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Abstract: In this study, an ultra-wideband actively tunable terahertz absorber composed of four
identical arc-shaped structures made of phase transition material vanadium dioxide (VO2) is pre-
sented. A metal ground plane is placed at the bottom and an insulating spacer (quartz) as the
middle dielectric layer. Simulation results demonstrate 90% absorption with a broad bandwidth
spanning 3 THz (2.7 THz–5.7 THz) under normal incidence. The proposed structure transforms from
a reflector to an absorber by changing the conductivity from 200 S/m to 2 × 105 S/m; the absorbance
at peak frequencies can be consistently tuned from 4% to 100%. Absorption spectra demonstrate that
the polarization angle does not affect the response of the proposed structure. Power loss density
(PLD) and impedance-matching theory are further analyzed to learn more about the physical origin
of ultra-wide absorption. The ultra-wide operating bandwidth, high absorption efficiency, active
tunability, and independence of polarization make the proposed structure an excellent candidate for
integration into profound THz applications such as sensors, modulators, and optic-electro switches.

Keywords: ultra-wideband; terahertz; absorption spectra

1. Introduction

In recent years, terahertz (THz) waves gained popularity due to their applications in
wireless communication, sensing, and imaging. [1–4]. To meet the challenges posed by the
emerging THz applications, several metamaterial-based devices were suggested, including
filters [5–7], absorbers [8–10], polarity converters [11], and others. Metamaterial perfect ab-
sorbers are one of these valuable gadgets that play a central role in many THz applications
such as emitters of heat [12,13], solar-powered cells [14,15], and stealth technology [16,17].
Therefore, realizing ultra-wideband efficient absorbers has always been of profound interest
to the research community and industry. In this regard, studies in the literature suggested
multi-band, dual-band, and narrow-band absorbers [18–21]. Aside from a specific ab-
sorption bandwidth, these metamaterial perfect absorbers (MPAs) are inflexible in their
electromagnetic responses. It is demonstrated that different sized resonant structures in
a single unit cell can be used to produce broadband absorption [22–24]. Another alternative
is a multilayer construction with different thickness dielectric layers [25–27]. However,
MPAs made with the earlier methods are difficult to realize and control [28–31]. Sev-
eral progress reports integrate metamaterials with semiconductors, graphene, and liquids
crystals, while others use phase transition materials [28–30] to achieve active control.

The insulating material can be transformed into metallic by using electrical, thermal,
or optical stimuli, such as UV light. The rapid reaction time and wide modulation depth
of VO2 make it more suitable for integrating into tunable absorbing structures. Various
VO2-based absorbers with broadband and adjustable absorption capabilities were recently
discovered. Several studies demonstrate that electrical [32–34], thermal [35,36], or optical
excitation [37,38] can induce the phase shift. Using metamaterials with VO2 seems to be
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a potential approach to achieving THz re-configurability [39–50]. The electrical conductivity
of vanadium dioxide (VO2), a phase transition material, can alter by several magnitudes as
the material goes through its phase transition [51,52]. In this regard, a tunable broadband
terahertz absorber constructed of four identical vanadium dioxide (VO2) square loops with
a 2.45 THz absorption bandwidth is presented in [53] under normal incidence. A quatrefoil
and circle-loaded complementary square split ring resonator (CSSRR) are presented in [54],
which show two peaks at 0.88 and 1.42 THz. The in-plane and out-of-plane components of
its surface susceptibility tensor can be reliably determined with the optical detection of the
susceptibility tensor in two-dimensional crystals, as presented in [55]. Table 1 has summa-
rized MPAs with broadband and adjustable VO2 absorption properties (see [39–45,52–54]
in Table 1).

Table 1. Comparison table of the absorption capabilities of various VO2-based absorbers.

References
Absorption
Bandwidth

(THz)
Absorptance Tunable Range

(%) Material

[39] 0.34 >90% 30–100 VO2

[40] 0.66 >90% 30–98 VO2

[41] 0.53 >90% 5–100 VO2

[42] 1.24 >90% 15–96 VO2

[43] 0.56 >90% 9–99.3 VO2 and graphene

[44] 1.24 >90% 5–100 VO2

[45] 0.89,
0.78 >80% 20–90

44–85 VO2

[52] 1.79 >90% 20–99 VO2 and graphene

[53] 2.45 >90% 4–100 VO2

[54] 1.07 >90% 20–100 VO2

Proposed work 5.7 − 2.7 = 3 >90% 4–100 VO2

This paper proposes a tunable ultra-wideband absorber composed of a three-layer
(VO2/quartz/Au) configuration. The absorber achieves excellent absorption of approx-
imately 90% in the range of 2.7 THz–5.7 THz. The absorptivity of this absorber varies
between 4% and 100% with the changing conductivity of VO2. According to the compar-
ative Table 1, the absorber performs much better than the other VO2-based absorbers in
terms of operating band and efficiency. Power loss density and impedance-matching theory
are applied to elaborate on the physical origin of ultra-wide absorption.

2. Design Methodology

The geometrical structure of the ultra-wideband THz absorber is shown in Figure 1a.
It consists of three layers; a VO2 arc-shaped patch on the top, a metal ground plane of
gold (Au) placed at the bottom, and an insulating spacer (quartz) as the middle dielectric
layer. The final optimized geometrical parameters are determined as a result of parametric
scanning. p = 75 µm, t = 0.2 µm, h = 11 µm, s1 = s2 = 17 µm, c = 1 µm, b = 5 µm a = w1 = 4 µm,
w = 23 µm, and L = 17 µm. The thickness of the top layer VO2 is 0.2 µm. In our simulations,
we used a quartz substrate with a permittivity of 2.25 [46]. The conductivity of gold (Au) is
σ = 5.8 × 107 S/m. The optical properties of VO2 in the THz range [34–37] are described
using the Drude model, which may be stated as:

ε(ω) = ε∞ −
ω2

P(σ)

ω2 + i rω
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(c) three-dimensional view of the proposed planar ultra-wideband unit cell absorber.

The permittivity at infinite frequency is represented by ε∞ = 12. The collision fre-
quency (γ) is 5.75 × 1013 rad/s, while the plasma frequency, ωρ(σ0), depends on conduc-
tivity. As a function of σ, plasma frequency ωρ(σ) can be represented as:

ωP2(σ) =
σ

σ0
ω2

P σ0

with σ = 3 × 105 S/m and ωρ(σ0) = 1.4 × 1015 rad/s.
In this work, thermally, VO2 changes from an insulator to a metal state, with conduc-

tivity increasing from 200 S/m to 2 × 105 S/m. At approximately 340 K, it is known that
VO2 can undergo a phase shift from insulator to metal [54]. CST Microwave Studio was
used to simulate the electromagnetic response of the proposed absorber over the frequency
range of 2–7 THz. The simulation employs a configuration for adaptive tetrahedron mesh
refinement. To model an infinite array, periodic boundary conditions ire used with an
electric field (E-field) along the x-axis and a magnetic field (H-field) along the y-axis. To
incident a linearly polarized wave, floquet ports are used along the z-axis.

The absorption is computed as follows as A(ω) = 1− R(ω)− T(ω), where R(ω) = |S11|2
and T(ω) = |S21|2. S11 and S21 are numerically calculated reflection and transmission
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coefficients. Since the thickness of the back metallic layer (Au = 0.2 µm) is much larger than
the skin depth, the transmittance T(ω) is close to 0, as shown in Figure 2 (T(ω) = S21 = 0).
As a result, the absorptivity is as follows:

A(ω) = 1 − R(ω)

Therefore, the concept of impedance-matching theory achieves a highly efficient
broadband absorption from a range of 2.7 to 5.7 THz.
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Figure 2. Magnitude of reflection coefficients of the design structure when conductivity of metal is
σ = 2 × 105 S/m.

3. Simulation Results and Discussion

Even though the incident field consists of a single component, the reflected field
typically has both x and y components. The co-polarized reflection coefficients are defined
as Rxx = |Erx|/|Eix| and the cross-polarized reflection coefficients as Ryx = |Ery|/|Eix|
when the incident and reflected fields are x and y polarized, respectively. The simulated
results of the proposed design for linear reflection coefficient (Rxx and Ryx) under normal
incidence are shown in Figure 2. It can be seen from Figure 2 that the cross-polarized
reflection coefficient (Ryx) is equal to zero in the interested band when the top layer of
VO2 is in the metal state, while the co-polarization reflection coefficient is almost equal
to 0.1 in the frequency range of 2.7–5.7 THz. Therefore, the proposed design achieves
perfect absorption in the frequency range of 2.7–5.7 THz as shown in Figure 3. Figure 3a
displays the absorber’s reflection and absorption spectrum when the top layer of VO2
is in the metal state. The result shows that the designed absorber achieves more than
90% in the frequency range of 2.7–5.7 THz at a normal incidence angle. For most of the
operating band, absorption efficiency exceeds 98%. The absorber features four absorption
peaks at resonance frequencies: 3.2 THz, 3.8 THz, 4.7 THz, and 5.2 THz. In practical
applications, the impact of wave polarization and incident angle on absorption efficiency
must be considered. When electromagnetic radiation is incident vertically, the VO2 metal
phase’s absorption spectra are displayed in Figure 3b at various polarization angles. The
proposed absorber’s absorption spectra are unaffected by polarization angles between 0◦

and 45◦. As a result, the absorption is indifferent to the polarization angle. This polarization
independence is essential in absorbers because the polarization angle is frequently random
under actual settings. In order to dynamically control the absorption of the schematic
design absorber, the conductivity of arc-shaped VO2 varies as the intrinsic structure of
VO2 allows it to make the transition from the insulating to the metallic state. Numerical
simulations are performed in order to see the effects of variations in the conductivity of
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VO2 on the absorption efficiency. As shown in Figure 3, absorption efficiency increases
with increase in the conductivity. The design absorber achieves a perfect absorption of
more than 90% in the frequency range of 2.7–5.7 THz, resulting in an absorption bandwidth
of up to 3 THz. The optical absorption spectra show that by raising the conductivity from
200 to 20 × 104 S/m, the absorption at resonant frequencies may be continuously tuned
from 4% to 100%, with the associated absorptance frequency band reaching 3 THz.
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absorption spectrum map.

Figure 4a shows the absorber’s magnitude reflection and absorption spectra when
the VO2 material is in the metal phase. The absorber has four resonance peaks at 3.2 THz,
3.8 THz, 4.7 THz, and 5.2 THz. The results reveal that absorption efficiency is greater than
90% in the range 2.7 THz–5.7 THz on a normal incidence angle. Absorption efficiency
surpasses 98% for the majority of the working spectrum. When conductivity changes, the
changes in the imaginary parts are far more significant than those in the real parts, as
shown in Figure 5. As a result, the spectral intensity shifts substantially, but the peak’s
placement along the frequency axis remains virtually unchanged. Figure 6 shows that
at conductivities of 1.5 × 105 S/m, 100% absorption spectra in the frequency range of
3.38–5.19 THz is achieved.
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4. Calculation of Retrieved Effective Physical Parameters

To explain the perfect absorption properties and tunable mechanism, the impedance the-
ory is applied to determine the retrieved effective physical parameters from Equations (1)–(4)
of the design structure. CST (MICROWAVE STUDIO) is used to extract the S-parameters.
Compared to the Drude–Lorentz approach, S-parameters for complex structures yield more
accurate permittivity and permeability values [49]. It is possible to write the system’s
S-parameters [50]. Figure 1 depicts the schematic metasurface with a typically incident
plane wave.

S11 =
R01

(
1− ei2nk0d

)
1− R2

01ei2nk0d (1)

S21 =

(
1− R2

01
)
ei2nk0d

1− R2
01ei2nk0d (2)
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Solving Equations (1) and (2) gives impedance (Z)

= ±

√√√√ (1 + s11)
2 − s2

21

(1− s11)
2 − s2

21

(3)

ei2nk0d =
S21

1− S11
z−1
z+1

(4)

n =
1

K0d
[{[ln(eink0d)]

′′
+ 2mπ} − i[ln(eink0d)]

′
] (5)

where (.)′′ represent the complex element and (o)′ represent real part of complex number.
The refractive index is denoted by n; z = impedance; k0 = wavenumber; d = maximum
unit element length; k0 = wavenumber; m = branch due to sinusoidal periodicity, and
electric and magnetic field components are denoted by E and H, respectively. The following
expressions link effective physical parameters with each other:

εe f f ective =
n
z

(6)

µeffective = nz (7)

Figure 7 shows the effective physical characteristics for perfect absorption when
σ = 2 × 105 S/m. The proposed absorber exhibits a negative refractive index and a positive
impedance, indicating that the hypothesized metasurface behavior is in the band of interest.
It can be seen from Figure 7a that in the 4 THz–5.7 THz frequency band, permittivity
is negative. Figure 7 also presents the proposed THz absorber’s refractive index and
impedance. Complete absorption can occur when the absorber’s effective impedance is
equal to the free space impedance (377 Ohm). The fundamental electromagnetic theory
demonstrates that the surface reflection is reduced to zero when a structure’s effective
permeability and permittivity are equal to those of free space. Figure 8 shows the relative
impedance of the proposed absorber for different VO2 conductivities. For VO2 with
a conductivity of 2× 105 S/m, the real part of the impedance is close to 1 (equivalent to free
space) in the frequency range of 2.7–5.7 THz, while the imaginary parts are close to zero.
Consequently, the parametrically optimized geometry of the metasurface’s impedance is
equal to that of free space. It satisfies the strategy requirements for a perfect absorber.

To realize THz absorption, we start with a single VO2 arc-shaped rectangle, which is
placed on top of a quartz substrate to form a conventional metamaterial perfect absorber
(MPAs) unit cell structure, as shown in Figure 9a, while in Figure 10a, the relative impedance
is mismatched, and, due to this, there is no absorption. When the number of arc-shaped VO2
patches increases on the top of the quartz substrate, the absorption bandwidth increases
because the impedance becomes closer to that of the free space, as shown in Figure 10b,c. In
the case of four identical arc-shaped VO2 patches, the absorption efficiency and bandwidth
increase, as seen in Figures 9d and 10d, respectively. We carried out a numerical simulation
analysis of the power loss density (PLD) to better understand the physical workings of
the designed metasurface. PLD is measured in W/m3 and indicates the material’s electric
power density. PLD distribution evolution at different peak absorption bands (f1, f2, f3, f4)
when σ = 2 × 105 m/s (metal phase) is shown in Figure 11a–d. At the absorption bands
of 3.2 THz, 4.7 THz, and 5.2 THz, energy is only focused on arc-shaped VO2 patterns. In
comparison, at 3.7 THz, power is concentrated above the VO2 structure and at the blank
middle dielectric layer (Figure 11b). The arc-shaped VO2 structure and the middle dielectric
layer show large PLD distribution due to contact between nearby unit cells. When the VO2
structure is in the insulator state at σ = 100 m/s, the PLD is low, showing the structure’s
non-resonant response. The energy dissipation is non-local, in contrast to Figure 11a–d,
demonstrating that VO2 can absorb thin film. First, three broadband absorption peaks
(3.2 THz, 4.7 THz, and 5.2 THz) are generated by localized VO2 absorption, while the
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fourth (3.7 THz) broadband absorption is mainly caused by unit cell and ground plane
interaction. On the other hand, it is found that the thickness of VO2 and quartz has an effect
on the absorber’s absorption. In order to keep things short, we only explain the absorption
analysis when the incidence is normal.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 7. When σ = 2 × 105 S/m, the effective physical parameters of (a) permittivity of the design 

structure, (b) permeability of the design structure, (c) refractive index of the design structure, and 

(d) impedance of the design absorber are obtained. 

    

Figure 8. Simulation results (a) real part and (b) imaginary part of the relative impedance for VO2 

with various conductivities. 

To realize THz absorption, we start with a single VO2 arc-shaped rectangle, which is 

placed on top of a quartz substrate to form a conventional metamaterial perfect absorber 

(MPAs) unit cell structure, as shown in Figure 9a, while in Figure 10a, the relative 

impedance is mismatched, and, due to this, there is no absorption. When the number of 

arc-shaped VO2 patches increases on the top of the quartz substrate, the absorption 

Figure 7. When σ = 2 × 105 S/m, the effective physical parameters of (a) permittivity of the design
structure, (b) permeability of the design structure, (c) refractive index of the design structure, and
(d) impedance of the design absorber are obtained.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. When σ = 2 × 105 S/m, the effective physical parameters of (a) permittivity of the design 
structure, (b) permeability of the design structure, (c) refractive index of the design structure, and 
(d) impedance of the design absorber are obtained. 

    
Figure 8. Simulation results (a) real part and (b) imaginary part of the relative impedance for VO2 
with various conductivities. 

To realize THz absorption, we start with a single VO2 arc-shaped rectangle, which is 
placed on top of a quartz substrate to form a conventional metamaterial perfect absorber 
(MPAs) unit cell structure, as shown in Figure 9a, while in Figure 10a, the relative 
impedance is mismatched, and, due to this, there is no absorption. When the number of 
arc-shaped VO2 patches increases on the top of the quartz substrate, the absorption 

Figure 8. Simulation results (a) real part and (b) imaginary part of the relative impedance for VO2

with various conductivities.



Appl. Sci. 2022, 12, 10164 9 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 15 
 

 

bandwidth increases because the impedance becomes closer to that of the free space, as 

shown in Figure 10b, c. In the case of four identical arc-shaped VO2 patches, the absorption 

efficiency and bandwidth increase, as seen in Figures 9d and 10d, respectively. We carried 

out a numerical simulation analysis of the power loss density (PLD) to better understand 

the physical workings of the designed metasurface. PLD is measured in W/m3 and 

indicates the material’s electric power density. PLD distribution evolution at different 

peak absorption bands (f1, f2, f3, f4) when σ = 2 × 105 m/s (metal phase) is shown in Figure 

11a–d. At the absorption bands of 3.2 THz, 4.7 THz, and 5.2 THz, energy is only focused 

on arc-shaped VO2 patterns. In comparison, at 3.7 THz, power is concentrated above the 

VO2 structure and at the blank middle dielectric layer (Figure 11b). The arc-shaped VO2 

structure and the middle dielectric layer show large PLD distribution due to contact 

between nearby unit cells. When the VO2 structure is in the insulator state at σ = 100 m/s, 

the PLD is low, showing the structure’s non-resonant response. The energy dissipation is 

non-local, in contrast to Figure 11a–d, demonstrating that VO2 can absorb thin film. First, 

three broadband absorption peaks (3.2 THz, 4.7 THz, and 5.2 THz) are generated by 

localized VO2 absorption, while the fourth (3.7 THz) broadband absorption is mainly 

caused by unit cell and ground plane interaction. On the other hand, it is found that the 

thickness of VO2 and quartz has an effect on the absorber’s absorption. In order to keep 

things short, we only explain the absorption analysis when the incidence is normal. 

 

Figure 9. The structure’s reflections and absorption bands (a) with a single arc-shaped VO2 patch on 

top; (b) with a two-arc VO2 pattern on top; (c) with a three-arc VO2 pattern on top; (d) with four 

equal arc-shaped VO2 patterns positioned diagonally on the top. 

Figure 9. The structure’s reflections and absorption bands (a) with a single arc-shaped VO2 patch
on top; (b) with a two-arc VO2 pattern on top; (c) with a three-arc VO2 pattern on top; (d) with four
equal arc-shaped VO2 patterns positioned diagonally on the top.

Absorption and thickness are shown in Figure 12a when the VO2 conductivity is held
constant at σ = 2 × 105 S/m, as depicted in the figure. The computed data show that
the recommended system’s absorption is thickness-dependent under normal incidence.
While absorption does not rise substantially if VO2 thickness is less than 0.5 µm, when VO2
thickness crosses this threshold, absorption increases and stabilizes because VO2 is thick
enough to impede the passage of energy.

When the thickness (h) of the dielectric layer (quartz) fluctuates from 6 µm to 12 µm in
increments of 2 µm across a wide frequency range, the absorption of the proposed absorber
increases. Between 2.7 and 5.7 THz, the dielectric layer’s absorption must be greater than
or equal to 90%, which is why its thickness (11 µm) was carefully chosen. In real-world
applications, the effects of polarization and incidence angle on absorption performance
must be considered. Figure 13 displays the absorption spectra for TE polarizations. As can
be observed, when the polarization angle is altered from 0◦ to 45◦, the proposed absorber’s
absorption spectra remain essentially unchanged. The absorption efficiency from 2.7 to
5.7 THz is still greater than 90% even when the incidence angle is up to 60◦. Beyond 45◦, the
absorption and bandwidth, on the other hand, fall significantly. As the incident magnetic
field’s x component shrinks with increasing incident angle, the magnetic polarization
cannot be stimulated as efficiently, and the absorber’s ability to absorb energy is reduced.
Thus, the proposed VO2-based metamaterial absorber has excellent absorption capability
for TE modes in the 45◦ angle range.
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Figure 10. Relative impedance of the design steps (a) with a single arc-shaped VO2 patch on top;
(b) with a two-arc VO2 pattern on top; (c) with a three-arc VO2 pattern on top; (d) with four equal
arc-shaped VO2 patterns positioned diagonally on the top.
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Figure 11. Simulated power loss density (PLD) at four (f1, f2, f3, f4) absorption peaks in the VO2 layer
(a–d) when conductivity is 2 × 105 S/m and when (e–h) VO2 is in its insulator phase at conductivity
of 1 × 103 S/m.
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Figure 13. Incidence angle dependence of absorption phenomenon for TE polarization when
σ = 20 × 104 S/m.

5. Conclusions

In conclusion, we proposed a tunable ultra-wideband absorber composed of four iden-
tical arc-shaped structures made of phase transition material vanadium dioxide (VO2). The
proposed structure transforms from a reflector to an absorber by changing the conductivity
from 200 S/m to 2 × 105 S/m and the absorbance at peak frequencies can be consistently
tuned from 4% to 100%. Compared to previously reported VO2-based absorbers, this
absorption is significantly improved. Power loss density (PLD) and impedance-matching
theory are further analyzed to learn more about the physical origin of ultra-wide absorption.
This absorber is polarization-insensitive, and its absorption capability is constant up to 60◦

for TE polarization. This research may pave the way for developing terahertz metamaterial
devices that are incredibly active and tunable. Numerous applications may be envisioned,
including modulators, sensors, and dynamic filters.
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