
Citation: Mazaed Alotaibi, F.; Fawad.

A Multifaceted Deep Generative

Adversarial Networks Model for

Mobile Malware Detection. Appl. Sci.

2022, 12, 9403. https://doi.org/

10.3390/app12199403

Academic Editor: Amalia Miliou

Received: 31 August 2022

Accepted: 15 September 2022

Published: 20 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Multifaceted Deep Generative Adversarial Networks Model
for Mobile Malware Detection
Fahad Mazaed Alotaibi 1,† and Fawad 2,*,†

1 Department of Information Systems, Faculty of Computing and Information Technology (FCIT),
King Abdulaziz University Jeddah, 22254, Saudi Arabia

2 College of Dentistry, Chosun University, Gwangju 61452, Korea
* Correspondence: fawadmsee20@gmail.com
† These authors contributed equally to this work.

Abstract: Malware’s structural transformation to withstand the detection frameworks encourages
hackers to steal the public’s confidential content. Researchers are developing a protective shield
against the intrusion of malicious malware in mobile devices. The deep learning-based android
malware detection frameworks have ensured public safety; however, their dependency on diverse
training samples has constrained their utilization. The handcrafted malware detection mechanisms
have achieved remarkable performance, but their computational overheads are a major hurdle in their
utilization. In this work, Multifaceted Deep Generative Adversarial Networks Model (MDGAN) has
been developed to detect malware in mobile devices. The hybrid GoogleNet and LSTM features of
the grayscale and API sequence have been processed in a pixel-by-pixel pattern through conditional
GAN for the robust representation of APK files. The generator produces syntactic malicious features
for differentiation in the discriminator network. Experimental validation on the combined AndroZoo
and Drebin database has shown 96.2% classification accuracy and a 94.7% F-score, which remain
superior to the recently reported frameworks.

Keywords: classification; generative adversarial networks; malware detection

1. Introduction

The mobile device has enormously penetrated society in the last few years as a result
of enriched interactive features and cost-effectiveness. The advancement of sophisticated
sensing devices has brought an exceptional boost to its employment in routine activities.
The software developers have made efforts to develop multiple application software related
to the academics, health, security, and entertainment sectors. A huge bulk of such applica-
tion software is publicly available online to assist the end-users. Moreover, online available
applications are freely downloaded and installed on user devices without spending any
money. The most common operating systems for mobile devices are the Android and iOS
operating systems. The software applications interoperable with these operating systems
are available on the Google play store and also on third-party software platforms. The
Android OS is the primary target for intruders to steal money and the privacy of the public.
Malware is malicious software that attacks the operating system of the mobile and attacks
the privacy of the users by stealing the credentials of the user. Malware software mostly
attacks the android operating system whenever the user unknowingly installs unlicensed
apps. The intrusion of malicious software variants through spyware, spoofing, hacking, and
phishing has developed an alarming security thread for public credentials and private data.
The phishing attacks deceive the recipient by persuading him to click the malicious URL
leading to the installation of malware. The open-source code available contains malicious
codes including trojan horses, riskware, spyware, adware, and ransomware [1,2]. The
malware variants increase their production due to the use of intelligent malware-producing

Appl. Sci. 2022, 12, 9403. https://doi.org/10.3390/app12199403 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199403
https://doi.org/10.3390/app12199403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9885-1775
https://orcid.org/0000-0002-3860-2635
https://doi.org/10.3390/app12199403
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199403?type=check_update&version=1

Appl. Sci. 2022, 12, 9403 2 of 12

agents such as Zeus, SpyEyea and Dos [3,4]. The privacy and security of the public have re-
cently been researched to develop the privacy-aware applications [5], permissions-assisting
application [6], and the malware detection frameworks [7,8]. Anti-virus apps have been
developed such as lookout, Norton, and Coodo mobile security, depending on signatures
for the detection of malware. The malware signatures are the random snippets and binary
patterns extracted from the data samples. The anti-virus developers use the cryptographic
signature hash data. The signature data are stored initially to categorize the input data
by providing the application [7]. However, malware can encounter the signatures-based
detection mechanism by varying a subset of its software sections with preserved semantics.

Various researchers have developed machine learning methods to detect malware in
the Android operating system of mobile devices. The developed frameworks can broadly
be classified into static and dynamic analysis methods. The static models decompile the
application’s codes in the installed package data. Moreover, the static features including
the application program [9] interface, permission sequence [10], and metadata [11] are
extracted in the recompilation process. The model is trained concerning the extracted
set of static features for the robust classification of malicious activity by malware. The
dynamic analysis models employ the reliable data of the applications, including the system
calls [12] and traffic traces [13]. The malware identification model employs a dynamic
set of features for the training and classification stage. The dimension of the static and
dynamic feature set is extensive, and the model suffers from dimensionality issues. The
details of features and samples of the OmniDroid dataset [14] are presented in Table 1. The
irrelevant features increase the complexity of the malware detection framework; therefore,
preprocessing methodologies have been developed to reduce the feature dimension by
removing the unwanted feature values. However, the unsupervised clustering-based
malware detection methods that have been developed for detecting zero-day type malware
cannot adopt the feature reduction technique to reduce the complexity and dimensionality
of the framework [15].

The supervised model developed based on a handcrafted method with a feature
reduction mechanism has resulted in a less complex malware identification system. The
supervised method consisting of both handcrafted and deep learning-based approaches has
been developed by researchers to decrease the complexity while preserving the performance
of the model. Various deep learning methods require the conversion of malware into an
image in the preprocessing stage followed by the feature extraction and classification stages.
The deep learning methods have not only improved the classification performance but also
reduced effort for the identification of robust features in the overall system. However, the
deep learning model requires a huge set of examples for efficient training. In practice, it is
not possible due to limited set of malware samples available. Therefore, the deep learning
frameworks are bounded to achieve a constrained accuracy. To withstand the hurdle of
limited data samples, various researchers have employed the oversampling phenomena
by creating the syntactic samples in SMOTE [16]. The limitation of such methods is that
mostly, the re-using of existing samples is adopted instead of creating new samples.

Generative Adversarial Networks (GAN) [17] developed consisting of generator and
discriminator neural networks produce the adversarial samples to extend the dataset, lead-
ing to false classification results. The generator part produces a fake set of samples, while
the discriminator part differentes between the fake and real samples. The direct supply
of real samples to the GAN leads to false classification results; therefore, a preprocessed
sample is required to increase the invariance and robustness in the overall framework. To
increase the robustness and invariance of the classification model, a Multifaceted Deep
Generative Adversarial Networks Model (MDGAN) has been developed in this work. Vari-
ous GAN variants exist in the literature which includes the deep convolutional generative
adversarial networks (DCGAN) [18], which was developed for unsupervised learning
consisting of multiple architectural constraints. The SinGAN [19,20] is developed to learn
the image patch distribution at various scales for recognition based on a single train image.
The models require RGB input images and mostly focus on the input data type; however;

Appl. Sci. 2022, 12, 9403 3 of 12

the proposed MDGAN employs the multi-face input consisting of the 2D grayscale image
features concatenated to the LSTM binary sequence features set for the detection of malware
types.

Table 1. OmniDroid [14] dataset features and samples.

Feature Type Dimension Malware Benign

API 2128 11,000 11,000
Permission-API 7629 11,000 11,000
FlowDroid-API 3089 11,000 11,000
Dynamic-API 5932 11,000 11,000

The remaining paper is organized as follows. Section 2 includes the literature review
portion that introduces the related works. The proposed methodology portion includes the
details of the proposed MDGAN framework. The results section presents the performance
of the proposed model in comparison to recently reported works.

2. Literature Review

The android operating system in mobile devices is vulnerable to critical issues includ-
ing malware attacks. The public privacy and security issues lead to an extreme financial
loss of the vendor’s capital expenses [21]. The earliest research on malware detection can
broadly be classified into two classes: non-machine learning and machine learning-based
methods. The non-machine learning frameworks rely on the signature data that consists of
static and dynamic analysis approaches. The static method extracts the features from the
static code files, whereas the dynamic analysis employs the features of the executing code.
The non-machine learning-based method for malware identification is time-consuming and
depends solely on the developer’s expertise [22]. Moreover, non-machine learning-based
methods also required specialized software environments and computational resources [23].
In comparison, the machine learning methods are more precise and less complex depending
on the feature extraction model and the classification model. The feature extraction from
the input data being broadly classifier into handcrafted and the deep learning methods con-
siders the patterns of the input value concerning the neighbors, whereas the classification
model utilizes the pre-trained feature with an associated category label to classify the test
data. Various classifiers such as Support Vector Machine (SVM), Naive Bayes, K-Nearest
Neighbors, and Decision Tree are utilized for the categorization of data into malware and
non-malware files. To enhance the classification performance, the malware is first converted
into an image before the feature extraction and classification stage. The machine learning
methods are based on both handcrafted feature models and deep-leaning based feature
extraction models. The image classification task requires a robust and distinctive feature set
that remains invariant in the presence of variation in geometry and photometry. Malware
identification requires a robust set of features and a stable categorization framework. The
conversion of malware into the image type RGB [24], grayscale [25] and binary, consisting
of texture, shape, contour, and color distribution can be represented both with handcrafted
and DNN methods. The objects within the image are described with the help of color,
texture, and shape information [26]. However, due to intra-class variations in color, shape,
and illuminations, the image representation becomes quite challenging through simple
statistical information. Therefore, stable feature values are identified in the image that do
not change when the orientation, scale, and illumination of the objects in the image change.
The handcrafted approach for the features extraction process consists of the texture descrip-
tors such as Local Binary Pattern (LBP) [27], Histogram of Oriented Gradient (HoG) [28],
and Gray Level Co-occurrence Matrix (GLCM) [29]. The main aim of choosing LBP, HoG,
and GLCM is their robustness to noise and invariance to changes in scale, orientation, and
the illumination of the objects in the input image. The concatenated shape of all three
features representing the same image as a whole is used for the recognition of the objects
in the input image. The input image is represented with a multiple features set to bring

Appl. Sci. 2022, 12, 9403 4 of 12

further distinctiveness and stability to the classification process of the framework. The
limitation of such methods is that the handcrafted feature used in this method requires
expert knowledge for the extraction of a robust feature set. Furthermore, the feature set
designed for one dataset does not work perfectly on the new data files where the new
samples of malware are introduced. The DNN and handcrafted model developed so far
require a huge set of training samples and require expensive hardware to categorize data
precisely. The research aims to develop a highly accurate least complex algorithm for the
identification of malware files, which suffers from the constraint on the training samples.

The features extracted from the 2D grayscale visualization of the binary data can help
in differentiating various regions of the data file. The features include texture and intensity-
based information which cannot be extracted in the binary sequence data. Although a
disparity exists between the malware images and the real natural image, the transfer
learning through GoogleNet has created a structure that results in a robust set of generic
feature values that enhance the classification performance. Therefore, we proposed to
combine the features obtained with the image and data sequence to bring invariance and
robustness to the malware classification procedure. Various types of neural networks have
been developed in the literature for the classification of the ImageNet dataset. The DNN
model varies in depth, layer configuration, and size. Some very famous DNN models
include AlexNet, ResNet, DagNet, Vgg-16, inceptionV3, GoogleNet, and Yolo models [30].
The models can classify the images very precisely but require a huge set of training data,
which is not available in the case of malware data. Moreover, the DNN models also
suffer from the issue of uncertainty when they receive out-of-domain input. In [31], the
framework has been developed to detect the out-of-distribution samples to resolve the issue
of uncertainty. In [32], GAN is used for malware data augmentation, and the imbalance
set of the sample has been normalized by generating a training sample from the original
set of fewer data. In [33], a vision-based multi-classification approach is developed for
IoT malware detection. In [34], the forest penalizing attribute-based malware detection
method is developed to classify APK files into malware and non-malware data. The data
sample constraints are resolved by introducing the Generative Adversarial Network (GAN),
which can generate synthetic samples with the discriminator capable of differentiating the
synthetic and real samples. GANs were developed to improve the learning mechanism
of the deep neural network by the adversarial learning technique. The parallelization
property of the generating of synthetic samples makes the GANS superior to the simple
generative algorithms such as PixelCNN [35] and FVBNs [36]. In [37], the framework
Malware Generative Adversarial Network (MalGAN) is introduced to generate adversarial
examples to attack for malware identification in the data. MalGAN, consisting of the
generator part and the discriminator part, remains flexible and defensive in malware file
recognition in the data [38].

3. Proposed Methodology

The proposed framework given in Figure 1 shows the overall architecture of the
Multifaceted Deep Generative Adversarial Networks Model (MDGAN), which depends
on multiple representations at the input face. The proposed framework consists of three
main sections to detect the malware in the APK files. The input APK package consisting of
various scripts is initially preprocessed and transformed into a binary image and the API
sequence file. In the second phase, the binary image is subjected to GoogleNet to extract the
distinctive feature part. The API sequence has also proceeded through the LSTM network
for the stable set of features. The features are concatenated to obtain a single multi-face
vector representation of the APK script files. In the third phase, the GANs are used to
extend the trained data through its generator network and then discriminate and classify
the input test multi-face feature into malware and non-malware classes.

Appl. Sci. 2022, 12, 9403 5 of 12

Data Pre-
processing

API Sequence

API Image

Data Pre-processing

GoogleNet

Features Extraction

LSTM

Features Concatenation

Random
Noise

Synthetic
features

Generator

Discriminator

Malware

Clean file

Softmax

Fully
connected

layer

Figure 1. Proposed Framework.

3.1. Data Preprocessing

The input APK file is preprocessed and the malware binary is converted into a
grayscale image. A few sample grayscale images of the malware family have been pre-
sented in Figure 2. Moreover, to enhance the classification performance, the input APK
file is converted to an API sequence for 1D DNN feature extraction. The malware binary
is loaded into a 1D array with an 8-bit binary stream transformed into a 2D grayscale im-
age. The input android APK file consists of Manifest.xml for app description, Classes.dex
for executable functions, Res directory to store data files, Lib directory for code storage,
META-INF for app certificates, Resources.arsc for compiled resources, and Assets directory
for Maintainance and upgrade. In the data preprocessing stage, the executable binary files
are transformed into 8-bit un-signed segments that are then transformed into 2D grayscale
image pixel values, as shown in Figure 3. The width and height of the input 2D image are
kept as 224 × 224, which is compatible with the input layer of the GoogleNet DNN model.

(a) DroidDream (b) FakeDoc (c) GinMaster (d) DroidKungFu

Figure 2. Sample grayscale images from the malware family.

The API sequence is achieved in two stages. Initially, the word vocabulary vector is
created from the API file; then, the API word vector is transformed into an API sequence
consisting of numeric integer values. The API execution sequence is analyzed to identify
the number of unique words, and then, the numeric value is assigned to each word of the
vocabulary, as shown in Figure 3.

Appl. Sci. 2022, 12, 9403 6 of 12

1 0 0 1
0 1 1 1

1 1 1 1
0 1 1 1

0 0 0 1
0 0 1 1

1 1 0 1
0 1 1 1

Input APK Binary Sequence Gray Image [224 224]

GetSystemTimeASFileTime
NtAllocateVirtualMemory
NtAllocateVirtualMemory
NtAllocateVirtualMemory
NtFreeVirtualMemory
SetUnhandledExceptionFilter
LdrLoadD11
LdrLoadD11
LdrUnLoadD11
NtCreateSection
NtMapViewof Section
NtMapViewof Section
.....

1
11
11
11
8

13
4
4
4

41
24
24
……

API word vocabulary API numeric Sequence

Figure 3. Data Preprocessing.

3.2. Raw Feature Extraction

The raw feature values have been obtained from the multi-face image and sequential
numeric data representation of the input APK files. The input image file is obtained through
data preprocessing and has been reshaped into a 224× 224 image file to become compatible
with the input layer of the GoogleNet. The GoogleNet is a 22-layer deep neural network
model, consisting of various convolutional layers, pooling layers, inception layers, and fully
connected layers employed for the extraction of feature values. The pre-trained GoogleNet
is applied through the transfer learning method on the APK image to represent the APK
file. The raw feature not only consists of the GoogleNet fully-connected layer variables but
also LSTM output feature values extracted from the API sequence. The dimension of the
GoogleNet feature vector is 1000 variables, while the dimension of the LSTM feature vector
is 64 variables. Both GoogleNet and the LSTM feature values collectively create feature
vectors of 1064 variable feature vectors.

3.3. Generative Adversarial Network

The implicit GAN model reported in [17] failed to estimate the probability density of
the randomly sampled input data. With the complexity of sampling in multi-dimensional
data, the GAN failed to generate the synthetic sample for a subset of data. The contingent
GAN model resolved the issue by including the conditional constrained χ on the input
abstraction layer of the generator network and its discriminator part.

GminDmax f (G, D) = ζr∼p(r)[logD(r|χ)] + ζτ∼p(τ)[log(1− D(G(r|χ))] (1)

The mapping f : {τ, χ} → r transforms the GAN from an unsupervised to a partially
supervised network. The objective function in Equation (1) defines the conditional GANs
(CGAN), with the real sample denoted by variable r and the synthetic by variable χ. The
f denotes the CGAN, with p(r) as the probability of the real sample, and p(τ) denotes
the probability of the random noisy input sample. The symbol ζ with subscript r ∼ p(r)
denotes the expected value of the random real samples r, while ζτ∼p(τ) denotes the expected
value of the synthetic samples τ. The variables G and D represent the generator and the
discriminator, respectively.

In the conditional GANs, the generator part produces the synthetic samples as much
similar to the original content, whereas the discriminator part has to differentiate in the
original and synthetic samples. The issue of pattern collapse has been resolved by employ-

Appl. Sci. 2022, 12, 9403 7 of 12

ing the pixel-to-pixel sample selection in the conditional GANs. The objective function of
the pixel-to-pixel conditional GAN g is given in Equation (2).

g(G, D) = ζr,χ[logD(r|χ)] + ζr,τ [log(1− D(x, G(r|τ)))] (2)

where the symbol g denotes the pix2pix conditional GAN model. The loss function of the
proposed multi-face GANs consisting of pixel-to-pixel conditional GAN depending on the
hybrid raw feature is represented with Equations (3) and (4).

L(g) = ζv,r,χ[||χ− g(v, τ)||] (3)

L∗ = argGminDmaxLg(G, D) + λL(g) (4)

whereas the symbol v denotes the input raw feature vector. The variable λ works as an
adjustment parameter in Equation (4); when the λ is zero, then the loss function of the
pix2pix CGAN turns to a conditional GAN model.

The proposed multi-face contingent pixel-to-pixel version of the GAN model is pre-
sented in Figure 4.

V χ

V

G(v)

V

Synthetic Real G
D D

Figure 4. Multi-face GAN.

The pixel-to-pixel considers the feature values individually in the raw feature set. The
raw feature is divided into N × 1 and patch, and the discriminator judges the patch instead
of the whole feature vector for authenticity. The N dimension equals 128, which provided
a higher recognition in the proposed model. The classification method of LeNet-5 [39] is
employed, and the features extracted are classified with the fully connected layer to reduce
the complexity of the computational procedures. The network parameters are trained
separately to optimize the classification performance of the network.

4. Experimental Results
4.1. Datasets

The dataset employed in the experimental validation of the proposed model consists
of 5546 malicious and 5831 benign Android APK files. The benign files were obtained
from the AndroZoo database, where the (.CSV) file annotates the description of each app
file in the dataset. The malware files collected from the Derbin database consisted of
179 malware families collectively. The malware family files such as Fake-Installer, Droid-
KungFu, Plankton, Op-fake, Base-Bridge, Gin-Master, Iconosys, Kmin, Adrd, Geinimi,
Fake-Doc, and DroidDream are considered in the database. The details of the dataset family
samples have been shown in Figure 5. The complete database is divided with a ratio of 7:3
for training and test sets, respectively.

Appl. Sci. 2022, 12, 9403 8 of 12

925

665

625

613

339

327

152

147

131

91

90

81

0 200 400 600 800 1000

Fakeinstaller

DroidKungFu

Plankton

Opfake

GinMaster

BaseBridge

Iconosys

Kmin

FakeDoc

Adrd

Geinimi

DroidDream

Number of samples

M
a

lw
a
re

 F
a

m
ily

Figure 5. Variants of the Malware family in the database.

4.2. Evaluation

The performance evaluation of the proposed framework is shown based on the confu-
sion matrix given in Figure 6. The horizontal axis displays the actual category index, while
the vertical axis represents the predicted labels. The list of overall evaluation parameters
has been displayed in Table 2. The Ti,j in the table denotes the distribution of actual ith
values in the jth prediction class of the nth family.

| | | | | | | | | | | |

Adrd --

BaseBridge --

DroidDream --

DroidKungFu --

FakeDoc --

FakeInstaller --

Geinimi --

GinMaster --

Iconosys --

Kmin --

Opfake --

Plankton --

16 1 1

62 1 2

14 1 1

126 1 3 3

25 1

2 1 180 2

2 14 2

3 1 2 60 1 1

30

29

1 2 120

1 1 2 1 119

Predicted

Figure 6. Proposed model classification performance measurement through confusion matrix.

Appl. Sci. 2022, 12, 9403 9 of 12

Table 2. Evaluation Parameters.

Parameter Expression

Mean Precision
1
n

n

∑
i=1

Tii
n
∑

j=1
Tji

(5)

Mean Recall
1
n

n

∑
i=1

Tii
n
∑

j=1
Tij

(6)

Mean Fscore 1
n

n

∑
i=1

2 ∗ Precisioni ∗ Recalli
Precisioni + Recalli

(7)

The overall accuracy obtained with the expression is given in Equation (8), where the
parameters TP, TN , FP, and FN denote the true positive, true negative, false positive, and
false negative respectively.

Overall-Accuracy =
TP + TN

TP + TN + FP + FN
(8)

4.3. Classification Results

The generator networks generate adversarial synthetic samples similar to malicious
samples when the conditional synthetic χ and the real x match. This enhances the training
data for the machine learning procedure used by the proposed MDGAN model. The
confusion matrix shown in Figure 6 displays the effectiveness of the adversarial training
in the proposed MDGAN method combined with the multi-face data input mechanism
that has learned and categorized the malware family. The malware family samples count
shown in Figure 5 displays the total number of samples present in each malware type of the
family. The malware family classification result shown in the confusion matrix witnesses
the superiority of the proposed framework over other recently reported mechanisms. The
DroidDream and Iconosys have not learned the feature set more effectively and obtained
85.7% and 88.5% precision values with their 81 and 152 samples in the family as given in
Table 3. The Adrd and Geinimi both have the highest inter-class variation due to which they
have achieved the highest precision of 100%, while the FakeInstaller achieved the second
highest precision of 98.9% due to its highest samples strength of 925 samples in the family.
The mean precision value obtained by the proposed MDGAN is 95.1%, which is higher than
DNN-RNN, CNN-raw opcodes, DroidDetective, API calls-yerima, and CNN-BiLSTM-NB
with precision of 90%, 87.2%, 89.5%, 94.3%, and 90.0%, respectively. The mean recall value
of MDGAN is 94.6%, which is slightly lower when compared to the 96% value attained
by DroidDetective given in Table 4. The mean F1-score of MDGAN is 94.7%, which is
superior to DNN-RNN, CNN-raw opcodes, DroidDetective, API calls-yerima, and CNN-
BiLSTM-NB with F1-score values of 87.1%, 86.2%, 92.1%, 92.3%, and 86.3% respectively. The
mean accuracy achieved by MDGAN is 96.2%, which is superior to DNN-RNN, CNN-raw
opcodes, DroidDetective, API calls-yerima, and CNN-BiLSTM-NB with a mean accuracy of
90%, 87.4%, 86.0%, 91.8%, and 88.1%.

Appl. Sci. 2022, 12, 9403 10 of 12

Table 3. Confusion matrix summarization.

Train Test
Family Precision Recall F-Score Precision Recall F-Score
Adrd 1 0.892 0.951 1 0.889 0.941
BaseBridge 0.941 0.964 0.955 0.939 0.953 0.945
DroidDream 0.872 0.912 0.882 0.857 0.909 0.882
DroidKungFu 0.979 0.952 0.962 0.962 0.948 0.954
FakeDoc 0.981 1 0.991 0.961 1 0.980
FakeInstaller 0.999 0.982 0.986 0.989 0.973 0.980
Geinimi 1 0.871 0.933 1 0.866 0.928
GinMaster 0.921 0.911 0.914 0.909 0.909 0.909
Iconosys 0.892 1 0.944 0.885 1 0.939
Kmin 0.989 0.973 0.982 0.983 0.968 0.975
Opfake 0.988 0.972 0.981 0.976 0.969 0.972
Plankton 0.970 0.979 0.970 0.952 0.975 0.963
Average 0.961 0.951 0.954 0.951 0.946 0.947
Accuracy 0.973 0.962

Table 4. Comparison with state-of-the-art methods.

Train Test
Ref. Methodology Precision Recall F-Measure Accuracy Precision Recall F-Measure Accuracy
[40] DNN/RNN 90.4% 84.9% 87.5% 90.7% 90.0% 84.0% 87.1% 90.0%
[40] CNN-raw opcodes 88.3% 85.8% 86.5% 87.9% 87.2% 85.5% 86.2% 87.4%
[41] DroidDetective 89.8% 96.4% 92.5% 96.1% 89.5% 96.0% 92.1% 96.0%
[42] API calls, Yerima 94.6% 91.9% 92.7% 91.9% 94.3% 91.7% 92.3% 91.8%
[43] CNN–BiLSTM-NB 90.5% 87.4% 86.8% 88.6% 90.0% 87.1% 86.3% 88.1%
Ours MDGAN 95.9% 94.9% 94.8% 96.5% 95.1% 94.6% 94.7% 96.2%

5. Conclusions

The Multifaceted Deep Generative Adversarial Networks Model (MDGAN) was
developed to identify malware APIs installed on mobile devices. The android devices
operate the open access applications available on the Google play store, which contain
malware files that affect the APK file by performing malicious activities to leak the privacy
and safety of the users. The proposed framework is multi-face with hybrid DNN API-image
and API sequence features, and it is interfaced with conditional GAN operating on the
pixel-to-pixel sample selection. The proposed MDGAN achieved superior performance
compared to the existing works with 95.1%, 94.6%, 94.7%, and 96.2% mean precision, recall,
F1-score, and average accuracy, respectively.

Author Contributions: F.A.: investigation and project administration, and funding acquisition, F.:
software, validation, writing, and editing. All authors have read and agreed to the published version
of the manuscript.

Funding: This research work was funded by the institutional fund projects under grant no. (IFPRP:
290-611-1442). Therefore, the authors gratefully acknowledge technical and financial support from
the Ministry of Education and King AbdulAziz University, DSR, Jeddah, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All suported data included in the article.

Conflicts of Interest: The authors declare no conflicts of interest between them.

Appl. Sci. 2022, 12, 9403 11 of 12

References
1. Aboaoja, F.A.; Zainal, A.; Ghaleb, F.A.; Al-rimy, B.A.S.; Eisa, T.A.E.; Elnour, A.A.H. Malware Detection Issues, Challenges, and

Future Directions: A Survey. Appl. Sci. 2022, 12, 8482.
2. Chen, D.; Wawrzynski, P.; Lv, Z. Cyber security in smart cities: A review of deep learning-based applications and case studies.

Sustain. Cities Soc. 2021, 66, 102655.
3. Awan, M.J.; Farooq, U.; Babar, H.M.A.; Yasin, A.; Nobanee, H.; Hussain, M.; Hakeem, O.; Zain, A.M. Real-time DDoS attack

detection system using big data approach. Sustainability 2021, 13, 10743.
4. Ferooz, F.; Hassan, M.T.; Awan, M.J.; Nobanee, H.; Kamal, M.; Yasin, A.; Zain, A.M. Suicide bomb attack identification and

analytics through data mining techniques. Electronics 2021, 10, 2398.
5. Perera, C.; Barhamgi, M.; Bandara, A.K.; Ajmal, M.; Price, B.; Nuseibeh, B. Designing privacy-aware internet of things applications.

Inf. Sci. 2020, 512, 238–257.
6. Azad, M.A.; Arshad, J.; Akmal, S.M.A.; Riaz, F.; Abdullah, S.; Imran, M.; Ahmad, F. A first look at privacy analysis of COVID-19

contact-tracing mobile applications. IEEE Internet Things J. 2020, 8, 15796–15806.
7. Tam, K.; Feizollah, A.; Anuar, N.B.; Salleh, R.; Cavallaro, L. The evolution of android malware and android analysis techniques.

ACM Comput. Surv. 2017, 49, 1–41.
8. Zheng, M.; Sun, M.; Lui, J.C.S. Droid Analytics: A signature based analytic system to collect, extract, analyze and associate

android malware. In Proceedings of 12th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, Melbourne, Australia, 16–18 July 2013; pp. 163–171.

9. Seo, S.H.; Gupta, A.; Sallam, A.M.; Bertino, E.; Yim, K. Detecting mobile malware threats to homeland security through static
analysis. J. Netw. Comput. Appl. 2014, 38, 43–53.

10. Sharma, K.; Gupta, B.B. Mitigation and risk factor analysis of android applications. Comput. Electr. Eng. 2018, 71, 416–430.
11. Potharaju, R.; Newell, A.; Nita-Rotaru, C.; Zhang, X. Plagiarizing smartphone applications: Attack strategies and defense

techniques. ACM Int. Symp. Eng. Secure Softw. Syst. 2012, 7159, 106–120.
12. Xiao, X.; Xiao, X.; Jiang, Y.; Liu, X.; Ye, R. Identifying Android malware with system call co-occurrence matrices. Trans. Emerg.

Telecommun. Technol. 2018, 27, 675–684.
13. Chen, Z.; Yan, Q.; Han, H.; Wang, S.; Peng, L.; Wang, L.; Yang, B. Machine learning based mobile malware detection using highly

imbalanced network traffic. Inform. Sci. 2018, 433, 346–364.
14. Martin, A.; Lara-Cabrera, R.; Camacho, D. Android malware detection through hybrid features fusion and ensemble classifiers:

The AndroPyTool framework and the OmniDroid dataset. Inf. Fusion 2019, 52, 128–142.
15. Pai, S.; Troia, F.D.; Visaggio, C.A.; Austin, T.H.; Stamp, M. Clustering for malware classification. J. Comput. Virol. Hacking Tech.

2018, 13, 95–107.
16. Chawla V, N.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-sampling Technique. J. Artif. Intell.

Res. 2002, 16, 321–357.
17. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial nets. Adv. Neural

Inf. Process. Syst. 2020, 63, 139–144.
18. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial

Networks. arXiv 2015, arXiv:1511.06434.
19. Shaham, T.R.; Dekel, T.; Michaeli, T. Singan: Learning a generative model from a single natural image. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4570–4580.
20. Akhenia, P.; Bhavsar, K.; Panchal, J.; Vakharia, V. Fault severity classification of ball bearing using SinGAN and deep convolutional

neural network. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2022, 236, 3864–3877.
21. Hammad, B.T.; Jamil, N.; Ahmed, I.T.; Zain, Z.M.; Basheer, S. Robust Malware Family Classification Using Effective Features and

Classifiers. Appl. Sci. 2022, 12, 7877.
22. Aslan, O.A.; Samet, R. A comprehensive review on malware detection approaches. IEEE Access 2020, 8, 6249–6271.
23. Wan, Y.L.; Chang, J.C.; Chen, R.J.; Wang, S.J. Feature-selection-based ransomware detection with machine learning of data analysis.

In Proceedings of the 2018 3rd International Conference on Computer and Communication Systems (ICCCS), Nagoya, Japan,
27–30 April 2018; pp. 85–88.

24. Zhang, Y.; Yang, Y.; Wang, X. A Novel Android Malware Detection Approach Based on Convolutional Neural Network. In Proceedings
of the 2nd International Conference on Cryptography, Security and Privacy, Guiyang, China, 16–18 March 2018; pp. 144–149.

25. Jung, J.; Choi, J.; Cho, S.J.; Han, S.; Park, M.; Hwang, Y. Android malware detection using convolutional neural networks and
data section images. In Proceedings of the RACS ’18, Honolulu, HI, USA, 9–12 October 2018; pp. 149–153.

26. Hu, H.; Yang, W.; Xia, G.S.; Lui, G. A color-texture-structure descriptor for high-resolution satellite image classification. Remote Sens.
2016, 8, 259.

27. Song, T.; Feng, J.; Luo, L.; Gao, C.; Li, H. Robust texture description using local grouped order pattern and non-local binary
pattern. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 189–202.

28. Patel, C.I.; Labana, D.; Pandya, S.; Modi, K.; Ghayvat, H.; Awais, M. Histogram of oriented gradient-based fusion of features for
human action recognition in action video sequences. Sensors 2020, 20, 7299.

29. Park, Y.; Guldmann, J.M. Measuring continuous landscape patterns with Gray-Level Co-Occurrence Matrix (GLCM) indices: An
alternative to patch metrics? Ecol. Indic. 2020, 109, 105802.

Appl. Sci. 2022, 12, 9403 12 of 12

30. Agbo-Ajala, O.; Viriri, S. Deep learning approach for facial age classification: A survey of the state-of-the-art. Artif. Intell. Rev.
2021, 54, 179–213.

31. Liu, J.Z.; Padhy, S.; Ren, J.; Lin, Z.; Wen, Y.; Jerfel, G.; Lakshminarayanan, B. A Simple Approach to Improve Single-Model Deep
Uncertainty via Distance-Awareness. arXiv 2022, arXiv:2205.00403.

32. Chen, Y.M.; Yang, C.H.; Chen, G.C. Using generative adversarial networks for data augmentation in android malware detection.
In Proceedings of the 2021 IEEE Conference on Dependable and Secure Computing (DSC), Aizuwakamatsu, Fukushima, Japan,
30 January–2 February 2021; pp. 1–8.

33. Atitallah, S.B.; Driss, M.; Almomani, I. A Novel Detection and Multi-Classification Approach for IoT-Malware Using Random
Forest Voting of Fine-Tuning Convolutional Neural Networks. Sensors 2022, 22, 4302.

34. Akintola, A.G.; Balogun, A.O.; Capretz, L.F.; Mojeed, H.A.; Basri, S.; Salihu, S.A.; Alanamu, Z.O. Empirical Analysis of Forest
Penalizing Attribute and Its Enhanced Variations for Android Malware Detection. Appl. Sci. 2022, 12, 4664.

35. Frey, B.J.; Hinton, G.E.; Dayan, P. Does the wake-sleep algorithm produce good density estimators? Adv. Neural Inf. Process. Syst.
1996, 8, 661–667.

36. Frey, B.J.; Brendan, J.F.; Frey, B.J. Graphical Models for Machine Learning and Digital Communication; MIT Press: Cambridge, MA,
USA, 1998.

37. Hu, W.; Tan, Y. Generating adversarial malware examples for black-box attacks based on GAN. arXiv 2017, arXiv:1702.05983 .
38. Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A review on generative adversarial networks: Algorithms, theory, and applications. IEEE

Trans. Knowl. Data Eng. 2021, 1, 1–5.
39. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324.
40. Mchaughlin, N.; del Rincon, J.M.; Kang, B.; Yerima, S.; Safaei, Y.; Trickel, E.; Zhao, Z.; Doupe, A.; Ahn, G.J. Deep Android Malware

Detection. In Proceedings of the ACM on Conference on Data and Application Security and Privacy (CODASPY), Scottsdale, AZ,
USA, 2017; pp. 301–308.

41. Liang, S.; Du, X. Permission-combination-based scheme for android mobile malware detection. IEEE Int. Conf. Commun. (ICC)
2014, 1, 2301–2306.

42. Jerome, Q.; Allix, K.; State, R.; Engel, T. Using opcode-sequences to detect malicious android applications. In Proceedings of the
2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 914–919.

43. Zhang, N.; Xue, J.; Ma, Y.; Zhang, R.; Liang, T.; Tan, Y.A. Hybrid sequence-based Android malware detection using natural
language processing. Int. J. Intell. Syst. 2021, 36, 5770–5784.

	Introduction
	Literature Review
	Proposed Methodology
	Data Preprocessing
	Raw Feature Extraction
	Generative Adversarial Network

	Experimental Results
	Datasets
	Evaluation
	Classification Results

	Conclusions
	References

