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Abstract: Unacceptable sagittal alignment and cement leakage are major concerns of percutaneous
vertebroplasty when treating patients with painful vertebral osteoporotic compression fractures. To
maintain the restored vertebral height and reduce the reliance on cement as the major stabilizer, an
expandable vertebral augment system (EVA®) made of titanium alloy consisting of a rigid tube en-
cased by a barrel with an anterior expansion mechanism was developed. The aim of the current study
was to determine whether this novel design is as effective as existing procedures in terms of height
restoration and biomechanical performance. Eight osteoporotic vertebrae (T12-L3) confirmed by dual-
energy X-ray absorptiometry from two fresh-frozen human cadavers (70- and 72-year-old females)
were used. Twenty-five percent reduced anterior wedge vertebral compression fractures were created
using a material testing machine. Four randomized specimens were augmented with EVA® (Chang
Gu Biotechnology Co. Ltd., Taipei city, Taiwan), and another four randomized specimens were
augmented with OsseoFix® (AlphaTec Spine Inc., Carlsbad, CA, USA). The implant size and cement
volume were controlled. The anterior vertebral body height (VBH) ratio and pre/postaugmented
ultimate strength and stiffness were measured and compared. The mean anterior VBH restoration
ratio was 8.54% in the EVA® group and 8.26% in the OsseoFix® groups. A significant difference
from augmentation was measured in both groups (p < 0.05), but there was no significant difference
between the EVA® and OsseoFix® groups in anterior VBH restoration. The ultimate strengths of the
EVA® and OsseoFix® groups were 6071.4 ± 352.6 N and 6262.9 ± 529.2 N, respectively, both of which
were statistically significantly higher than that of the intact group (4589.9 ± 474.6 N) (p < 0.05). The
stiffnesses of the EVA®, OsseoFix®, and intact groups were 1087.2 ± 176.9, 1154.9 ± 168.9, and 1637.3
± 340.8 N/mm, respectively, indicating that the stiffness was significantly higher in the intact group
than in both the EVA® and OsseoFix® groups (p < 0.05). No significant differences were observed be-
tween the two augmentation procedures in height restoration or ultimate strength and stiffness. This
novel EVA® system showed comparable height restoration and biomechanical performance to those
of existing implants for human cadaveric osteoporotic compression fractures. Potential advantages of
preventing cement posterior leakage and promoting cement interdigitation are expected with this
ameliorated design.

Keywords: vertebral osteoporotic compression fracture; expandable vertebral augmentation; human
cadaveric vertebrae; vertebral body height restoration ratio; mechanical test

1. Introduction

Painful vertebral osteoporotic compression fractures (VCFs) occur in 20% of people
over the age of 70 years and significantly impact quality of life and physical function [1,2].
Progressive kyphosis of the thoracolumbar VCF results in decreased pulmonary func-
tion, chronic pain, and poor nutritional status, and thus increases the mortality rate [3–5].
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When pain persists after conservative treatment for one month, surgical solutions includ-
ing percutaneous vertebroplasty with polymethylmethacrylate (PMMA) cement for pain
relief or percutaneous kyphoplasty for further vertebral height restoration might be con-
sidered [6–8]. There have been three theoretical concerns about potential adverse effects
with the use of these procedures: (1) Uncontrolled bone cement leakage over the venous
plexus and epidural space, which can result in pulmonary embolism and neurological
damage [2,9]; a cement leakage rate from percutaneous vertebroplasty reaching 69.1%
was reported for the epidural space, disk space, and paraspinal tissues through defects of
the fractured vertebra [9,10]. Percutaneous balloon kyphoplasty was designed to reduce
the cement leakage rate during augmentation. Clinical evidence has shown a reduced
cement leakage rate for kyphoplasty compared with vertebroplasty in osteoporotic cases,
but the resulting devastating symptomatic complications still need to be alerted [9–14].
(2) Adverse bone union process due to thermal effect may induce inflammatory reaction
and inadequate biological scaffold properties [15,16]. Although new bone formation was
observed radiographically in 40% of patients who received vertebroplasty in long-term
follow-up [17], histological evidence still showed a decreased quantity and quality of callus
mineralization surrounding bone cement in vertebroplasty groups [18,19]. (3) Unaccept-
able sagittal alignment. Balloon kyphoplasty involves the inflation of a balloon inside the
collapsed fractured vertebral body, which restores its height before the fracture is stabilized
with cement. However, significantly restored vertebral height loss after balloon deflation
worsens the reduction achievement.

To maintain the restored vertebral height and reduce the reliance on cement as the
major stabilizer, an expandable titanium device, OsseoFix® (AlphaTec Spine Inc., Carlsbad,
CA, USA), which was accompanied by a mechanical working system that allows progres-
sive and controlled vertebral fracture reduction, was developed [20,21]. However, the
spinal canal compression risk resulting from the retropulsed expansion mechanism limits
its clinical application. An expandable titanium alloy (Ti-6Al-4V) device with an anterior
expansion mechanism, EVA® (Expandable Vertebral Augment system, Chang Gu Biotech-
nology Co. Ltd., Taipei city, Taiwan), was developed. It consists of a rigid tube encased
by a barrel that can be expanded to a desired expansive range by an externally applied
compression force through an operation device. Compared with balloon kyphoplasty in
which the fractured vertebrae is inflated by water/fluid filling, a mechanical advantage of
the EVA® system is that the fracture reduction is achieved by the eight expanded blades
via the forward-advancing novel barrel design, correcting the kyphotic deformity and
compacting the surrounding trabecular bone by a multiple-bladed expansion design, thus
creating a low-pressure space for cement interdigitation.

The purpose of our study was to compare the differences in height restoration and
biomechanical performance between EVA® and OsseoFix® in human cadaveric osteo-
porotic compression fracture vertebrae and determine whether this novel design has a
biomechanical advantage over existing procedures.

2. Materials and Methods
2.1. Specimen Preparation

This study was approved by the committee of Ministry of Science and Technology
in Taiwan. Eight osteoporotic vertebrae were used in this study (T12 to L3) from two
fresh-frozen human cadavers (70- and 72-year-old females). There was no radiographic
evidence of deformity, malignancy, fracture or previous surgery of our testing specimens.
To confirm that the tested specimens were osteoporotic, vertebrae were selected with
anteroposterior (AP) bone mineral density (BMD) measurements (DXA, QDR 2000, Hologic,
Inc., Boston, MA, USA) of less than 0.7 g/cm2 [22]. All vertebrae were disarticulated, and
their surrounding soft tissues were removed before mechanical compression.
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2.2. Fracture Generation

All specimens were thawed at room temperature for 24 h before testing. The end
plates of each vertebra were embedded in a common epoxy resin (Fastray, Bosworth,
Skokie, IL, USA). Anterior vertebral body height (VBH) was measured at the anterior
aspect of the vertebral body with a digital caliper with an accuracy of 0.01 mm (Model
PB-1B, Mitutoyo, Tokyo, Japan). The measured VBH values were defined as the initial
height of intact vertebra for the subsequent calculation of the VBH ratio. Following intact
VBH measurement, a compressive preload of 89 N was applied for 2 min [23]. To create a
wedge compression of the anterior half of the vertebral body, the main vector of the axial
force was centered at the end plate of the anterior fourth of the vertebral body [24]. Each
vertebra was compressed at a rate of 5 mm/min using a hinged-plated device mounted
on a material testing machine (Bionix 858; MTS Systems Corp., Minneapolis, MN, USA) to
create an anterior wedge fracture and reduce anterior height by 25% of the initial value.
To protect the posterior wall from compression fracture, the specimen was completely
contacted with the custom-made resin apparatus (Figure 1). Force (N) and displacement
(mm) data were recorded at 10 Hz, and the ultimate strength and stiffness of the specimens
were recorded as intact groups and compared with the two following augmented groups.
Ultimate strength was defined as the highest load value with increasing compression,
which is the turning point on the force versus displacement curve. Compression stiffness
was arbitrarily defined as the slope of the force-displacement curve between 500 N and
1500 N [25,26]. The specimens were returned to the plastic bags and floated in a bath
maintained at 37 ◦C for at least 1 h before augmentation.
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After fractures were created by mechanical compression, all specimens from T12 to
L3 were randomly allocated into two treatment groups: the EVA® group (n = 4) and the
OsseoFix® group (n = 4).

2.3. Implantation of EVA®

An EVA® was made of titanium alloy (Ti-6Al-4V) and consisted of a rigid central
hollow tube equipped with a barrel with eight expandable blades (length × diameter,
20 mm × 6 mm). The eight blades were gradually expanded following the forward ad-
vancing of the barrel relative to the central tube by the clockwise rotation of the expander
handle (Figure 2). The EVA® operation device has multiple apertures for delivering PMMA
bone cement to the expanded barrel through a long cannulated sheath. Following the
full expansion of the EVA® device (length × diameter, 17 mm × 13.5 mm), the barrel
component formed of eight expanded blades is capable of structurally supporting the
damaged bone, and the hollow tube allows cement to be injected through its central tunnel
(Figure 3).

For all specimens in the EVA® group, a channel was created for placement of the EVA®

device using a 5.5 mm diameter drill bit through the left pedicle. The procedures were
carried out fluoroscopically to confirm adequate position and expansion were achieved.
Following the implantation of the EVA® device, the expander handle of the operation
device was removed, and the cement injection apertures to be filled with PMMA bone
cement (Simplex P, Stryker, Kalamazoo, MI, USA) were assembled into the EVA operation
device. PMMA cement (3cc) was injected into the vertebral body by the clockwise rotation
of the cement injection handle, and after the cement had hardened completely, the EVA®

operation device was rotated counterclockwise to disconnect it (Figure 3).
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Figure 2. Schematic drawing (upper) and photograph (lower) showing the EVA® device. (A) EVA®

including a rigid tube component and a barrel component before assembly; (B) assembling the tube
into the barrel; (C) after assembly of tube and barrel (unexpanded EVA®); (D) expanded EVA®; and
(E) following the expansion of EVA® using an operation device, the barrel component forms eight
expanded blades capable of providing structural support to the bone tissue, and the tube tunnel
allows cement to be injected through its central tunnel.
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Figure 3. Schematic drawing showing the surgical procedure of EVA® implantation. (A) Rotating the
bone drill to drill into the desired position of vertebral body; (B) inserting the EVA® implant into the
vertebral body with the EVA® operation device; (C) rotating the expander handle to expand the EVA®

implant. A fluoroscope was used to ensure the implant’s position and expansion; (D) the expander
handle was completely unscrewed to disengage it. The cement injection syringe was filled with the
cement mixture; (E) the cement injection syringe was insert into the EVA® operation device, and the
cement injection handle was attached to the EVA® operation device; (F) the cement injection handle
was rotated to inject the cement; and (G) the EVA® operation device was rotated counterclockwise to
disassemble the system and complete the procedure.

2.4. Implantation of OsseoFix®

A same-sized drill bit with the same tract under fluoroscopic control in two planes
was also used in the OsseoFix® group. The implant consisted of a combination of titanium
alloy (Ti-6Al-4V) and pure titanium (Ti-CP2) [27,28]. With a similar size as the EVA groups,
i.e., an initial length×diameter size of 30 mm × 5.5 mm and maximally expanded size to
26.4 mm × 13.0 mm, OsseoFix® devices were implanted in all 4 vertebrae in the OsseoFix®

group. After the inserted OsseoFix® devices were fully expanded by the delivery system,



Appl. Sci. 2022, 12, 10165 6 of 14

3 cc PMMA liquid cement was injected. After the cement hardened, the delivery system
was disconnected and removed.

Following implantation of EVA® or OsseoFix® devices, the postaugmentation anterior
VBH was measured with an identical method to that previously described. The preaug-
mentation and postaugmentation anterior VBH ratios in both groups were measured and
compared.

The pre- and postaugmentation anterior VBH ratios are defined as follows:

Preaugmentation VBH ratio = (Fractured VBH)/(Intact VBH) × 100%

Postaugmentation VBH ratio = (Postaugmentation VBH)/(Intact VBH) × 100%

2.5. Biomechanical Testing

Postaugmentation specimens were thawed at room temperature (20 ◦C) for 24 h before
biomechanical testing. An impression of the end plates of each vertebra was made with a
common epoxy resin (Fastray, Bosworth, Skokie, IL, USA) (Figure 1). Each vertebra was
seated between its respective impressions and placed between platens on an MTS materials
testing machine (Bionix 858; MTS Systems Corp., Minneapolis, MN, USA). A compressive
preload of 89 N was applied for 2 min. Subsequently, vertical uniaxial compressive force
was applied to each specimen at a speed of 5 mm/min, and the force–displacement curve
was recorded with a data acquisition rate of 10 Hz, from which the ultimate strength and
stiffness in both groups were measured and compared.

2.6. Statistical Analysis

Means and standard deviations were calculated for descriptive purposes. Multiple
comparisons between the two different device designs were performed using a one-way
ANOVA test, with the significance level set at p < 0.05.

3. Results

The average BMD of the vertebral bodies was 0.63 ± 0.04 in the EVA® groups and
0.61 ± 0.03 in the OsseoFix® groups. No statistically significant difference in mean BMD
was found between any of the preaugmentation groups.

Before implantation, anterior wedge fractures were created without posterior wall
destruction (Figure 4). The VBH was restored in both groups, and injected cement sur-
rounding the implants (Figure 5). It was observed that there was no cement leakage out of
the vertebral bodies, which might have interfered with the biomechanical value results.

Anterior wedge compression fractures were established in all specimens. The average
force needed to create the fracture was 4589.9 N (range, 3834.1–5092.2 N). The mean anterior
VBH ratio was 86.05 ± 3.24% before augmentation and 94.59 ± 1.67% after augmentation
in the EVA® groups and 86.37 ± 4.66% before augmentation and 94.63 ± 5.81% after
augmentation in the OsseoFix® groups. No statistically significant difference in the anterior
VBH ratio was found between any of the preaugmentation groups. A significant difference
from augmentation was measured in both groups (p < 0.05), but there was no significant
difference in the VBH ratio restoration between the EVA and OsseoFix® groups (8.54%
compared to 8.26%) (Figure 6). The ultimate strength of the vertebral body of the EVA®

and OsseoFix® groups were 6071.4 ± 352.6 N and 6262.9 ± 529.2 N, respectively, both of
which were statistically significantly higher than that of the intact group (4589.9 ± 474.6 N)
(p < 0.05) (Figure 7). The stiffnesses of the EVA®, OsseoFix®, and intact groups were 1087.2
± 176.9, 1154.9 ± 168.9, and 1637.3 ± 340.8 N/mm, respectively. Stiffness was significantly
higher in the intact group than in both the EVA® and OsseoFix® groups. There were
no significant differences in stiffness between the EVA® and OsseoFix® groups (p > 0.05)
(Figure 8).
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Figure 9 shows representative force vs. displacement curves for the EVA®, OsseoFix®,

and intact groups for the compression test. For all three group, a lower increasing rate of
force was found at the initial phase. This might be attributed to the presence of cancellous
bone between bone cement and end plate within vertebra. Following the destruction of
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defined, for each specimen, as the slope of the straight line connecting the two force values
of 500 N and 1500 N.
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Figure 9. A typical force versus displacement curve for calculation of compression stiffness in the
compression test. Compression stiffness was arbitrarily defined as the slope of the force-displacement
curve between 500 N and 1500 N. Forces at 500 N and 1500 N are indicated with the “+” symbol.

4. Discussion

Vertebroplasty and kyphoplasty have been established in recent decades as minimally
invasive techniques for stabilizing osteoporotic vertebral compression fractures [1,5,29].
Studies showed that better sagittal profiles were restored with kyphoplasty than with
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vertebroplasty [7,29]. However, VBH recovery was often lost after the balloon was deflated
and withdrawn from the catheter [27,28]. Several intravertebral augmentation systems
aimed at the permanent reduction in the fractured vertebral body have been widely used
in recent years [21,30]. Among these vertebral augmentation devices, the Vertebral Body
Stenting® (VBS) device (Synthes, Soletta, Switzerland) consists of an expandable stent de-
livered into the vertebral body before bone cement injection. Rotter R. et al. [31] compared
VBS device and kyphoplasty treatments of 24 fresh-frozen human cadaveric spines and
found significant VBH restoration in the VBS group and no significance in stiffness or
ultimate strength between systems. The SpineJack® device (Vexim, SA, Balma, France)
consists of two parallel titanium plates, which can be used to elevate the fracture end
plates craniocaudally and restore the collapsed vertebrae. It was reported that this de-
vice was superior to kyphoplasty in restoring vertebral heights and in decreasing cement
leakage [32–34]. Intravertebral augmentation with polymer and memory alloys has also
been widely used in recent years [22,35–37]. The KIVA® (Benvenue Medical Inc., Santa
Clara, CA, USA) system [22] uses a flexible polyetheretherketone (PEEK) to restore the VBH
and hold the cement; the Tektona® system consists of a flexible lamella nickel–titanium
alloy that can be shaped by a vertebral fragment reduction instrument and allows for
cement augmentation [35,37]. Intravertebral augmentation devices have been proven to
have a better vertebral height restoration and a comparable biomechanical performance
to balloon kyphoplasty in studies [20–22,32–38]; therefore, considering the similar expan-
sion mechanism and material properties, OsseoFix® was chosen for comparison with our
design [20,21,38]. Randomized specimens, controlled implant size, and the same cement
volume allowed our biomechanical data to be reliable.

Osteoporotic human fresh-frozen vertebrae are the ideal model for vertebral augmen-
tation biomechanical studies. In our study, a BMD of less than 0.7 g/cm2 of each specimen
was observed by DXA measurements [22]. Most of the vertebral compression fractures
caused by osteoporosis clinically have an anterior wedge shape of varying degrees [3,5,6].
The contact point of axial force was determined for each specimen in the anterior half of the
superior end plate to create an anterior 25% compression fracture unit that could present
the clinical condition [22,25,35].

The mean VBH ratio were efficiently restored to above 94% postoperatively in both
groups, which is in agreement with results of other studies using a 25% anterior wedge
fractured vertebral model [24,27,28]. Vertebral height restoration-induced correction of
local kyphosis was believed to be positively correlated with the sagittal vertical axis and
improved spinopelvic parameters; thus, long-term satisfactory clinical outcomes were
achieved [39–41]. Controversies exist about the adjacent vertebral fracture resulting from
altered biomechanics in the augmented vertebra due to resistant kyphosis [42,43]. Clinical
consensus suggests that the adjacent fracture rate did not increase with the augmentation
procedure or the vertebral height reduction in treated vertebrae but did increase with the
degree of osteoporosis [44].

Comparable strength and stiffness were also measured in both groups. It has been
estimated that ultimate strength restoration compared with the intact group was 132.3%
in the EVA® group and 136.5% in the OsseoFix® group. The results demonstrate that the
EVA® vertebral body reduction implants are able to achieve effective endplate reduction
and provide similar biomechanical stability to that of the OsseoFix® implant. Another
issue of concern in vertebroplasty is the refracture of cemented vertebrae, which occurs
in up to 30% of osteoporotic patients [45,46]; associated risk factors include intraosseous
vacuum cleft, overcorrection of the anterior VBH, low BMD, and mostly inadequate cement
filling pattern [45,46]. The advantage of the EVA® device is not only the increased strength
compared with the intact groups but also the enhanced symmetric distribution of cement
into the surrounding trabeculae by the expanded blades. Thus, more interdigitated cement
distribution resulting in less recollapse incidence could be expected [45,46].

There was no significant difference in stiffness between the two augmentation groups;
interestingly, the values in both groups were significantly lower than those in the intact
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group. Similar results were also observed for kyphoplasty and vertebroplasty in cadaveric
biomechanical studies [47,48]. The inversely proportional ultimate strength results indicate
that vertebral body stiffness is not solely dependent on the mechanical properties of cement
or implant. The cement filling volume percentage, cement distribution, heterogeneous
osteoporotic region, and degree of decreased bone mineral density all contributed to the
final stiffness of the augmented vertebral body. Because of the lower compression stiffness
for vertebral augmentation with EVA® and OsseoFix®, fewer adjacent vertebral fractures
can be expected in our future study.

The goal of this study was to determine whether the EVA® system is as effective as
the OsseoFix® reduction system, which has been proven effective and safe in vertebral
augmentation since 2009 in the U.S. and Europe [20,27,38]. No significant differences were
seen between the two procedures for VBH restoration, ultimate strength, and stiffness.
Nonetheless, the advantages in the novel design of EVA® are as follows: (1) Expanding
mechanism: eight blades were gradually expanded following the forward advancing of
the barrel relative to the central tube by the clockwise rotation of the expander handle. In
contrast, a retrograde expansion of mesh is incorporated in the OsseoFix® design, which
might cause fractured bony fragment shift posteriorly and create larger posterior defect,
which could induce devastating posterior cement leakage. (2) The central tube design
of the EVA® system provides higher strength than the hollow mesh in OsseoFix®, but
there is no significant difference in ultimate strength and stiffness in both the EVA® and
OsseoFix® groups. Studies 23,25 showed that ultimate strength reached 120–127% of the
intact level with only PMMA cement augmentation. In our study, the biomechanical
performance (132.3% in the EVA® group and 136.5% in the OsseoFix® group) would mostly
be affected by cement instead of implant, and we believe that the difference would appear
if only comparing the implant; however, the comparison is non-practical clinically. Two
shield designs (blades and central tube) preventing low-viscosity cement from leakage are
rationally more effective than the mesh-only designs in OsseoFix® [49,50].

There are some limitations in the current study. First, an axial compressive loading
was used to create the fracture model in the current study, whereas the native trauma
mechanism is much more complex. Second, a single cadaveric vertebra without the
attachment of discs, ligaments, facet joints, and muscles cannot clinically represent the
complicated biomechanical performance of a fractured spine. Third, ultimate strength
and stiffness cannot completely characterize daily activities, and different directional and
cyclic loadings should be examined to expand the clinical application range. Fourth, only
one implant size and one uncontrolled injected cement volume were examined, more
varieties should be compared to obtain consistent results. Finally, the studied implant
showed comparable height restoration and biomechanical performance to that of existing
augmentation implants, but the native obstacles such as non-biological property or cement
leakage of PMMA still cannot be totally overcome.

5. Conclusions

This novel EVA® system showed comparable height restoration and biomechanical
performance to that of existing augmentation implants in human cadaveric osteoporotic
compression fractures. Potential advantages of preventing cement posterior leakage and
promoting cement interdigitation are expected from this novel design. Additional studies
with more complicated fracture models and cement filling volumes will help us better
clarify this issue.
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