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Abstract: The article observes the new hashing algorithm HBC-256. The HBC-256 algorithm is based
on the block cipher of the compression function CF (Compression Function) and produces a 256-bits
hash value. Like any new cryptographic structure, the HBC-256 algorithm requires careful research
process in order to confirm its cryptographic properties, namely: pre-image resistance and resistance
to collisions of the first and second order. As a result of the research, for the HBC-256 hashing
algorithm differential properties of nonlinear elements (S-boxes) and various options for constructing
round characteristics are considered. A hypothesis has been advanced about the existence of paired
differences, which will make it possible to construct round characteristics for hashing and for the
function of round keys generating. It is shown that even for the most optimal way of constructing
chains of differences, the probability of finding correct pairs of texts is less than the probability of a
complete enumeration of one 128-bit block of input data, which makes the method of differential
cryptanalysis unsuitable for finding collisions.
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1. Introduction

Currently, the collection of information and communication technologies (ICTs) and
the social system that supports them are often perceived as an ecosystem, or more precisely,
a cyber-ecosystem. The components of the cyber ecosystem are constantly maintained and
form a dense network of dependencies and information processing-storage, exchange, au-
thentication and assured destruction. One of the biggest challenges facing the cryptography
community around the world in this ecosystem is to ensure the confidentiality, authenti-
cation, and integrity of the messages we want to send over an insecure data transmission
channel such as the Internet. Online banking transactions would not be secure enough and
password-protected systems would not exist without the use of hash functions. Cell phone
systems would lose their advantages without this additional locking feature, which is the
application of hash functions (SHA-1). The concept of a hash function was introduced in
1976, with the invention of public key cryptography by Diffie and Hellman [1].

In the modern information world, one of the key values is to ensure the reliability and
security of information. Many information systems, including low-resource IoT devices,
use various cryptographic transformations to ensure information security during data
storage and transmission. One of the basic cryptographic transformations involved in
various security issues are hash functions, one-way mathematical transformations that
convert an arbitrary input data array into a unique sequence of fixed length. Hash functions
are very widespread. Hash functions are used to store passwords during authentication,
protect data in file verification systems, encode information in the blockchain, etc. There
are many cryptographic algorithms these days. They are different and differ in complexity,
bit depth, cryptographic reliability, and features of work. Hashing algorithms appeared
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more than half a century ago. Moreover for many years, from a fundamental point of view,
little has changed. However, as a result of their development, data has acquired many new
properties, so their application in the field of information technology has already become
ubiquitous [2].

The cryptographic hash function must meet the requirements of the “one-way” princi-
ple and collision resistance. One way means that the method of calculating the hash value
from a given message is simple, but computationally impossible to generate any message
that gives an initial hash value. Collision robustness means that it is extremely difficult to
find two messages with the same hash function value [3,4].

In blockchain technology, the hash is also used to verify the integrity of data. The
hash acts as a guarantee of the integrity of the chain of transactions (payments). Each new
transaction block references the hash of the previous block in the registry. The hash of the
block itself depends on all the transactions in the block, but instead of sequentially passing
transactions to the hash function, they assembled into a single hash value using a binary
hash tree. Thus, hashes are used as a replacement for pointers in common data structures:
linked lists and binary trees. By using hashes, the overall state of the blockchain, and all
transactions ever performed, and their sequence, can be expressed by a single number:
a hash of the newest block. Therefore, the hash immutability property of a single block
guarantees the immutability of the entire blockchain [5].

Algorithms for calculating hash values like other types of cryptographic algorithms
are a fundamental element of many information security systems and protocols. Given the
importance of the strength of the applied algorithms and trust in them, many countries
(commonwealths of countries) have developed or are developing national cryptographic
standards. A widely used algorithm for calculating hash values is the United States
standard called Keccak (SHA-3) [6]. Let us consider the approaches applied to the analysis
of the strength of the Keccak hash calculation algorithm.

Error injection attacks [7,8] consist in generating a message containing an error using
the Keccak algorithm to extract secure hash data. Paper [8] presents a new error detection
scheme based on a modification of the Keccak architecture, where the Keccak round was
subdivided into two blocks. The attack simulation results showed that the proposed attack
scheme achieves 99.995% of the expected error generation. Also, the proposed attack
scheme was evaluated from the point of view of hardware implementation on the FPGA.
In the paper [8], an efficient error detection scheme based on the architecture of the Keccak
algorithm was proposed. The round of the Keccak algorithm is divided into two sub-
rounds and a pipeline register is implemented between them. The proposed scheme does
not depend on the Keccak implementation method, so the method can be applied to both
pipelined and iterative architectures.

The article [9] describes the use of power analysis attacks that use the correlation
power analysis (CPA) technique to extract the MAC-Keccak secret key. The proposed
attack methodology uses simulated power signal traces and is applied to the design of the
high-speed Keccak core given in the SHA-3 competition. A 1-bit, 2-bit, 4-bit, 8-bit, and
16-bit CPA selection function with key size guessing was investigated to analyze the compu-
tational complexity of successful MAC-Keccak key extraction. The experiments performed
confirmed that the larger the size of the proposed key of the selection function, the fewer
traces are required to extract the key, but with a subsequent increase in computation time.

The work [10] is devoted to the study of differential error analysis of the family of
SHA-3 algorithms, namely the SHA3-224 and SHA3-256 algorithms. The authors have
developed an error injection model and increased the realism of the attack for various SHA-
3 implementation architectures. The propagation of errors in the SHA-3 algorithm within
the framework of one-byte error models was analyzed and the use of the error signature
on the output value to extract secret information was proposed. The results of the study
showed that the proposed method can effectively detect introduced single-byte errors and
then restore all internal states of the last round operation for both SHA3-224 and SHA3-256.
Later authors extended the application of the developed approach to an attack based on
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error injection and in the article [11] conducted a study of algebraic analysis of errors, which
made it possible to detect injected failures with a much greater speed and restore the full
internal state of the penultimate round with a smaller number of injected errors.

The paper [12] explored practical attacks based on collision detection for the Keccak
algorithm with a small number of rounds. The following main results were obtained
in the work: a collision search attack against a 5-round Keccak-224 was described and
a description of the collision search problem for a 6-round Keccak was presented. The
attacks were implemented by carefully studying the algebraic properties of the nonlinear
layer in the basic Keccak permutation and applying the linearization method. The authors
proposed using methods of partial linearization of the output bits of the nonlinear layer,
which significantly reduced the computational complexity of the attack. Cubic attacks
on the Keccak algorithm and its variants (Keccak-MAC, KMAC, Keyak, and Ketje) were
presented in [13]. In paper [14], when attacking Keccak-384/512 with a reduced number of
rounds, the authors found that the revealed linear dependencies are not fully used. In order
to maximize the use of all 448 and 320 linear dependencies identified for the Keccak-512
and Keccak-384 algorithms, respectively, the authors proposed a special algebraic attack
based on the expression of output values in the form of a system of quadratic logical
equations. The resulting system of quadratic Boolean equations can be effectively solved
using linearization methods. As a result, the authors managed to improve attacks on
2–4 rounds of Keccak-384 and 2–3 rounds of Keccak-512.

Paper [15] includes an extensive review of articles published in 2018 on image encryp-
tion schemes and their cryptanalysis using various research methods. The authors of this
work classified, on a scientific basis, the methods of cryptographic protection of images
into different categories. Also, an important point of this work is the identification of
critical problems in the design and evaluation of the security of image encryption schemes.
The methods of data protection indicated in the work are also applicable for assessing the
security of hashing schemes.

2. Related Works

The HBC-256 (Hash based on Block Cipher) hashing algorithm is a new algorithm for
computing a hash value based on the Merkle–Damgard structure. A description of the HBC-
256 algorithm and some approaches to its analysis were presented in [16]. Research [16]
presents analysis of the avalanche effect of CF encryption algorithm and statistical analysis
of the HBC-256. As results CF encryption algorithm (HBC-256 hashing algorithm itself) is
efficient to provide a good avalanche effect and binary sequence generated by the HBC-256
algorithm is close to random (using the NIST and statistical test suite).

We remark, however, that in the classical setting the basic approach to implementing
collision attacks that can exploit vulnerabilities in a particular hashing algorithm is differ-
ential cryptanalysis [17]. A general scheme for applying the differential analysis method
to a hash algorithm based on a Merkle–Damgard structure is presented in the next three
papers.

The authors of the article [18] in their work describe in more detail the design models
of a hash function and discuss various types of attacks and possible ways to overcome them.
According to experts, the most successful attack on the Merkle–Damgard hash function is
the differential attack. It is used to create a successful collision attack in hash functions.

The Merkle–Damgard construction proves that the security of a hash function depends
on the security of the compression function. Hash functions designed without taking into
account the weakness of the Merkle–Damgard construction are vulnerable to various
attacks. Thus, to build a collision-resistant hash function, it suffices to develop a collision-
resistant compression function. Therefore, the use of a block cipher as a compression
function imposes higher requirements on its security level.

The problem of building and studying S-boxes with given properties is well known.
In [19], the authors present a new framework for efficient analysis of a nonlinear node,
the S-box, and analyze the differential probability when the difference is expressed using
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modulo 2 addition (xor). This probability was obtained using graph theory and calculated
using matrix multiplications.

The aim of the research is to identify strong and weak properties for the new HBC-256
hash function to differential analysis.

3. Materials and Methods of Research
3.1. HBC-256 Hash Function

More details about the HBC-256 hashing algorithm described in [15]. The general
scheme of message hashing M(M0, M1, . . . , Mt−1) at k = 3 is shown in Figure 1, where k
is the number of parts, Mr

(
m0, m1, . . . , mk−1

)
is a message block M consisting of 128 × k

bits, r = 0, 1, . . . , t − 1. The proposed algorithm HBC-256 takes Mr from the message
M as a master key rkj

0, and the encrypted text–the previous intermediate hash value

hj
i−1, j = 0, . . . , k − 1. At the very beginning of the process of hashing the message

M(M0, M1, . . . , Mt−1) the initial hash value is taken as hj
0 = 0128, i.e., null value. Based on

message blocks Mr, round keys rkj
i , i = 1, 2, . . . , R1, are generated, where R is the number

of rounds for hashing message block Mr.
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The HBC-256 data hashing algorithm is based on the proposed CF block cipher
(Figure 2). CF has two inputs–a 128-bit hj

i−1 and a 128-bit round key rkj
i and one output–an

intermediate 128-bit hash value hj
i .. The nonlinear bijective transformation S is determined

using the SBOX procedure. Four “golden” S-blocks were selected according to Table 1.
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Table 1. Four «golden» S-boxes.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S0(x) 0 F B 8 C 9 6 3 D 1 2 4 A 7 5 E
S1(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D
S2(x) 7 C E 9 2 1 5 F B 6 D 0 4 8 A 3
S3(x) 4 A 1 6 8 F 7 C 3 0 E D 5 9 B 2

Based on the Wide-pipe scheme, in a single hash loop, the CF algorithm is simultane-
ously executed k times for different mj, j = 0, . . . , k− 1.. The length of the intermediate
hash value is 128 k bits. The Davis-Meyer CF is computed by pj as the result of summing
hj

i−1 and hj
i modulo 2. The PerF procedure then rearranges the values of all three pj, which

are further taken as hj
i−1. The final hash value is determined through ComF procedures.

3.2. Method of Differential Cryptanalysis

The differential cryptanalysis method was first proposed by E. Biham and A. Shamir
to analyze the DES encryption standard [20,21].

Differential cryptanalysis is based on the analysis of differences between encrypted
values at various stages of encryption. As a difference, the operation of bitwise addition
modulo 2 is used, including the analysis of the difference modulo 2n. Differential analysis
is a method of cryptanalysis of symmetric block ciphers and other cryptographic primitives,
in particular, hash functions and stream ciphers [22]. To apply this type of analysis, it
is necessary to build tables of differential properties for all non-linear elements of the
algorithm–S substitution boxes, addition modulo 2n, and others. A detailed algorithm for
differential analysis of nonlinear elements can be found in [23,24].

In the general case the application of the method of differential cryptanalysis is reduced
to the following steps:

1. Analysis of non-linear elements and determination of the most probable differences
for them;

2. Construction of a multi-round characteristic (type input difference–output difference)
from simple to complex, that is, from one round to n rounds. Determining the
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probability of the appearance of the constructed characteristic. Search for correct pairs
of texts, i.e., such texts for which the sum of the input values is the same as the value
of the input difference, and the sum of the output values is the same as the output
difference.

The task of differential cryptanalysis is reduced to constructing such pairs of input–
output difference, the probability of which is less than the exhaustive search of all possible
values. To construct pairs of texts, the analysis of non-linear elements of a cryptographic
primitive (for example, S-boxes) is carried out. After that, the transformations from round to
round are compared and the possibility of transition from one state to another is determined.

A pair of texts that corresponds to a given difference is called a correct pair of texts. In
the case of symmetric encryption, the correct pair of texts allows to determine the secret
encryption key or its fragments. In the case of hash function analysis, the correct pair of
texts determines the collision.

The purpose of this research is to observe the differential properties of the new HBC
hashing algorithm. To apply differential cryptanalysis, it is necessary to check whether
there is a way to transform differences from one operation to another and what is the
probability of such transformation. The probability will determine the complexity of the
analysis and the value of the difference will set the initial search parameters.

4. Results and Discussion

The first stage of the analysis is the analysis of nonlinear elements and the construction
of a table with the results of differential properties. For the HBC-256 algorithm, such
nonlinear elements are the substitution S-boxes presented in Table 2. As a result of the
analysis of the differential properties of these S-boxes according to [23,25], Tables 2–5 were
constructed. From these tables, it can be seen that the maximum possible probability of
non-zero differences is 1/4.

Table 2. S0 box analysis.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 4 2 0 0 0 0 2 2 2 0 2
2 0 0 0 0 0 2 0 2 0 2 4 2 0 0 0 4
3 0 0 2 2 4 0 0 0 2 2 0 0 0 0 0 4
4 0 0 0 0 0 0 4 4 0 0 2 2 2 2 0 0
5 0 2 0 2 0 0 0 0 2 2 2 2 2 0 2 0
6 0 2 0 2 0 0 2 2 4 0 0 0 2 0 0 2
7 0 0 2 4 4 2 0 0 0 2 0 0 0 0 2 0
8 0 0 0 2 0 0 2 0 0 2 0 0 2 4 4 0
9 0 2 2 2 0 0 2 0 2 0 2 2 0 0 0 2
A 0 0 2 0 2 0 2 2 0 4 0 2 2 0 0 0
B 0 2 2 0 2 2 0 0 0 2 2 0 2 2 0 0
C 0 2 0 0 2 0 2 2 4 0 2 0 0 0 2 0
D 0 2 2 0 2 4 0 2 0 0 0 0 0 4 0 0
E 0 4 2 0 0 2 0 0 0 0 0 2 0 2 2 2
F 0 0 2 0 0 0 0 2 2 0 2 2 2 0 4 0



Appl. Sci. 2022, 12, 10173 7 of 15

Table 3. S1 box analysis.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 2 0 0 2 0 2 2 4 2
2 0 0 0 2 0 2 0 0 0 0 2 4 2 4 0 0
3 0 2 2 2 2 0 2 2 2 0 0 0 0 2 0 0
4 0 0 0 2 0 4 2 0 0 0 0 2 0 0 2 4
5 0 0 2 2 2 2 0 0 0 0 0 4 4 0 0 0
6 0 0 0 2 4 0 2 0 2 2 0 2 0 0 0 2
7 0 2 0 0 0 0 2 4 4 2 0 0 0 0 2 0
8 0 0 0 0 0 0 2 2 0 4 4 0 2 2 0 0
9 0 2 0 2 2 2 2 2 0 2 0 2 0 0 0 0
A 0 2 0 0 4 0 2 0 0 2 0 0 2 2 0 2
B 0 2 2 0 0 0 0 0 2 0 4 2 0 0 4 0
C 0 0 4 0 0 2 0 2 2 2 0 0 2 0 0 2
D 0 2 2 0 0 2 2 0 2 0 2 0 2 0 2 0
E 0 2 4 2 0 0 0 0 0 2 2 0 0 0 2 2
F 0 2 0 0 2 2 0 2 2 0 0 0 0 4 0 2

Table 4. S2 box analysis.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 2 0 2 2 2 2 4 0 0
2 0 0 0 0 0 2 4 2 0 2 0 2 0 0 4 0
3 0 0 4 0 2 0 0 2 0 0 0 4 0 2 2 0
4 0 0 0 2 0 2 2 2 0 0 0 2 0 2 2 2
5 0 2 2 2 0 0 2 0 0 0 2 0 2 0 4 0
6 0 2 2 2 0 2 0 0 4 2 0 0 2 0 0 0
7 0 0 0 0 2 2 0 0 4 2 0 2 2 0 0 2
8 0 0 0 2 0 0 2 0 0 4 2 0 4 0 0 2
9 0 2 0 0 2 4 2 2 0 0 2 0 0 0 2 0
A 0 2 2 0 0 2 0 2 2 0 2 0 2 0 0 2
B 0 4 2 0 0 0 0 2 2 0 0 4 0 2 0 0
C 0 0 0 2 4 0 0 2 2 2 2 0 0 0 0 2
D 0 0 2 2 2 2 0 0 2 0 2 0 0 2 0 2
E 0 4 0 0 0 0 0 0 0 2 2 0 0 2 2 4
F 0 0 2 2 4 0 4 0 0 0 0 0 2 2 0 0

The analysis of S-boxes is as follows. All possible combinations of two inputs are
considered to form the input difference. Input difference values are specified horizontally.
For each combination of input difference, the value of the output difference is determined.
These values are presented vertically from 0 to F. At the intersection of rows and columns,
the number of occurrences of each output difference for each input difference is indicated.
To determine the probability, it is necessary to divide the values of Tables 2–5 by 16, since
the S-box takes 4 bits as input, which means it has 16 possible combinations. Thus, for an
input difference of 0, the output difference will always be 0 and there will never be any
other output differences. This follows from the fact that at difference 0 the texts forming
the difference are identical. This means that the output is identical texts, for which add
modulo 2 is 0 (at the intersection of input difference 0 and output difference 0, the number
of repetitions is 16, which corresponds to a probability of 16/16 = 1).

After a careful study of the data conversion scheme, it was noticed that, according to
Figure 2, the S-boxes from Table 1 actually form 16 S-boxes of 8 × 8 bits. Depending on the
byte to which they are applied, combinations of small S-box from Table 1 are used to form
a large S-box. Thus, 16 S-blocks were formed and analyzed for each of the state bytes.
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Table 5. S3 box analysis.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 2 0 2 2 0 2 0
2 0 0 0 2 0 2 0 0 0 0 0 2 2 4 2 2
3 0 0 4 0 2 0 0 2 2 0 0 2 0 0 4 0
4 0 0 0 0 0 4 4 0 0 2 2 0 2 0 0 2
5 0 2 2 0 0 2 2 0 0 0 2 2 2 2 0 0
6 0 0 2 2 2 0 2 0 2 4 0 2 0 0 0 0
7 0 2 0 0 0 0 0 2 4 0 0 2 0 2 4 0
8 0 0 0 0 0 0 2 2 0 0 2 2 2 2 2 2
9 0 2 0 0 2 2 0 2 2 2 2 0 2 0 0 0
A 0 0 4 2 0 2 2 2 0 0 2 0 0 2 0 0
B 0 2 0 0 4 2 0 0 0 4 2 0 0 0 2 0
C 0 4 0 2 2 0 0 0 0 2 2 2 0 0 0 2
D 0 0 2 2 0 0 0 0 2 0 2 0 2 4 0 2
E 0 0 2 0 4 0 2 0 2 0 0 0 2 0 0 4
F 0 4 0 2 0 2 2 2 2 0 0 0 0 0 0 2

So, for example, for byte a00 the S-box S00, formed from the double application of the
S0 box (Table 1), will be applied. As a result, S-box S00 will take the following form:

S00 = [0, 240, 176, 128, 192, 144, 96, 48, 208, 16, 32, 64, 160, 112, 80, 224, 15, 255, 191, 143,
207, 159, 111, 63, 223, 31, 47, 79, 175, 127, 95, 239, 11, 251, 187, 139, 203, 155, 107, 59, 219, 27,
43, 75, 171, 123, 91, 235, 8, 248, 184, 136, 200, 152, 104, 56, 216, 24, 40, 72, 168, 120, 88, 232, 12,
252, 188, 140, 204, 156, 108, 60, 220, 28, 44, 76, 172, 124, 92, 236, 9, 249, 185, 137, 201, 153, 105,
57, 217, 25, 41, 73, 169, 121, 89, 233, 6, 246, 182, 134, 198, 150, 102, 54, 214, 22, 38, 70, 166, 118,
86, 230, 3, 243, 179, 131, 195, 147, 99, 51, 211, 19, 35, 67, 163, 115, 83, 227, 13, 253, 189, 141,
205, 157, 109, 61, 221, 29, 45, 77, 173, 125, 93, 237, 1, 241, 177, 129, 193, 145, 97, 49, 209, 17, 33,
65, 161, 113, 81, 225, 2, 242, 178, 130, 194, 146, 98, 50, 210, 18, 34, 66, 162, 114, 82, 226, 4, 244,
180, 132, 196, 148, 100, 52, 212, 20, 36, 68, 164, 116, 84, 228, 10, 250, 186, 138, 202, 154, 106, 58,
218, 26, 42, 74, 170, 122, 90, 234, 7, 247, 183, 135, 199, 151, 103, 55, 215, 23, 39, 71, 167, 119, 87,
231, 5, 245, 181, 133, 197, 149, 101, 53, 213, 21, 37, 69, 165, 117, 85, 229, 14, 254, 190, 142, 206,
158, 110, 62, 222, 30, 46, 78, 174, 126, 94, 238].

Boxes S01...S33 were formed in the same way. All boxes were analyzed for differential
properties. It was shown that for each box there is a range of differences transforming with
a probability of 1/4. This was expected from the results of the analysis of boxes S0...S3
(Tables 4 and 5). This situation occurs when one S-box receives a difference 0000 at its
input (which is converted into an output difference 0000 with probability 1), while the
second S-box has input a difference with a probability of occurrence 1

4 . However, such
precalculations significantly reduce the time to analyze the hash function structure and
allow a better understanding of byte’s difference changes. An example of a fragment of
the table with the results of the analysis for box S00 is shown in Figure 3. The vertical
line represents some input differences and the horizontal line the output differences. At
the intersection, the cells for which the probability of forming the corresponding output
difference for a certain input difference is 1

4 are colored.
The problem of differential cryptanalysis for finding collisions of the hashing function

is posed as follows: it is necessary to construct a transformation of text differences such
that the input difference has a non-zero value, and the output difference has a zero value.
It is important to note that the probability of finding such a pair of texts should be less than
the probability of finding a collision using the brute force method.
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An important feature of the HBC-256 hashing algorithm is the fact that the same value
is received at the input of the production of the round keys and at the input of the function
itself. At the same time, the processing of these values is insignificantly different, which
adds additional complexity to the analysis.

We start with the analysis of the function for generating subkeys. The function contains
Stage-1, Stage-2, Stage-3 conversions. Note that in Stage-2 only a shift to the left by 1 bit is
performed, without the XOR operation, which is present in the Stage-2 operation in the
direct hashing function. All three conversions occur 8 times one after another. After that,
the original (input) matrix is added to the resulting (output) matrix.

The input matrix goes to the Stage-1 operation. The transformation starts with the
element with the index 00. All elements in the same row and the same column with the
selected element are added, and the selected element is also taken into account. After that,
the obtained new element is changed by the S-box of replacement to a new one, according
to the index, and is overwritten in the matrix. Then we move on to the element with index
01 and so on up to element 33. The complexity lies in the element overwriting and in the
fact that each element, according to the index, is replaced by its own S-box.

The idea for finding the right pairs of texts was to find such differences in texts that,
having gone through the transformation, would involve the least number of array elements.
The work began with the search for a suitable matrix fill. Many different combinations
were tried. An example of one of the options is shown in Figure 4. In Figure 4 and further,
white cells mean zero difference in the state, while black cells mean nonzero value of
the difference. Further analysis revealed an even more appropriate variant of difference
transformation (Figure 5).
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Further examination of the data transformations from Figure 5, it was found that even
after the Stage-2 and Stage-3 transformations, only three different replacement boxes (S20,
S30, S31) remain affected each time. These transformations are depicted in Figure 6.
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As a result of the found transformation (Figure 6), a hypothesis appeared: if after the
first round of transformations the difference state coincides with the difference of the first
subkey, and also if further, the second-round key acquires a zero difference, then further
transformations will go the same way, and hence a collision will be obtained (Figure 7).

Hypothesis. There is a difference a which, when passing through one round of hashing,
forms a difference (a + b) in bytes 20 and 30. At the same time, the same difference a form a
difference (a + b) in the same bytes (20 and 30) when passing through one round of round
keys generation. In addition, the difference (a + b) in bytes 20 and 30 can be converted into
itself when passing through one round of the generation of round keys.

Tables S20, S30, and S31 must convert the same input difference values into the same
output difference values according to Figure 6. It means that if two differences equal to the
value a are received at the input, then two differences equal to the value b or (a + b) must
be formed at the output, but they must coincide in bytes 20 and 30 (taking into account
that different substitution boxes are used there). In Stage2, the difference values may be
different. It is important to remember that the Stage2 operation is different for the keying
operation and the hashing function itself.

The search is performed for chains, in which the same values at the input of tables
S30, and S31 will give the same values. This must be done for the Stage-1 conversion. Then
these values should be multiplied by two (equal to a shift to the left by 1), which will give
us a Stage-2 transformation. Then these values should go back to the original value but
by tables S20, and S30. If we transfer all this to symbolic form, we get the input value A. It
is rearranged by the replacement tables S30, and S31 to the value C. Then this element is
multiplied by two, and we get (C x 2). After that this value is rearranged by substitution
tables S20, and S30 back to value B.
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Thus, we want to achieve the following indicators for the transformation of differences
(Table 6).

Table 6. Difference conversion scheme for the HBC-256 hashing function.

Hashing Function Keys Generation

Stage 1 a→ a + b a→ b
Stage 2 0→ 0 a + b→ a + b

It should be taken into account that first, the value with index 20 goes to Stage-1,
which is converted to zero. Then the value with index 30, which by S-box of permutation is
changed to something. You should not use output differences greater than 128 so that after
the conversion of Stage-2 neighboring boxes are not changed.

As a result of the analysis, we obtained chains in accordance with the hypothesis for the
key conversion (Table 7). All values represent one byte of difference, written in decimal form,
the record corresponds to the scheme: Input difference→Difference after Stage1→Difference
after Stage2→ Difference after Stage3, with the values in parentheses for the two S-boxes
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involved (number of appearances out of 256). The first column contains the transformations
of the first round, the second column contains the transformations of the second round):

Table 7. Found chains for transforming differences in key generation.

Input difference→ Difference after Stage1 (a)
→ Difference after StageKey2→ Difference

after Stage3 (b)→ Input Difference XOR
Difference after Stage3 (a + b)

Input difference (a + b)→ Difference after
Stage1→ Difference after StageKey2→

Difference after Stage3 (a + b)

27 (8|8)→ 19→ 38→ 245(4|4)→ 238
27 (8|8)→ 19→ 38→ 53 (4|4)→ 46

27 (8|8)→ 23→ 46→ 245 (4|4)→ 238
27 (4|4)→ 43→ 86→ 140 (8|8)→ 151

238 (4|4)→ 92→ 184 (8|4)→ 238
46 (8|4)→ 93→ 186 (4|8)→ 46

238 (4|4)→ 92→ 184 (8|4)→ 238
151 (8|8)→ 69→ 138 (8|4)→ 151
151 (8|4)→ 73→ 146 (4|4)→ 151
151 (4|4)→ 85→ 170 (8|4)→ 151

27 (4|4)→ 43→ 86→ 60 (4|4)→ 39 39 (8|8)→ 69→ 138 (4|4)→ 39
39 (8|4)→ 79→ 158 (4|4)→ 39
39 (4|4)→ 85→ 170 (4|4)→ 39

27 (4|8)→ 46→ 92→ 140 (8|8)→151 151 (8|8)→ 69→ 138 (8|4)→ 151
151 (8|4)→ 73→ 146 (4|4)→151
151 (4|4)→ 85→ 170 (8|4)→ 151

28 (8|8)→ 19→ 38→ 59 (4|4)→ 39 39 (8|8)→ 69→ 138 (4|4)→ 39
39 (8|4)→ 79→ 158 (4|4)→ 39
39 (4|4)→ 85→ 170 (4|4)→ 39

28 (8|8)→ 23→ 46→ 190 (4|8)→ 162 162 (8|4)→ 82→ 164 (8|8)→ 162
29 (8|8)→ 19→ 38→ 197 (4|4)→ 216
29 (8|8)→ 23→ 46→ 213 (4|4)→ 200

29 (4|4)→ 43→ 86→ 54 (4|4)→ 43

216 (4|8)→ 50→ 100 (4|8)→ 216
200 (4|4)→ 52→ 104 (4|4)→ 200

43 (8|8)→ 45→ 90 (4|4)→ 43
43 (4|8)→ 69→ 138 (4|4)→ 43

39 (8|8)→ 69→ 138→ 108 (4|8)→ 75 75 (8|8)→ 69→ 138 (4|4)→ 75
75 (8|16)→ 70→ 140 (4|4)→ 75

75 (8|16)→ 70→ 140→ 143 (8|8)→ 196 196 (8|4)→ 99→ 198 (4|8)→ 196
196 (8|4)→ 100→ 200 (4|8)→ 196

77 (8|8)→ 69→ 138→ 102 (4|4)→ 43 43 (8|8)→ 45→ 90 (4|4)→ 43
43 (4|8)→ 69→138 (4|4)→ 43
43 (8|8)→ 45→ 90 (4|4)→ 43

43 (4|8)→ 69→ 138 (4|4)→ 43
77 (8|16)→ 70→ 140→ 239 (4|4)→ 162
77 (8|16)→ 70→ 140→ 31 (4|4)→ 82

77 (16|4)→ 85→ 170→ 149 (8|8)→ 216
97 (4|4)→ 99→ 198→ 195 (4|4)→ 162

97 (4|4)→ 100→ 200→ 147 (4|4)→ 242

162 (8|4)→ 82→ 164 (8|8)→ 162
82 (4|4)→ 113→ 226 (4|4)→ 82

216 (4|8)→ 50→ 100 (4|8)→ 216
162 (8|4)→ 82→ 164 (8|8)→ 162
242 (8|4)→ 113→ 226 (8|8)→ 242
242 (4|8)→ 119→ 238 (4|8)→ 242

108 (4|16)→ 70→ 140→ 166 (4|4)→ 202 202 (4|4)→ 35→ 70 (4|4)→ 202
202 (4|4)→ 43→ 86 (4|4)→ 202
202 (4|8)→ 74→ 148 (4|4)→ 202
202 (4|4)→ 99→ 198 (4|4)→ 202

202 (4|4)→ 100→ 200 (4|4)→ 202
154 (4|4)→ 73→ 146→ 85 (4|8)→ 207
154 (4|8)→ 105→ 210→ 82 (4|4)→200
154 (4|8)→ 105→ 210→ 189 (8|4)→ 39
154 (4|8)→ 105→ 210→ 189 (8|4)→ 39

207 (4|4)→ 35→ 70 (4|4)→ 207
200 (4|4)→ 52→ 104 (4|4)→ 200
39 (8|8)→ 69→ 138 (4|4)→ 39
39 (8|4)→ 79→ 158 (4|4)→ 39
39 (4|4)→ 85→ 170 (4|4)→ 39

202 (4|4)→ 43→ 86→ 18 (4|4)→ 216
202 (4|8)→ 74→ 148→ 215 (4|4)→ 29

216 (4|8)→ 50→ 100 (4|8)→ 216
29 (8|8)→ 19→ 38 (8|8)→ 29

29 (8|8)→ 23→ 46 (16|8)→ 29
29 (4|4)→ 43→ 86 (4|8)→ 29
29 (4|8)→46→ 92 (4|8)→ 29

221 (8|4)→ 82→ 164→ 181 (4|4)→ 104 104 (4|8)→ 50→ 100 (8|8)→ 104
104 (4|4)→ 52→ 104 (4|8)→ 104
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Similarly, we find chains for the hashing function (Table 8). We use as input differences
only the input differences from Table 7 and look for such chains that at the output the
difference corresponding to the difference (a + b) is formed. In Table 8, all values are one
byte of difference, written in decimal form, the notation corresponds to the scheme: Input
difference→ Difference after Stage 1→ Difference after Stage 2→ Difference after Stage 3.

Table 8. Found chains for difference transformation in hashing.

Input difference→ Difference after Stage1
→ Difference after Stage2→ Difference after
Stage3

Input difference→ Difference after Stage1
→ Difference after Stage2→ Difference after
Stage3

27 (8|8)→ 19→ 53 (8|4)→ 238
27 (4|4)→ 25→ 43 (4|8)→ 46
27 (4|4)→ 27→ 45 (4|8)→ 46
27 (8|8)→ 19→ 53 (8|4)→ 238
27 (8|8)→ 19→ 53 (4|4)→ 151
27 (8|8)→ 23→ 57 (4|4)→ 39
27 (8|8)→ 19→ 53 (4|4)→ 151
28 (8|8)→ 119→ 153 (4|4)→ 39
28 (4|4)→ 73→ 219 (4|4)→ 162
29 (4|4)→ 43→ 125 (16|16)→ 216
29 (4|4)→ 73→ 219 (4|4)→ 200
29 (4|4)→ 25→ 43 (4|4)→ 43
29 (4|4)→ 27→ 45 (4|4)→ 43
29 (4|4)→ 43→ 125 (4|4)→ 43
39 (4|4)→ 43→ 125 (4|4)→ 75
39 (8|8)→ 45→ 119 (8|8)→ 75
75 (8|16)→ 70→ 202 (4|8)→ 196

77 (4|4)→ 73→ 219 (4|4)→ 162
77 (4|4)→ 25→ 43 (4|4)→ 43
77 (4|4)→ 73→ 219 (4|4)→ 82
77 (4|4)→ 73→ 219 (4|4)→ 216
97 (4|4)→ 52→ 92 (4|4)→ 162
97 (4|8)→ 50→ 86 (4|4)→ 241
108 (4|8)→ 120→ 136 (4|4)→ 202
154 (4|4)→ 73→ 219 (4|4)→ 207
154 (4|8)→ 120→ 136 (4|4)→ 207
154 (4|4)→ 73→ 219 (4|4)→ 200
154 (4|4)→ 113→ 147 (4|4)→ 39
202 (4|4)→ 73→ 219 (4|4)→ 216
202 (4|4)→ 79→ 209 (4|4)→ 216
202 (4|4)→ 73→ 219 (8|4)→ 29
221 (4|8)→ 44→ 116 (16|16)→ 104
221 (4|4)→ 79→ 209 (4|4)→ 104

Tables 7 and 8 show that the probability of converting one difference byte ranges
from 1

26 to 1
24 . In order to determine the final probability of conversion of one round, it is

necessary to calculate the number of non-zero difference conversions through S-boxes of
replacement. There will be 4 non-zero S-boxes involved for one round of key conversion.
Since the generation of one key occurs for 8 rounds, the generation of the first subkey will
require the conversion of non-zero bytes through 32 non-zero S-boxes. As a result, the
probability of difference conversion when generating the first key can be from 1

2192 to 1
2128 .

The generation of the second-round key will have the same probability. The one-round
conversion for the squeeze function will also involve 4 non-zero S-boxes and will have a
probability in the range from 1

26 to 1
24 . Thus, combining the obtained probabilities according

to Figure 7, we obtain that the conversion probability as a result of the hypothesis will have
a probability of 1

2390 in the worst case, and 1
2250 in the best case.

The results of the differential analysis of the HBC-256 algorithm are based on the
S-box analysis performed in Tables 2–5, scheme of analysis is presented at Figures 3 and 7.
As a result of the analysis of the obtained data, the possibility of building paired chains
of difference transformation (for text conversion and key generation) was hypothesized,
which is theoretically confirmed by the data in Tables 7 and 8.

The biggest limitation of the experimental proof of research hypothesis is the difficulty
of using full-size inputs and outputs for the developed hashing algorithms, because in this
case the analysis becomes time-consuming, uses huge computational resources, and a has
high time complexity.

5. Conclusions

The research results correspond to the robustness of full-round new HBC-256 hash
algorithm to differential analysis method. As a result of the research, it is shown that for the
proposed scheme for constructing differences, the probability of finding a collision is 1

2390

in the worst case, and 1
2250 in the best case. The collision itself was not found directly due to
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the limited computing resource since such probabilities require the use of a supercomputer.
One solution to such problems is to use reduced models or reduced functions, which allow
for modeling and approximating the result.

This research is the first observation of differential properties of the new hashing
algorithm HBC-256. For the method of differential cryptanalysis of the HBC-256 algorithm,
it is necessary to experimentally confirm the hypothesis by computing texts that lead to a
collision. Thus, with the current hashing function design, where the key is generated in
eight rounds, the practical use of differential cryptanalysis is unjustified.
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