI systems. For instance, in
the context of software development, it is very common to iterate over systems deployed
in a production environment, either to add new features or correct older ones, as per the
necessities of the end user. This is even more vital in ML systems, since they are dependent
on real world data that tend to change overtime, a phenomenon known as data drift. An
ML system update can significantly impact model behaviour, and consequently the way
users interact with the entire ML system. For high-stake systems, it is imperative to ensure
that the impact of such changes does not negatively affect not only the system itself, but its
users’ interaction. For example, tunning an explanation method for a specific class might
demand from the user more time/effort to learn/trust the new model’s behaviour, even if
it results in a system’s performance improvement from a technical perspective.

Even without model updates, humans (users of ML systems) are in a constant learning
process. As a consequence, users’ mental models and properties like Trust depend on
the user’s system knowledge and familiarity. Moreover, real-world scenarios are also
everchanging, which might expose the ML system to new and unseen data, leading to
unexpected outcomes. Therefore, continuous monitoring after deployment of XAI solutions
is very important to ensure that the quality and validity of explanations evolve as expected
across time and system usage.

For evaluation methods in general, it is common to set a baseline scenario, used as
a point of comparison to others with different conditions. The goal is to understand if
these different conditions lead to a different outcome from the baseline case. The choice
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of the baseline scenario can greatly impact the meaning of the results. The majority of
approaches reviewed adopt a “no explanation” baseline, where the participants do not have
access to the model explanations [31,45]. In another case, one of the experiments described
in Poursabzi-Sangdeh et al. [46] asked users to complete a particular task before even
consulting the model. The usage of different baselines adds another level of complexity
to the discussion of experimental results from the same or different works, as there is the
need analyse and compare them in a fair setting. As the reviewed works do not provide a
clear view of what experimental settings are vital for a reliable and comparable comparison
between them, we believe it should be a high priority for future works to clearly define the
evaluation settings considered, while taking into account already available knowledge from
other works within the same subject. This would enable more transparent and comparable
research works for both publications’ authors and readers.

Despite the controlled nature of evaluation experiments, there might still exist certain
human behavioural differences between scenarios that are not reflected on the evaluation
results. In a study by Langer et al. [75] about people’s behaviour when presented with ex-
planations, the results showed that the inclusion of explanations increased the participants’
willingness to comply with a request, even if those explanations did not contain relevant
information. Eiband et al. [7] denominated these explanations as “placebic explanations”
and argued that placebic and real explanations could lead to a similar level of user trust
in the system. The authors also stated that works on explainability techniques might
benefit from using placebic explanations as a baseline scenario, since it would eliminate
any influence the presence of explanations might have on the user. Another study by
Buçinca et al. [76] evaluated two commonly used techniques for evaluating XAI systems.
One of the experiments conducted tested the usage of “proxy tasks”, a simplified version
of a real task for a particular system. The results support the hypothesis that the outcomes
from proxy tasks may not be a good indicator for the performance of the XAI system in a
realistic setting. Therefore, it is important to ensure that the metrics and measures used to
evaluate experimental results are as representative as possible of the several aspects of the
XAI system undergoing evaluation.

One could argue that the limitations of existing evaluation methods could be a conse-
quence of the nature of XAI techniques themselves. Liao and Varshney [5] raised concerns
regarding this same topic. Although efforts have been yield to approximate ML systems
to their users through explainability, there is still a clear disconnection between techni-
cal XAI approaches and their real effectiveness in supporting users objectives for their
particular use case. Although it is not considered on the proposed taxonomy, the kind
of end-users and their respective needs from a XAI system is an important aspect that
should be taken into account during the development and evaluation process. Users can
differ not only on their role when interacting with the system, but also in their domain
knowledge, expertise with ML systems or even in which environment will they use the
XAI system. Furthermore, research also shows that issues arise when the assumptions
underlying XAI technical approaches are detached from people’s cognitive processes. One
of the possibilities is that the sole presence of explanations can result in unwarranted trust
in models, as it was demonstrated by Langer et al. [75] and Eiband et al. [7]. For these
reasons, the evaluation of such approaches should account for these conditions; otherwise,
its results might be misleading.

From the three main types of explanations previously mentioned that can be evaluated
through these methods, Attribution-based explanations are arguably the easiest to assess
since the metrics used to perform their evaluation are usually independent from the
methods or models used to obtain the importance values. Contrastingly, methods to
evaluate Model-based explanations can be highly dependent on the target XAI approach
due to its intrinsically specific characteristics. There are, although, exceptions to this when
different model types can obtain similar explanations, such as if-then rule constructs. As
for Example-based explanations, their evaluation shares some similarities with Attribution-
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based explanations in the sense that, in theory, the same evaluation method could be
applied to different systems, although not as straightforward as with the latter.

Limitations

This paper consists of a general review of articles on XAI evaluation methods. The aim
was to find articles that provided either Human-centred or Computer-centred methods.
We found it relevant to find forms of evaluation exclusively linked to the performance and
comprehensibility of a XAI system. Thus, we did not specifically look for studies assessing
the whole system Relevance and Usefulness. Rather, we looked for studies assessing the
Usefulness of explanations towards increasing human’s understanding and trust. For this
reason, industries and/or researchers not applying a Human-centred design approach to
the system conceptualization and development require addressing a complete evaluation
of a system. This paper does not provide methods for that.

We also did not look for methods for assessing how individual beliefs and user’s prior
knowledge would affect their experience with a XAI system. The proposed taxonomy lists
assessment methods for characteristics intrinsic to the XAI system itself, whether assessed
by computational or human-centred methods. Thus, we only included characteristics that
affect the user’s ability to understand, trust and feel satisfied with a XAI system.

Focusing on the user dimension, this taxonomy does not assign methods to different
user profiles. It is likely that an ML engineer will have different explanation needs compared
to a domain-expert user. While different methods may better serve different profiles of
users, we did not establish these relationships as we had no context to test it.

With regard to the operationalisation of the methods surveyed, this paper provides an
accessible basis to facilitate the choice of methods, but does not provide a flow to support
the selection of the most suitable methods for a specific XAI-based use case. Additionally,
this work does not provide support on how to apply the identified methods, since this
would imply replicating the content of the cited articles. To go deeper on how to apply each
method, we suggest the reader to consult the methods section of the respective references.

7. Conclusions and Future Work

In this work, we reviewed several studies on XAI evaluation, which provide relevant
methods and insights on the topic. We proposed a taxonomy that structures the surveyed
evaluation methods into multiple categories, each one representing a valuable property of
XAI systems. As this is currently an expanding field of research, it is natural that future
works present new and unseen outcomes that this taxonomy does not include, but that
can nevertheless be added as an extension for the current state of this work, in the form of
new methods or even a new evaluation category. For instance, emotional analysis could
be a suitable alternative to the qualitative methods highlighted in the Human-Centred
family, such as Interviews or questionnaires. Kaklaushkas et al. [77] point out certain
theories which argue that an individual’s actions can be influenced by several behavioural
factors, such as physical, social, psychological or emotional. Therefore, the emotional
state of users might affect their interaction with XAI systems. Thus, XAI evaluation
procedures might be improved using emotional analytics methods, by providing insights
on how a participant’s emotional state affected its levels of Trust, Understandability or
other properties of XAI systems.

Moreover, this taxonomy mainly addresses two of the several shortfalls identified
in Section 2.4. Firstly, it helps solve the lack of consensus between different works when
defining and categorizing explanation evaluation methods. Some of the concepts and ideas
behind the proposed frameworks have different meanings in different works, which create
a challenging task when trying to get a broader picture of the topic. Secondly, it follows the
multidisciplinary nature of XAI, which requires knowledge required from different fields.
As the remaining shortfalls are considered out of the scope of this work, it is important that
future works on this topic address them in a comprehensive manner.
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Furthermore, in Section 6, we highlight a set of relevant aspects for XAI evaluation
that are scarcely addressed in the literature. Those discussion points can be a starting point
for future works to address, fostering knowledge transfer between researchers to speed up
and improve research on the topic.

Still in terms of future work, we find it particularly relevant to test and map potential
dependencies between different methods. For instance, try to identify if it would be relevant
to apply a specific method before carrying out another, e.g., apply a set of Human-centred
methods to help in the selection of the most relevant Computer-centred proprieties to be
evaluated or vice versa. Additionally, such tests may contribute to define recommendations
on how to interpret the results obtained for each category and sub-category of the proposed
taxonomy, in a way that enables defining the necessary actions for improving the XAI
system under analysis. As a final note, we also believe that this work can serve as a basis to
further develop a set of guidelines and decision flows that support XAI system developers
in the selection of the most suitable evaluation methods for their specific use case.
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