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Abstract: Harsh underwater channels and energy constraints are the two critical issues of underwater
acoustic (UWA) communications. To achieve a high channel estimation performance under a severe
underwater channel, sparse Bayesian learning (SBL)-based channel estimation was adopted for
UWA orthogonal frequency division multiplexing (OFDM) systems. Accurate channel estimation
can guarantee the successful reception of transmitted data and reduce retransmission occurrences,
thereby, leading to energy-efficient communications. However, SBL-based algorithms have improved
performances in iterative ways, which require high power consumption. In this paper, a fast SBL
algorithm based on a weighted learning rule for hyperparameters is proposed for channel estimation
in a UWA-OFDM system. It was shown via numerical analysis that the proposed weighted learning
rule enables fast convergence and more accurate channel estimation simultaneously. Simulation
results confirm that the proposed algorithm achieves higher accuracy in channel estimation with
much fewer iteration numbers in comparison to conventional SBL-based methods for a time-varying
UWA channel.

Keywords: orthogonal frequency division multiplexing (OFDM); sparse Bayesian learning (SBL);
underwater acoustic communications; channel estimation

1. Introduction

Utilization of an underwater sensor network (USN) or autonomous underwater ve-
hicles (AUVs), or both, for military, science, and industrial applications is receiving in-
creasing attention [1,2]. In order to advance underwater applications, underwater acoustic
(UWA) communication is essential for establishing connectivity between devices, sensors,
and AUVs.

Energy constraints are critical in UWA communications. In the case of USN, replacing
or charging the batteries of sensor nodes leads to huge costs and might not be practical
in some networks. The lifetime of the battery heavily determines the range and duration
of AUV operation. For energy-efficient communication, a UWA-OFDM receiver with
low-power consumption is indispensable. To achieve energy-efficient communication,
retransmission occurrences should also be minimized so that unnecessary power consump-
tion via retransmission can be prevented.

Recently, orthogonal frequency division multiplexing (OFDM) has been studied for
UWA communication systems due to the advantages (e.g., high robustness to multi-paths).
The UWA channel is known to be very difficult in communication media because it suffers
from fast time-varying characteristics in time and frequency domains, resulting in multi-
paths with long delays as well as a severe Doppler effect [3]. Under a harsh UWA channel,
accurate channel estimation is crucial to fully enjoy the advantages of an OFDM-based
modulation technique. Accurate channel estimation also leads to the successful reception
of data and reduction of retransmission occurrences, thereby, achieving energy-efficient
communication.

For UWA-OFDM systems, channel estimators (CEs) based on the principle of com-
pressed sensing (CS) [4–6] and sparse Bayesian learning (SBL) [7] have been proposed, both
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of which operate in iterative ways to achieve high channel estimation performances. For
further accuracy, many variants based on the principle of SBL [8–10] including temporal
multiple SBL (TMSBL) [7,11], and partition-based clustered-sparse Bayesian learning (PB-
CSBL) [12] have recently been proposed. Improved performances of SBL-based algorithms
lead to successful decoding of transmitted data, resulting in no retransmission. However,
this performance gain is obtained through iterative operations, which consume much more
battery power compared to non-iterative methods.

In this paper, a fast SBL (F-SBL) algorithm is proposed for channel estimation in the
UWA-OFDM system. The proposed method uses the weighted learning rule (LR) for
hyperparameters. It has been shown by numerical analysis that weighted LR enables
the SBL estimator (to converge faster and achieve a more accurate channel estimation).
Simulation results confirm that the proposed technique shows an improved performance
compared to conventional SBL-based methods [5,7,13], with fewer iteration numbers.

2. System Model

We considered a UWA OFDM with N subcarriers, where the NU subcarriers carry data
and pilot symbols, and the remaining NG/2 subcarriers at each edge of the spectrum are
used for guard bands. In the time and frequency domain, the pilot symbols are allocated in
a comb-type fashion with the spacing of D f subcarriers and Dt OFDM symbols. Let I f and
N f = |I f | denote the subcarrier indices and the number of pilot symbols in the frequency
domain, respectively. Similarly, let It and Nt = |It| denote the OFDM symbol indices and
the number of pilot symbols in the time domain, respectively.

The time domain sample of the i-th OFDM symbol si[n] is represented as

si[n] =
1√
N

N−1

∑
k=0

Si(k)ej 2π
N kn, n = 0, · · · , N − 1. (1)

where Si(k) is the symbol on the k-th subcarrier of the i-th OFDM symbol. In order to
maintain orthogonality between subcarriers under a frequency selective channel, a CP (of
Ncp samples) is appended to the beginning of each OFDM symbol. After the CP insertion,
the time domain samples are then pulse-shaped and up-converted to the carrier frequency
fc. In the passband, the resulting transmitted signal is given by

s̃(t) = 2Re

Nsym−1

∑
i=0

N−1

∑
n=−Ncp

si[n]u(t− (iNs + n)ts)

ej2π fct (2)

where u(t) is a pulse-shaped filter, Ns = N + Ncp, and Nsym and ts denote the number of
transmitted OFDM symbols and the sample duration, respectively.

The time-varying UWA channel is often modeled as [5,14,15]

h(τ, t) =
Npath−1

∑
l=0

cl(t) δ(τ − τl(t)) (3)

where Npath is the number of channel taps, and cl(t) and τl(t) denote the time-varying
path gain and delay of the l-th channel tap, respectively. It can be assumed that during an
OFDM symbol, the path gain of each tap is time-invariant, while its delay is time-varying
by the Doppler effect [5]:

cl(t) = cl ,

τl(t) = τl − αlt,
(4)

where αl is the Doppler rate of the l-th channel tap. The channel impulse response (CIR)
can then be rewritten as
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h(τ, t) =
Npath−1

∑
l=0

cl δ(τ − τl + αlt). (5)

The passband representation of the received signal is given as

y(t) =
Npath−1

∑
l=0

cl s̃(t− τl + αlt) + w(t) (6)

where w(t) is the additive white Gaussian noise (AWGN) with a zero mean and variance σ2
n .

At the receiver, it is assumed that a two-step approach is applied to the received
signal in (6) to mitigate the Doppler effect, which performs resampling in the passband
and subsequently compensates the Doppler shift [5,16]. For ease of derivation, we assume
no residual Doppler rate, i.e., αl = 0, ∀l with the aid of resampling and Doppler shift
compensation. Then, the CIR in (5) can be rewritten to a time-invariant tapped–delay–line
model as follows:

h(τ) =
Npath−1

∑
l=0

cl δ(τ − τl) (7)

After resampling, the received pilot symbols carried by the i-th OFDM symbol in the
baseband is represented as

yi = XiAh + Aw, i ∈ It (8)

where Xi is an N f ×N f diagonal matrix composed of the pilot symbols in the i-th OFDM sym-

bol, A is an N f × Npath DFT matrix with entries [A]m, n = 1√
N

e−j 2π
N I f (m)n, h = [h(0), h(1),

· · · , h(Npath − 1)]T is a time-invariant Npath × 1 CIR vector, and w is an AWGN vector.

3. Proposed CE Method
3.1. SBL-Based CE

In the SBL-based CE framework, we assume the Gaussian likelihood model as

p(yi|h) =
1

(πσ2
n)

Npath
e−
||yi −Φih||2

σ2
n

(9)

where Φi = XiA. The objective is to estimate each tap of the CIR, and it is assumed that
each tap of the CIR follows independently and is identically distributed (i.i.d.) with a
complex Gaussian distribution as

h(l) ∼ CN (0, γl), (10)

where γl is the prior variance corresponding to the l-th tap of the CIR, which is treated as a
deterministic but unknown hyperparameter. The parameterized Gaussian prior is given by

p(h; Γ) =

Npath−1

∏
l=0

1
πγl

e−
|hl |

2

γl (11)

where Γ = diag
(

γ0, γ1 · · · , γNpath−1

)
is the diagonal matrix of hyperparameters. The

hyperparameters can be estimated by performing ML optimization of the marginalized
probability density function (pdf) p(yi; Γ) [17]:

Γ̃ = arg max
Γ

p(yi; Γ). (12)
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where the marginalized pdf is given by

p(yi; Γ) =
∫

p(yi|h)p(h; Γ)dh

= π−Npath |Σy|−1e−yH
i Σ−1

y yi .
(13)

The ML optimization in (12), which is called type-II ML, cannot be solved in closed
form. Accordingly, in the SBL-based CE framework, the expectation maximization (EM)
algorithm is employed to maximize p(yi; Γ) [17–19]. Note that the EM algorithm guarantees
convergence to local optima and low complexity [20]. The EM algorithm treats the CIR
vectors h as hidden variables and estimates Γ in an iterative way. The E and M steps of the
EM algorithm for the k-th step is given as

E step :L
(

Γ|Γ(k−1)
)
= Eh|yi ;Γ(k−1) [log p(yi, h; Γ)]

M step :Γ(k) = arg max
Γ
L
(

Γ|Γ(k−1)
) (14)

In order to solve the maximization in the M-step, we rewrite the E-step as

L
(

Γ|Γ(k−1)
)
= Eh|yi ;Γ(k−1) [log p(yi, h; Γ)]

= Eh|yi ;Γ(k−1) [log p(yi|h; Γ) + log p(h; Γ)]

= Eh|yi ;Γ(k−1) [log p(h; Γ)]

(15)

Note that the term Eh|yi ;Γ(k−1) [log p(yi|h; Γ)] is removed in the last equality in (15)
because p(yi|h; Γ) in (9) does not depend on the hyperparameter matrix Γ. Then, the
M-step can be rewritten as

Γ(k) = arg max
Γ
L
(

Γ|Γ(k−1)
)

= arg max
Γ

Eh|yi ;Γ(k−1) [log p(h; Γ)]

= − arg max
Γ

Npath−1

∑
l=0

[
log(πγl) +

1
γl
Eh|yi ;Γ(k−1)

[
|hl |2

]] (16)

The maximization in (16) can be decoupled with respect to each γl . Differentiating the
objective function with each γl and letting the derivative equal to zero yields the estimate
γ
(k)
l as

γ
(k)
l = Eh|yi ;Γ(k−1)

[
|hl |2

]
(17)

The above requires a posteriori the pdf of the CIR vector h, which is written as

p(h|yi; Γ(k−1)) = CN
(

µ(k), Σ(k)
)

(18)

where

µ(k) =
1
σ2

n
Σ(k)ΦH

i yi

Σ(k) =

(
1
σ2

n
ΦH

i Φi +
(

Γ(k−1)
)−1

)−1
.

(19)

Then, the M step in (17) can be simplified to

γ
(k)
l =

[
Σ(k)]

l, l +
∣∣[µ(k)]

l

∣∣2 (20)
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Regarding convergence, a maximum a posteriori estimate of h is given as h̃ = µ.

3.2. Fast SBL-Based CE

In the EM algorithm, at the E step, the posterior covariance matrix Σ is computed
with Γ, and the posterior mean µ is computed with the Σ. Then, Γ is updated based on
Σ and µ at the M step. These updates are performed alternatively at every iteration until
convergence. Upon convergence, many of the diagonal components of Γ, γl converge to
zero and so do the corresponding [µ]l , resulting in sparse estimates of the CIR vector h [17].
To investigate the convergence behavior of the SBL-based CE, µ, diagonal elements of Σ,
and Γ at the first, second, and fifth iterations are represented in Figure 1b–d, respectively,
for a given time-invariant CIR depicted in Figure 1a. It can be observed that the diagonal
elements of Σ decrease while Γ converges to µ as the iteration progresses. It is also noted
that µ and Γ become more sparse, in which distinct components become more dominant
while insignificant components diminish substantially.
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(d) The fifth iteration

Figure 1. Exemplary CIR and µ, Σ, and Γ at the first, second, and fifth iterations.

For faster convergence, the observations from Figure 1 suggest the following condi-
tions:
Condition 1: diagonal elements of Σ need to have small values.
Condition 2: Γ should be determined more by µ rather than the diagonal elements of Σ.

To achieve the above conditions, we propose a new LR for Γ as

γ
(k)
l = w1

[
Σ(k)]

l, l + w2
∣∣[µ(k)]

l

∣∣2 (21)

where w1 and w2 control the weights of the diagonal elements of Σ and µ in the update
of Γ.
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The judicious selection of weights w1 and w2 can achieve the above conditions rapidly,
accelerating the convergence, which will be discussed in the following subsection. The
proposed F-SBL algorithm is summarized in Algorithm 1.

Algorithm 1 F-SBL algorithm.

Input: yi and Φi for ∀i ∈ It, stopping parameter ε0, the maximum number of iterations
Niter, weights w1 and w2, noise variance σ2

n
Output: h̃i for ∀i ∈ It

1: for i = 0 to |It| − 1 do
2: Initialization: Γ(0) = 1

Npath
INpath and k = 0

3: while ||Γ(k) − Γ(k−1)||2F > ε0 and k < Niter do
4: k← k + 1

5: Σ(k) ←
(

1
σ2

n
ΦH

i Φi +
(

Γ(k−1)
)−1

)−1

6: µ(k) ← 1
σ2

n
Σ(k)Φiyi

7: γ
(k)
l ← w1

[
Σ(k)]

l, l + w2
∣∣[µ(k)]

l

∣∣2, l = 0, · · · , Npath − 1
8: end while
9: h̃i ← µ(k)

10: end for

3.3. Performance Analysis

Firstly, we examined the performance of the proposed F-SBL algorithm according
to weights w1 and w2. Since the proposed update formula for Γ in (21) is apart from the
derivation based on a posteriori pdf p(h|yi; Γ(k−1)) in (20), it was difficult to investigate the
effect of the weights analytically, and, according, we adopted a numerical approach.

As a performance metric, the mean squared error for the channel frequency response
was used:

MSE =
1

NU
tr
(

E
[(

H̃−H
)(

H̃−H
)H]), (22)

where H = Qh, H̃ = Qh̃, and Q is a NU × Npath DFT matrix with entries [Q]m, n =

e−j 2π
N (m+NG/2)n. Note that the CIR vector in the MSE is time-invariant. For the MSE

analysis, a sparse channel having Npath = 8 taps is used. In particular, the delay of each
path is randomly distributed within 15 ms, where the minimum difference between adjacent
paths is set to 1 ms. The path gain decreases exponentially, where the difference between
the first and the last paths is 25 dB. The Doppler rate for each path αl is set to 0 so that the
resultant channel is time-invariant. The UWA OFDM system with parameters summarized
in Table 1 is used for the following analysis.

Table 1. Parameters of the UWA OFDM system.

Carrier Frequency fc 12 kHz

Bandwidth B 5 kHz
Sampling frequency fs 5 kHz

No. of total subcarriers N 512
No. of useful subcarriers NU 400
No. of null subcarriers NG 109

pilot symbols spacing in freq. D f 4
pilot symbols spacing in time Dt 2

No. of preambles Npreamble 2
No. of OFDM symbols Nsym 16

OFDM block duration Tb 125 ms
CP duration TCP 22.6 ms
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The MSE performance of the proposed method according to different values of weights
w1 and w2 is shown for SNR = 12 dB in Figure 2, where the number of iterations Niter
is set to 5. It can be observed from the figure that weights smaller than 1.0 improved
the performance compared with the case of w1 = w2 = 1, which is equivalent to the
conventional SBL method in (20). The optimal weights are yielded as w∗1 = 0.4 and
w∗2 = 0.6. Note that the optimal weights agreed with conditions 1 and 2 derived in
the previous subsection. Specifically, both optimal weights smaller than 1.0 supported
condition 1, while w∗1 < w∗2 justified condition 2.

Figure 2. The MSE performance of the proposed F-SBL algorithm according to different values of
weights w1 and w2 for SNR = 12 dB.

We now investigate the convergence rate of the proposed F-SBL algorithm.
Figure 3 shows the MSE performance of the proposed method with various weights
and the conventional SBL method (w1 = 1.0 and w2 = 1.0) according to the iteration index
for SNR = 10 dB. The same channel for the results in Figure 2 was used. Firstly, it can be
clearly seen that the proposed F-SBL algorithms with weights smaller than 1 converged
more rapidly than the conventional SBL method. We observed that the proposed method
with weights smaller than the optimal (w1 = 0.2 and w2 = 0.3) reached the minimum at the
iteration index k = 3, showing faster convergence than the one with the optimal weights,
but its MSE performance degraded as the iteration progressed. On the other hand, the
proposed method with weights larger than the optimal (w1 = 0.6 and w2 = 0.8) exhibited
slower convergence performance. In the case that the weights were larger than 1, the
performance was severely degraded, showing poor MSE compared to the conventional SBL
method. The proposed method with the optimal weights yielded the least MSE over the one
with the non-optimal weights at iteration index k = 6. Therefore, it was expected from the
results that the proposed method with the optimal weights would provide a more accurate
channel estimation with fewer iterations compared with the conventional SBL method.
It is worth noting that the proposed LR in (21) can be applied easily to other SBL-based
algorithms [7,11,12] and can improve the convergence rate and estimation
performance simultaneously.
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Figure 3. The convergence of the proposed method compared with the conventional SBL CE for
SNR = 10 dB.

4. Simulation Results

The performance of the proposed F-SBL algorithm was compared with conventional
techniques, LS [13], OMP [5], SBL, and TMSBL [7] for a UWA OFDM system with the
parameters in Table 1. For the F-SBL algorithm, optimal weights (w∗1 = 0.4 and w∗2 = 0.6)
were employed. In order to investigate the effectiveness of the proposed LR in (21), TMSBL
adopted with the proposed LR (F-TMSBL) was also considered. The optimal weights for
F-TMSBL were numerically found to be w∗1 = 0.1 and w∗2 = 2.2. The maximum number of
iterations Niter was set to 5 for the F-SBL and F-TMSBL algorithms. For other considered
methods, Niter was set to 10, large enough to ensure the best possible performance. The
channel having random delay, as described in the Section 3.3, also assessed the performance
under diverse underwater conditions.

Figure 4 shows the MSE performance for the time-invariant underwater channel. We
can see that the MSE of all considered SBL-based methods decreased for the increasing
SNR, while that of OMP exhibited an error floor. The proposed F-SBL outperformed the
conventional SBL and performed very close to that of TMSBL. The proposed F-TMSBL had
the best MSE performance. TMSBL [7] used multiple OFDM symbols to exploit temporal
correlation of the UWA channel, and, subsequently, had a better estimation performance
than the original SBL method. It can be confirmed by the superior performance of F-SBL
and F-TMSBL algorithms that the proposed LR enhanced the estimation performance.
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Figure 4. MSE performance versus SNR.
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Figure 5 showed the BLER performance for the 16QAM modulation for the time-
varying UWA channel. Note that, to induce time-varying characteristics, the Doppler
rate of each path was set to αl = vp/c, c = 1500 m/s, where vp was the relative speed
between the transmitter and receiver and had a uniform distribution with a standard
velocity deviation of 0.1 m/s. We can observe that the proposed algorithms outperformed
the other considered methods. In particular, F-SBL and F-TMSBL algorithms exhibited
gains of 0.5 and 0.15 dB at BLER = 0.01 over the original SBL and TMSBL, respectively.
Note that this performance gain was obtained even with the number of iterations half of
that of other methods. Therefore, the performance analysis confirmed that the proposed
method achieved an accurate channel estimation performance with much fewer iterations,
which greatly reduced the computational delay and power consumption of the receiver.
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0.015
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0.025

Figure 5. BLER performance versus SNR for 16QAM modulation.

5. Experimental Results

The proposed F-SBL method was applied to experimental UWA OFDM signals to
further verify the performance in real underwater conditions. The signals were acquired in
an at-sea experiment performed in the Western Sea of Korea from 19 to 20 August 2018. The
UWA OFDM system with the parameters in Table 1 was used. A total of 17 frames were
transmitted throughout the experimental period. Each frame was composed of 54 OFDM
symbols that carried OPSK modulated symbols encoded via a turbo-code (with a code
rate of 1/3). The communication range was between 2500 and 3500 m, and the measured
sea depth was about 30 m. The underwater CIR estimate corresponding to each frame is
shown in Figure 6. We can clearly see that the channel had time-varying characteristics and
multi-paths with long delays.
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Figure 7 shows the coded BER performance according to the frame index. It can
be observed from the experimental results that the proposed F-SBL and F-TMSBL out-
performed the conventional schemes. F-TMSBL yielded the largest error-free reception
number, achieving the best BLER. F-SBL exhibited lower-coded BER than the conventional
SBL method even with fewer iterations. The experimental results confirm the effectiveness
of the proposed method for real underwater channels.
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Figure 7. Coded BER performance in at-sea experiment.

6. Conclusions

An F-SBL algorithm based on a weighted LR for hyperparameters is proposed for the
channel estimation in a UWA-OFDM system. It was observed that the channel estimate of
the SBL algorithm was determined more by the posterior mean rather than the posterior
covariance. The proposed weighted LR for hyperparameters was devised to exploit the
above observations, enabling not only fast convergence but also more accurate channel
estimations. It was confirmed by simulation results that the proposed algorithm achieved
higher accuracy in the channel estimation with fewer iteration numbers in comparison to
the conventional SBL-based methods for a time-varying UWA channel.
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The following abbreviations are used in this manuscript:

USN underwater sensor network
AUV autonomous underwater vehicle
UWA underwater acoustic
OFDM orthogonal frequency division multiplexing
CE channel estimator
CS compressed sensing
SBL sparse Bayesian learning
TMSBL temporal multiple SBL
F-SBL fast SBL
LR learning rule
AWGN additive white Gaussian noise
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