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Abstract: The intersection management system can increase traffic capacity, vehicle safety, and
the smoothness of all vehicle movement. Platoons of connected vehicles (CVs) use communication
technologies to share information with each other and with infrastructures. In this paper, we proposed
a deep reinforcement learning (DRL) model that applies to vehicle platooning at an isolated signalized
intersection with partial detection. Moreover, we identified hyperparameters and tested the system
with different numbers of vehicles (1, 2, and 3) in the platoon. To compare the effectiveness of the
proposed model, we implemented two benchmark options, actuated traffic signal control (ATSC)
and max pressure (MP). The experimental results demonstrated that the DRL model has many
outstanding advantages compared to other models. Through the learning process, the average
waiting time of vehicles in the DRL method was improved by 20% and 28% compared with the ATSC
and MP options. The results also suggested that the DRL model is effective when the CV penetration
rate is over 20%.

Keywords: platoon; connected vehicles; deep reinforcement learning; deep neural network; deep
Q network

1. Introduction

Nowadays, traffic congestion is a major challenge, especially in large cities during
rush hour [1]. It increases the delay time at intersections, increases fuel consumption, and
reduces average speeds and discomfort when traveling [2]. Traffic congestion occurs when
the travel demand exceeds the capacity of the available infrastructure. Many solutions
can ease traffic congestion and balance the travel demand and road capacity. However,
expanding the road network and increasing the number of lanes is very expensive and
challenging in places where it is difficult to clear the ground, such as urban areas [3].

Much research has been conducted to upgrade transportation infrastructure and
create new protocols using modern technologies to improve vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communication [4]. With the advancement of science and
technology, cooperative intersection management (CIM) has helped automobile drivers
significantly when traveling on the road [5]; for example, vehicles communicate with each
other and with the infrastructure to select the optimal traffic management policy. Given
the advantages of connected vehicles (CVs), they will become popular in the future with
further advancements in science and technology [6].

In addition, emerging technologies in the automotive sector and wireless communi-
cation have increased the ability to improve vehicle maneuverability without expanding
the existing road network [7]. CVs are a new solution to improve road capacity, reduce
traffic congestion, and increase traffic speed in urban areas while retaining the current
road network systems [8]. These new technologies facilitate drivers, improve traffic, and
increase the level of service (LOS) at intersections.
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According to [9], CVs share V2V information directly with each other via wireless
communication. This paper also indicated that the distance between CVs was smaller
than that between regular vehicles (RVs). This was explained by the fact that CVs can
promptly perceive information about surrounding vehicles (position, speed, acceleration),
as well as V2I communication through the use of dedicated short-range communications
(DSRC). Other papers also showed that using CVs brings significant benefits related to
traffic measures of effectiveness (MOEs), passenger comfort, and pollution reduction.

In recent years, many studies have also analyzed the effects of CVs on the road and
proposed new car models based on existing models [10,11]. These papers attempted to
describe the behavior of CVs, such as conventional vehicles, but only under certain specific
conditions, without providing a full generalization model. Another paper concluded that
CVs provide a significant road safety benefit by increasing the proportion of CVs in the
model [12]. It has been estimated that the rate of traffic conflicts can be reduced by up to
90% when the percentage of CVs is 100%.

The introduction of vehicles equipped with adaptive cruise control (ACC) or coop-
erative adaptive cruise control (CACC) can considerably enhance driver assistance and
improve the road’s capacity. Many papers have focused on assessing the influence of
vehicles equipped with CACC on reducing congestion and improving traffic efficiency.
Liu et al. [13] simulated and evaluated the impact of CACC market penetration on the
capacity of the multilane freeway merge bottleneck. This system mainly controlled the
longitudinal movement between the preceding vehicles based on the distance between the
two vehicles and the difference in speed. Many algorithms related to CACC have been pro-
posed to control vehicles in terms of safety and increase traffic efficiency. Zohdy et al. [14]
proposed an optimization tool to optimize the movements of vehicles equipped with CACC
instead of the traditional management method. Arem et al. [15] introduced a model for
CACC-equipped vehicles that is based on the relative speed, safe deceleration, current
acceleration, and the distance between vehicles, to determine the desired acceleration at
the next step. By using the microscopic model for simulation of intelligent cruise control
(MIXIC) simulation model, the paper focused on the effects of CACC on traffic flow. Its
results showed that it is possible to establish a stable and sustainable traffic flow and
increase traffic efficiency compared to the traditional scenarios.

Much research has also been conducted to group CVs into platoons to enhance vehicle
performance. Segata [16] defined a platoon as an application to improve the mobility of
vehicles by utilizing DSRC to share information, reducing the distance between vehicles
when forming a group. The author also developed PLEXE, a tool combined with the Veins
vehicular networking framework, to simulate the platoon system accurately. A simulation
model was created with PLEXE to run experiments in scenarios with V2V communica-
tion [17]. Two types of experiments were performed to demonstrate the efficiency of the
model: controller analysis and join maneuver. However, these models only consider pla-
toons moving in a straight line, not considering the influence at the intersection area or
the communication between vehicles and infrastructure. The authors in [18] provided an
overview that categorized influencing factors for platoons. The structure of platoon vehicles
remains an open and challenging topic. However, the model only includes the desired
destination and arrival time as input data used for calculation. Other aspects are omitted
due to complexity reasons. In [19], the authors proposed an intra-city transportation ser-
vice based on connected autonomous platoon systems. The paper aimed to analyze the
influence of the platoon system on travel time and develop an algorithm for the behavior
of platoons at the roundabout. However, the authors only considered travel time. Other
traffic factors of the system have not been fully presented.

RVs significantly impacted the platoon formation in mixed traffic compared to the
ideal case [20]. Another result of this paper was that platoon formations might not maintain
their desired speed, leading to temporary traffic delays. The position of CVs determined car-
following models and the formation of the platoon. Simulating a platoon was completely
different from simulating a free flow as the platooning vehicles needed to maintain a
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constant distance between them [21]. This distance can be changed in the case of free-flow
vehicles. This paper has proposed a model to analyze the platoon’s behavior in the mixed
traffic flow. However, this study only focused on analyzing the platoon merging operation.
Other papers [22,23] also developed platoon organization strategies based on local traffic
states. CVs could form longer platoons but cause more lane changes in mixed flow. These
lane changes did not significantly impact traffic performance at low traffic levels. However,
many lane changes could reduce capacity and cause traffic congestion at high traffic levels.
Therefore, it was reasonable to propose a platoon organization strategy to enhance platoon
formation without reducing traffic performance [24].

Platoons possessed great potential to improve roadway capacity, but there were a
number of factors that affected the platoon configuration, such as the inter-platoon gap,
intra-platoon gap, platoon size, and wireless communication, as shown in [25]. Platoon
size (e.g., number of vehicles in a platoon) is a critical factor affecting model efficiency.
Large-sized platoons improved model performance but reduced lateral maneuverability
(e.g., lane change or merging) [26]. It was also shown that a high penetration rate improves
traffic capacity and stability. Moreover, when the platoon size increased, the mean velocity
decreased, and the velocity standard deviation increased, reducing the model’s stability.
Other papers also expressed that overly large platoons affect traffic stability, making
it difficult to manage platoons (merging and splitting) [27]. The research results also
emphasize that the platoon size does not need to be too large, as this value is a trade-off
between capacity and traffic stability.

In addition to the management of vehicle connections, intersection management poli-
cies also greatly affect traffic results. In the last decade, many major cities have changed
their intersection management technologies to achieve better traffic efficiency. Instead of
using traditional management methods (e.g., fixed time or stop signs), they have applied
modern techniques, including adaptive traffic signals or intelligent traffic lights, combining
cameras to determine traffic parameters to provide optimal scenarios. An actuated traffic
signal controller (ATSC) used its algorithm, sensors, and Boolean logic to create a dynamic
signal cycle. When traffic conditions changed, the ATSC automatically adjusted the active
phase duration and cycle. The performance of signal light control depended on the op-
timization technique applied. Over the decades, there has been a great deal of research
on signal light controllers based on techniques such as evolutionary algorithms [28,29],
max pressure (MP) [30,31], self-organization [32], the Sydney coordinated adaptive traf-
fic system (SCATS) [33], the split cycle offset optimization technique (SCOOT) [34] and
adaptive control software lite (ASC-Lite) [35]. However, most of the algorithms used in
signal light controllers consider the same aspects for all modes. Each mode in the traffic
volume was treated equally. In addition, these algorithms also did not take full advantage
of modern traffic data sources. Therefore, they were difficult to apply to intersections with
high complexity.

Along with the development of science and technology, the input data of the deep
reinforcement learning (DRL) model was also increasing. Deep neural networks (DNN)
have been used to solve this complex problem to enhance model efficiency. Besides the
traditional traffic management at intersections, reinforcement learning (RL) has also been
used to manage adaptive traffic signal lights. In the past, due to technical limitations,
models often had a small-sized state and used linear functions to approximate Q values.
However, the complexity of the model was not fully demonstrated because of the limited
input information. With the development of algorithms, DNN has been used to solve traffic
problems such as autonomous vehicle training, signal optimization, traffic prediction, smart
routing, etc. DNN was used to optimize signal lights and minimize waiting time [36–38].
In these models, the operation of traffic lights based on the traffic situation was defined in
terms of actions, states, and rewards.

Researchers used DRL with proximal policy optimization (PPO) in a different approach
to train autonomous vehicles and improve traffic performance [39,40]. Taking advantage of
communication and CAV technology, Bai et al. [41] proposed a hybrid reinforcement learn-
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ing (HRL) framework to control traffic at signalized intersections. To improve the driver’s
behavior and optimize the signal lights, Zhou et al. [42] developed a deep deterministic
policy gradient (DDPG) algorithm-based car-following model for CAVs. The results after
the training process included optimizing the traffic signals and adjusting the vehicle’s
trajectory behavior to ensure the minimum waiting time. In addition, some authors have
also optimized signal lights with platooning vehicles in some papers [43–45]. Research
results show that combining reinforcement learning with information sharing (V2V and
V2I) improved the traffic model very effectively. The results after training depend on the
set of random seeds and other parameters. The intersection management performance of
the DRL-based approach was higher, but the input data requirements were more complex.

In general, most popular models often assumed that all vehicles were detected to
collect information. This was not true because only vehicles equipped with a wireless
communication system could be connected. Nowadays, many new technologies are used
to better connect the information between the vehicle and the intersection management
system (IMS). Traditional devices such as loop detectors can only detect the presence of
vehicles when passing them. However, new devices (such as DSRC, GPS localization,
and Bluetooth) are cost-effective and can collect more data (speed, distance from CVs)
continuously. The increased number of connected vehicles increases the ability to transmit
information between vehicles with the IMS [46,47]. However, these papers did not study
platoon formation between CVs. By merging CVs into platoons, it will greatly improve
road capacity and other parameters.

It can be seen that the combination of platooning vehicles and DRL is an excellent
solution to improve the existing traffic problem. To achieve this purpose, we proposed the
DRL method with platooned vehicles at a signalized intersection with partial detection. To
compare the effectiveness of the proposed model, we implemented two benchmark options,
ATSC and MP. These scenarios were all simulated with the change in platoon size (from
1 car to 3 cars in a platoon). The main contributions of this study are as follows.

• We combined systems that work together, including platoon and DRL, with partial
detection at a signalized intersection. DRL was the main solution to improve signal
system optimization and traffic efficiency. We proposed a new state description for the
mixed traffic (IMS only collected information from platoon vehicles (CVs)). Compared
with two benchmark options, ATSC and MP, the proposed solution reduced the waiting
time of all vehicles significantly.

• A set of hyperparameters was tested to identify the main influencing parameters in
the learning process.

• We also considered the effect of platoon size (number of vehicles in the platoon) at
the intersection to measure the average delay time, waiting time, speed of traffic,
and travel time. The contribution of this paper increased the understanding of the
influence of platoons at signal intersections.

• Finally, we evaluated the influence of CV penetration rate on the model results and
recommended reasonable rates.

The rest of the paper follows: Section 2 presents the research methodology. Section 3
presents the experimental setup. Section 4 contains the results of traffic simulations and
evaluations. Sections 5 and 6 give the discussion and conclusions.

2. Research Methodology
2.1. Research Architecture

We simulated an isolated signalized intersection by SUMO (Simulation of Urban
Mobility tool) [48] with different platoon sizes and traffic scenarios. The proposed DRL
model was implemented by Python programming and the Tensorflow module. Platooning
in the model was simulated by the Simpla plugin [49], which can define the specific behavior
of platooning vehicles. Simpla creates new additional vehicle types that describe platooning
modes. SUMO TraCI (traffic control interface) protocol [50] uses TCP-based client/server
architecture to provide access to Sumo and retrieve values from the simulation model.
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The performance of these models is measured on an Intel Core i9-10900 computer with
64 GB ram. This work integrates platooning vehicles and DRL at a signalized intersection
to enhance the quality of traffic flow. Firstly, we used the SUMO simulation platform
to generate a road network, traffic flow, and infrastructure. Secondly, the platooning
vehicles were configured. Next, the DRL-based method was applied to optimize traffic
lights. Finally, we implemented two benchmark options (ATSC and MP) and compared
them with the proposed method. Three intersection management scenarios were tested to
evaluate traffic measures of effectiveness (MOEs). The research architecture is shown in
Figure 1 below.
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2.2. Longitudinal Car-Following Models

The car-following model is a model used to describe the longitudinal interaction
between vehicles in the same lane. Many car-following models are used in SUMO to mimic
the behavior of conventional vehicles. The Krauss model is the most popular model used
in Sumo and is also used in our traffic simulation. This safe-distance-based model assumes
that the vehicle maintains a safe distance from the preceding vehicle and chooses its speed
to ensure that it can stop safely to avoid collision [51]. This model could be expressed
as follows:

vsafe (t) = vi (t) +
g (t)− gdes (t)

τb + τ
(1)

vdes (t) = min [ vmax , vi (t) + ai (t) ∆t , vsafe (t)] (2)

v ( t + ∆t ) = max [ 0, vdes (t) − η ] (3)

x ( t + ∆t ) = xi (t) + vi ∆t (4)

where xi (t), vi (t), ai (t) are the position, speed, and acceleration of the vehicle at time t.
vmax(t) and vdes (t) are the maximum and desired speed of the vehicle. g (t) and gdes(t) are
the gap distance and desired gap between vehicles at time t. τ is the driver reaction time,
and η > 0 is a random perturbation to deviate from optimal driving.

2.3. Car-Following Models with Platoons

There are many tools that utilize Sumo to create platoons, such as Simpla, Veins, and
Plexe. Veins and Plexe combine wireless networking and a realistic vehicle environment
based on the Sumo traffic simulator to implement platooning. However, the connection
between them and Sumo is complicated because they require additional software for
simulation. Simpla is a configurable platooning plugin for the TraCI Python client to create
basic platooning logic and provide additional parameters.
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To simulate our traffic model, we used Simpla and adjusted the current parameters to
match the simulation conditions. Features of the platoon configuration in our model are
as follows:

• When CVs are within the defined platoon range on the same lane, they can switch
to 4 modes (platoon leader, platoon follower, catch-up, and catch-up follower mode),
as shown in Figure 2. Platooning vehicles are considered as a platoon if the gap is
smaller than 15 m (yellow and green vehicles). CVs switch their type to catch-up
mode when the front platoon is closer to a given value of 50 m (red and blue vehicles).
If the connection conditions are not met, CVs’ movement is similar to that of RVs
(cyan vehicle).

• Changing lanes to join the platoon is not yet supported in Simpla. If the platoon leader
changes lanes, other vehicles will try to change lanes.

• In the combined operation mode, when joining the platoon, CVs in the follower and
catch-up modes can move at a speed greater than the maximum speed (speed_Factor
equals 1.2). Other modes default to 1.

• A platoon leader has the ability to accelerate and switch to the follower mode if it is
within range of another platoon in front.

• A platooning vehicle can switch to the manual mode if it is outside of the platooning
range. It can accelerate and connect to form a platoon in a catch-up area.

• At the intersection area, due to the influence of traffic lights, CVs can be split from the
platoon. The reforming of the platooning operation is shown in Figure 3.
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We assumed that the platoon configuration was perfect, meaning that there was no
damage, data package loss, or time delay during platooning operations. Vehicles in platoons
try to maintain a safe distance from their preceding vehicles. Simulation experiments were



Appl. Sci. 2022, 12, 10145 7 of 24

performed with platoons of different sizes (the number of vehicles in the platoons varied
from 1 to 2 and 3 vehicles). A safe distance between vehicles was an important factor in
controlling the movement and characteristics of platoons [25]. To reduce the intra-platoon
gap, we used a tau factor (minimum time headway) of 0.3 s for CVs. Our designed platoon
protocol is presented in Table 1 below.

Table 1. Attributes of platoons.

Parameter Value

Platoon size 1, 2, and 3 vehicles

Vehicle length 4 m

Initial speed 5 m/s

Max_speed 20 m/s

Max_acceleration 2.5 m/s2

Max_deceleration 3 m/s2

Platoon gap 15 m

Catch_up distance 50 m

Speed_factor 1.2 only for follower and catch-up modes. 1 for other modes

tau (The desired minimum
time headway) 0.3 s for CVs and 1 s for RVs.

minGap 0.5 m for CVs and 2.5 m for RVs

The movement of the leader vehicle in platoons is affected by the inter-platoon gap.
If the distance is smaller than the safe distance, the platoon will decelerate according to
the car-following model until this distance increases to a safe distance. The following
vehicles in the platoon adjust their acceleration and speed according to the leader. Thus,
the platoon’s formation is dynamic when it moves through the intersection.

2.4. Learning with DRL

RL is based on algorithms for learning through experiences between agents and
the environment without prior information. In RL, agents employed in an unknown
environment interact with their environment and take appropriate actions to maximize
their performance. Based on selected actions, the scalar reward (positive and negative) is
obtained, and the agent continues to learn until it reaches the highest performance. The RL
model can be expressed by a four-tuple (S, A, R, T), in which S, A, R, and T are the possible
state space, action space, reward space, and the transition function of the model.

At each time t, the agent selects an action at, takes a reward rt, and moves from a state
st to a new state st+1. The core of the algorithm is a Bellman equation, using the weighted
average of the old and the new information value.

Qnew (st, at) = Qold (st, at) + α ( rt + γ Q max( st+1, aa)−Qold (st, at) ) (5)

Here,

• Qnew (st, at), Qold (st, at), Qmax (st, at) are the updated, old and optimum Q net-
work value.

• α, γ are the learning rate and discount factor of the training network.

In this paper, we used the DRL-based approach to optimize traffic signals. Based on
the data collected from the network system, the trained agent minimizes the waiting time of
all vehicles to optimize the signal lights. The agent receives the current state of the network,
the action of traffic lights, and the reward of the recent action while training. These data
(st, at, crt,t+1) are stored in the experience replay and used while training.
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The actions are selected based on different policies, where the agent can choose an
action that does not have the highest Q value if it wishes to explore the environment.
Alternatively, it can choose to exploit and choose an action with the highest Q value. The
algorithm is expressed in Algorithm 1.

Algorithm 1: Training of deep Q network with Experience Replay on a traffic light.

Input: neural network agent with random weights, replay memory size, minibatch size,
epsilon (ε), learning rate (α), and discount factor (γ)
Initialize replay buffer B in Memory M
Initialize action-value function Q with θo
Initialize the action-value function Qn with random parameters θn = θo
while episode < Total Episodes:

Episode = 1, . . . E do
Start Simulation with first step J, observe initials state so and action ao
For J = 1, . . . N do

Action =

{
Arbitrary with probability ε

argmax′aQ (so, ao, θo), 1− ε

Perform action an and observe the reward r, next state sn
Store experiences (so, ao, r, sn) in B.
Sample random B experiences from M
Calculate the loss L

L =

{
0, if terminated
r + maxa

′Qn (sn, an, θn), otherwise
Update θo by minimizing the loss function
(L − Q (so, ao, θo))

2 w.r.t θ;
For every step
Reset Qn = Qo
Set so = sn

end for
end while

3. Experimental Setup
3.1. Road, Lane and Other Configuration

The road network and traffic signals used for simulation were as shown in Figures 4 and 5
with time steps of 0.1 s, a lane width of 3.5 m, and three lanes in each direction (one shared
lane for going straight and turning right, one straight lane, and one left-turn lane), and the
length in each direction was 500 m. The traffic flow was mixed flow, including platooning
vehicles (yellow vehicles are leaders and green vehicles are followers) and RVs (magenta
vehicles). In the figures, there are also red vehicles in catch-up mode, blue vehicles in catch-
up follower mode, and cyan vehicles that are CVs but moving similarly to RVs because
they are not within any platoon range. The model only collects data on platooning vehicles
during training. Data on RVs are not collected. Based on the data collected, the model
selects phases to optimize the waiting time for both CVs and RVs.

We gave several simulation scenarios to evaluate different aspects of the model. By
varying the platoon size, we can model the traffic flow at sparse or dense levels. As
mentioned in the introduction, the platoon size affected the model stability, and it is a trade-
off between capacity and stability. Because urban intersections entail many constraints, the
platoon was simulated with a size of 1, 2, and 3 vehicles.

For the above reasons, we established a traffic flow with 50 platoons (with a size of
1, 2, and 3) and 80 RVs in each lane in one hour. Traffic generation is an important aspect
that can affect model performance. In our model, the participating vehicles follow the
Weibull distribution, with the characteristic that the traffic gradually increases to a peak
in the middle of the episode and then gradually decreases towards the end. This should
ensure that all vehicles enter with no equivalent between episodes.
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3.2. Scenario 1: DRL-Based Scenario at the Signalized Intersection

In this study, we used a DRL-based approach to optimize traffic signals by minimizing
the cumulative waiting time of all vehicles. The design of the controller involves three
aspects: the traffic state space, the traffic signal timing (action space), and the reward. This
deep Q-learning combines two aspects of reinforcement learning, DNN and Q-learning,
as shown in Figure 6. Because the state space is large, DNN was used to approximate the
Q-learning function.
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3.2.1. State Space

The state of the agent is used to represent a description of the environment at a given
time t and is usually denoted with st. This state needs to provide sufficient information
about the vehicle distribution on each approach so that the agent can learn effectively to
optimize traffic.

In this model, we applied the Discrete Traffic State Encoding (DTSE) [52] with a small
adjustment to show the state space, inspired by an advanced technique in computing
the discretization and quantization of elements. The model used a partially observed
environment with data collected only from platoon vehicles (CVs). The whole incoming
lane is divided into small cells from the stop line. The length of each cell c will affect the
behavior of the model. If this length c is many times larger than the average car length,
the individual vehicle dynamics may be lost. However, if this length is too small, it will
increase the computational cost, leading to unnecessary complexity. The value in each cell
is a binary value used to represent the presence or absence of vehicles in its cell.

Based on this approach, we divided the segment from the starting point to the stop
line into cells to discretize the traffic scene. The closer to the intersection, the smaller the
width of the cells because it provides important information about the vehicle’s state. The
further away from the intersection, the larger the cell size, so as to reduce the amount of
computation. There were 30 cells between the beginning of the road and the stop line of
the intersection on each approach, as shown in Figure 7. Therefore, there were 120 cells in
the whole intersection of different sizes.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 25 
 

 
Figure 7. State space of the west arm. 

 
Figure 8. Partial detection. 

The state of the agent at time t can be expressed as St ∈ S. With this state-space defi-
nition, the input data are taken from the Sumo simulation to the controller. 

3.2.2. Action Space 
The purpose of the controller is to find the optimal strategy to reduce the waiting 

time of all vehicles at the intersection. In this model, the performance of the traffic light 
system is the action, and we need to define these actions. Collision-free movements are 
performed in each phase. 

The traffic light cycle at this intersection includes red, green, and yellow time. The 
actions of agents are determined based on the green time from all directions. The action 
space consists of 4 phases, as shown in Figure 5. 

At each time step t, the agent can select one of the possible actions in the action space 
(a∈A) to take. If the action implemented at time t is the same as the action performed at 
time t − 1, the green time of this phase is extended. Conversely, if the current action is 
different from the previous action, the signal light will change to yellow time and take 
another action. At this time, information and data will be collected and processed. The 
green time can be different for each action because it depends on the state of each action. 

3.2.3. Reward Definition 
A reward is an important part of reinforcement learning because it determines the goal 

of the model after training. In reinforcement learning, after the agent performs an action a 
in state s, it obtains a reward r from the environment. Through the reward, the agent under-
stands the result of the action and improves the model for the next action choices. 

Our main goal in this model is to optimize traffic signals and increase the operational 
efficiency of the intersection. In our case, we define the reward based on the change in the 

Figure 7. State space of the west arm.

The model includes 2 types of vehicles: CVs and RVs. Depending on the operating
modes, CVs include leader, follower, catch-up, catch-up follower, and waiting modes. Each
cell in the state presentations only contains information about platooning vehicles (CVs) as
shown in Figure 8. Based on CV presence, it has a binary value of 0 or 1. Many vehicles can
be in a single cell, but the value of that cell is still only 1. In this model, the state description
includes the following information: the number of CVs in each direction, CV position
(distance to the intersection and lane position), and signal timing information.

The state of the agent at time t can be expressed as St ∈ S. With this state-space
definition, the input data are taken from the Sumo simulation to the controller.

3.2.2. Action Space

The purpose of the controller is to find the optimal strategy to reduce the waiting time
of all vehicles at the intersection. In this model, the performance of the traffic light system
is the action, and we need to define these actions. Collision-free movements are performed
in each phase.
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The traffic light cycle at this intersection includes red, green, and yellow time. The
actions of agents are determined based on the green time from all directions. The action
space consists of 4 phases, as shown in Figure 5.

At each time step t, the agent can select one of the possible actions in the action space
(a∈A) to take. If the action implemented at time t is the same as the action performed at
time t − 1, the green time of this phase is extended. Conversely, if the current action is
different from the previous action, the signal light will change to yellow time and take
another action. At this time, information and data will be collected and processed. The
green time can be different for each action because it depends on the state of each action.
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3.2.3. Reward Definition

A reward is an important part of reinforcement learning because it determines the goal
of the model after training. In reinforcement learning, after the agent performs an action
a in state s, it obtains a reward r from the environment. Through the reward, the agent
understands the result of the action and improves the model for the next action choices.

Our main goal in this model is to optimize traffic signals and increase the operational
efficiency of the intersection. In our case, we define the reward based on the change in
the cumulative waiting time of all vehicles. The waiting time of each vehicle is recorded
when the vehicle speed is below or equal to 0.1 m/s before the intersection. The agent will
observe all vehicles twice in a green time interval to sum up the cumulative waiting time.
The first observed is the beginning of the green phase, and the second is the end of the
green phase.

Let wi,t denote the waiting time of the ith observed vehicle when this vehicle enters
the model to the beginning of the green time. Moreover, w′i,t is the waiting time of this
vehicle when it enters the model to the end of the green time interval. The equation to
determine the cumulative waiting time of all vehicles at the beginning and the end of each
phase is as follows:

Wt =
N

∑
i = 1

wi, t and W′t =
N

∑
i = 1

w′i, t (6)

If the vehicle speed is greater than 0.1 m/s, its waiting time is over, and it is not added
to the cumulative time. Since our aim is to increase the efficiency of the intersection, the
model reward is based on the reduction in total cumulative waiting time. The reward
function in our model is shown below:

rt = Wt − W′t (7)

In this model, the reward is a negative cumulative waiting time, because the cumu-
lative waiting time of all vehicles at the end of the green time will be greater than the
cumulative waiting time of all vehicles at the beginning of the green time. Moreover, the



Appl. Sci. 2022, 12, 10145 12 of 24

agent will choose the appropriate actions (changing the duration of green time and the
phase order) to minimize the cumulative waiting time.

3.2.4. Parameters of the Training Process

• Activation functions

The activation function in a deep neural network plays an important role in the
operation of the training process. It determines how the weighted sum is transformed into
an output from input layers. In our model, we used a rectified linear unit (ReLU) to output
the results.

f (x) =

{
0 for x < 0
x for x ≥ 0

(8)

• Optimization function

We used adaptive moment estimation (Adam) for training optimization in DNN. This
algorithm is used for the first-order gradient-based optimization of the stochastic objective
function [53]. This method is easy to implement, has high computational efficiency, requires
little memory, and is suitable for models with large amounts of data.

• Experience replay

Experience replay is a replay memory technique used in DNN to improve the per-
formance of the agent. In this method, we stored randomly the information needed for
training in groups of samples called batches. The experiences of the agent at each time step
are stored in samples as

m = { st, at, rt+1, st+1} (9)

where rt is the reward when the agent performs the action in the state st and causes the en-
vironment to change to a new state, st+1. This technique is used to solve the autocorrelation
that renders the model unstable when training, since st+1 is directly evolved from st.

This technique needs to specify the memory and batch size. The memory size is
defined as the maximum number of samples that can be stored. In this model, we set the
maximum memory size to 50,000 samples. The batch size indicates the number of samples
taken from memory for each training iteration and is set to 100. If the memory is full, the
oldest sample is removed, and the new sample is inserted.

• Epsilon in Q-Learning Policy

In this paper, we use the epsilon (ε) greedy policy to balance exploration and exploita-
tion. Here, ε is the trade-off between exploration and exploitation, and it refers to the
agent’s probability of exploration when choosing an action. The equation for ε decay by
episode is as follows:

ε = 1 − Current_episodes
Total_episodes

(10)

All Q values are updated iteratively during the training of the agent. At the ini-
tial time, ε = 1, meaning that the agent completely explores the environment. The more
an agent explores the environment, the more it understands the environment. ε gradu-
ally decays during training, and the agent will exploit more than explore. Based on the
learned experience, the agent understands the environment more and will exploit more.
In the last episode, ε = 0, and the agent fully exploits based on trained knowledge about
the environment.

3.2.5. Determine the Hyperparameters

Hyperparameters are parameters used to control the learning process in DNN. Their
values need to be determined before starting the learning process. These hyperparameters
affect the output of the model. There are no specific rules for choosing the number of
neurons or the number of hidden layers. The selection of too many layers or neurons causes
the model over-fitting and increases the time to train the model. Conversely, choosing too
few layers or neurons causes model under-fitting and high statistical bias. In this work, we



Appl. Sci. 2022, 12, 10145 13 of 24

performed trial and error tests to determine the hyperparameters by changing the number
of hidden layers and neurons.

We first created three models with 2, 4, and 8 hidden layers, respectively, to determine
the number of hidden layers that fit the model. In the case of a platoon with three vehicles,
the results of these models are shown in Table 2.

Table 2. Hyperparameters of DNN.

Parameter Cumulative Negative Reward (s) Cumulative Delay Time (s)

Hidden layers = 2,
Neurons = 128 −9947 25,677

Hidden layers = 4,
Neurons = 128 −10,671 28,115

Hidden layers = 8,
Neurons = 128 −11,974 29,652

Hidden layers = 2,
Neurons = 256 −12,824 30,235

Hidden layers = 2,
Neurons = 512 −11,508 30,654

We can see that the model performance decreased when increasing the number of
hidden layers. The cumulative negative reward (total waiting time) of vehicles was reduced
from 11,974 s to 9947 s when changing the number of hidden layers from 8 to 2. The model
with two hidden layers gave the best results, and we chose this number of hidden layers
for the next steps. Next, we changed the number of neurons on hidden layers between 128,
256, and 512. When we decreased the number of neurons on hidden layers from 512 to 128,
the total waiting time was reduced by 15%. Having too many neurons is undesirable, but
the model needs to have enough neurons to be able to acquire the complexities of the input–
output relationship. We performed the same steps to determine other hyperparameters
in the model to obtain the optimal model. The final structure of the DNN and agent
parameters are shown in Tables 3 and 4.

Table 3. Parameters of agent.

Parameter Value

Gui False

Total Episode 300

Max_steps 3600 s

Green duration 5 s

Yellow duration 3 s

Learning rate 0.001

Batch_size 100

Training_epochs 800

Num_states 120

Num_actions 4

gama 0.75
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Table 4. Structure of neural network.

Parameter Value

Simulator SUMO

Num_layers
(Hidden layers) 2

Width_layers
(Neurons) 256

Loss Function Mean Squared Error

Activation Function Relu

Optimization Function Adam Optimizer

3.3. Scenario 2: ATSC-Based Scenario at the Signalized Intersection

The flow chart of the ATSC scenario is shown in part a) of Figure 9. In this model,
we used 12 loop detectors to detect all vehicles (CVs and RVs) when passing them. Loop
detectors were permanently mounted on the road and measured the traffic flow through
them. Based on the collected information, the IMS adjusted the green time of traffic signals
according to the set rules. The green time of each phase needed to be greater than the
minimum green time (10 s) before switching to another phase. In any green phase, if
the loop detector detected vehicles within 5 s, the green time of this phase was extended
by ∆t (s) to ensure that the platoon had enough time to cross the intersection without
waiting. If vehicles were not detected within 5 s, the green phase ended and switched to
another phase that had the maximum waiting time. The duration of green time changed
continuously depending on the traffic approaching the intersection. The minimum green
time for each phase was 10 s, and the maximum was 45 s.
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Based on the communication, the IMS obtained the speed and time interval of all
vehicles. The waiting time of each vehicle was recorded when the vehicle speed was below
or equal to 0.1 m/s before the intersection. Moreover, the IMS determined the waiting
times of all vehicles and the cumulative waiting time of each phase. The selected green
phase had the maximum waiting time. After each cycle ends, the IMS updated the waiting
time of each direction to select the next green phase.
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3.4. Scenario 3: MP-Based Scenario at the Signalized Intersection

For comparison, we implemented another scenario of intersection management based
on max pressure (MP), as shown in part (b) of Figure 9. This was a feedback-based
signal control algorithm that stabilized the queue length and maximized throughput. This
controller did not need to know about the current or future traffic volume of the network.
It only required the real-time measurement of the queue length in all directions to and from
the intersection. The signal control plan consisted of 4 phases with duration based on the
MP algorithm.

In this scenario, 24 area detectors were placed in 24 lanes to and from the intersection
to measure the queue length per lane. The intersection (n) is presented as a graph with
links z ∈ Z, including the incoming link set (In) and outgoing link set (On).

The equation that describes the evolution of queue length for link z is expressed
as follows:

xz ( t + 1 ) = xz (t) + Tt → (t+1) [ qz (t) − sz (t) + dz (t) − uz (t)] (11)

Here,

• xz (t) is the number of vehicles in link z to link m at the end of the discrete-time t.
• qz (t) and uz (t) are the inflow and outflow in the same period.
• dz (t) and sz (t) are the demand and saturation flow in this link.

The state xz (kn) of each link is determined based on the number of vehicles in
the queue length according to real-time measurement. The pressure of this link can be
calculated as follows:

pz (kn) =

[
xz (kn)

xz, max
− ∑

w ∈ On

βi, w xw (kn)

xw, max
gn, j (kn)

]
Sz (12)

Here,

• xz, max and xw, max are the storage capacity of link z and link w.
• βi, w is the turning movement rate with i ∈ In and w ∈ On.
• kn is the control discrete time index.
• gn,j is the green time of stage j.

Pressure in each direction is defined as the difference between the upstream and
downstream queue length. In this case, the output links are exiting links with infinite
capacity, and the second term in Equation (12) becomes zero. Thus, the pressure of each link
is simply equal to the queue length multiplied by the saturation ratio (Sz). The pressure of
each stage j of the intersection can be determined as

Pn,j ( kn) = max

{
0, ∑

z ∈ vj

pz (kn)

}
(13)

The total effective green time for intersection n (Gn) could be obtained by

Gn = Cn − Ln − ∑
j ∈ Fn

gn, j, min with n ∈ N (14)

gn, j, min is the minimum green time for stage j of intersection n. This value is taken in
the ATSC-based scenario as 10 s. Moreover, gn, j ( kn) is the green time spent in phase j with
the constraint

gn, j ( kn) ≥ gn, j, min (15)

The number of vehicles in the queue length at each lane was extracted from the 24 area
detectors on each lane. Based on the collected data, the IMS continuously calculated the
pressure for the 4 phases and determined the stage with MP. After the minimum green time
of the current phase has expired, the IMS checked whether the current phase has maximum
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pressure. If the current phase was the MP phase, the IMS prolonged the current phase until
the other phase had MP. Conversely, if the current phase was not the MP phase, then the
IMS shifted the current phase to the MP phase. The IMS continuously updated the pressure
of each stage to control the intersection.

3.5. Performance Evaluation Metric

A reinforcement learning algorithm is measured by the reward received during the
learning process [54]. During the simulation, the agent tries to maximize the reward. A
better-trained DRL model gets more reward value. The cumulative reward curve from
300 random runs was measured and evaluated to evaluate the trained model. Finally,
we compared our algorithm results with other benchmark tasks for average delay time,
waiting time, speed, and CO2 emissions. These are the common metrics used to evaluate
traffic performance [55].

4. Results and Evaluation
4.1. Performance of DRL, ATSC, and MP-Based Models

The cumulative negative reward (cumulative waiting time) and delay time were
used to evaluate the effectiveness of the DNN model. The simulated results are shown in
Figure 10 below.
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Through the learning process, the cumulative negative reward approached zero, which
means that the total waiting time of all vehicles decreased, and the agent learned gradually.
Although the reward line fluctuated, its overall trend was upward. At the beginning of
training, this curve oscillated with a large amplitude but then gradually decreased. It
can be seen that after the training process, the cumulative waiting time of all vehicles
decreased by around 70% compared to that before training. The model results show that
the cumulative reward was increased from around −35,000 s, −28,000 s, and −20,000 s to
around −9600 s, −11,200 s, and −8000 s, respectively, for the cases of platoons consisting
of 3, 2, and 1 vehicles. The cumulative waiting time of all vehicles passing through the
intersection decreased, so the cumulative delay time also decreased, as expressed in part (b)
of Figure 10. This result proved that the model was efficient, and it was implemented in the
next steps. In the early episodes, the epsilon rate (in Equation (10)) was high, and the agent
did not fully explore the action and state space. Therefore, the total cumulative time of
this model was larger than in the ATSC- and MP-based scenarios. As the model continued
to learn, the epsilon was gradually reduced, and the agent concentrated on exploiting
the optimal policy from the previous episodes for higher rewards. And the models also
gradually converged when the reward curve was unchanged. Finally, the total cumulative
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waiting time of the DRL-based scenario was 50% and 65% better than that of the MP- and
ATST-based scenarios for platoons with three vehicles.

However, as the number of episodes increased, the total wait time in the ATSC- and
MP-based scenarios did not change significantly because the intersection traffic manage-
ment in the two scenarios was based on the pre-defined algorithm without “learning”.
These two scenarios have the same characteristics: (a) 4 phases to separate the queue length
in all movements; (b) the assumption of queue length with unbounded capacities on all
links; (c) the traffic controller without a fixed cycle and cyclic phases. The cumulative
waiting time of the MP- and ATSC-based scenarios fluctuated around 25,000 and 32,000 s.
The performance difference can be explained through the intersection traffic controller. The
algorithm in the MP-based scenario prevented any queue length from growing indefinitely
and created a stable intersection with a suitable queue length. The MP-based scenario had
better performance than ATSCT because it gave priority to stabilizing the queue length.
This algorithm reduces the pressure at the intersection reasonably, whereas the traffic con-
troller in the ATSC-based scenario manages the intersection based on the sensor’s vehicle
detection. It prolongs the green time for the high-traffic directions but also increases the
queue length in other directions. Therefore, the green time duration in the ATSC method
was large than that in the MP method. Finally, it achieves worse results, but the difference
between the ATSC- and MP-based scenarios is not large (20%).

Another important finding was the influence of traffic flow rates on these models. Vehi-
cles arrived at the intersection independently when traffic flow was low (platoon_size = 1).
When CVs arrived, the signal agent quickly changed phase to ensure the minimum waiting
time; and for RVs, the traffic signal did nothing. Since all vehicles arrived individually, the
agent handled the vehicles separately.

When the traffic volume is higher (platoon_size = 3), vehicles that arrived at the
intersection followed the flow of traffic, not independently. Since the traffic agent cannot
pay attention to only each CVs, the agent optimized the waiting time for the whole vehicle.

4.2. Trajectories and Average Speed of 3 Scenarios

In this section, we present graphs demonstrating the position and average speed
over time for the 3 scenarios, DRL, ACTS, and MP, for the case of a platoon consisting of
3 vehicles.

The distance–time relationship between vehicles from west to east for one lane in
200 s is plotted in Figure 11. Colors in the graphs show the speed of the vehicles when
moving, in which green corresponds to the highest speed (20 m/s) and black corresponds
to the lowest speed (0 m/s). Alternatively, one can perceive the vehicle’s speed adjustment
based on the slope of these lines. Platoons started at 5 m/s (starting speed of vehicles
when entering the model) and then increased to the desired speed. When approaching the
intersection, if the light was green, vehicles kept moving and passed the intersection. If the
light was red, vehicles had to stop and wait until the light was green to pass. After passing
the intersection, platoons moved at the desired speed. The green time duration depends on
the algorithm applied in each scenario.
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It can be seen that the green time in the ATSC-based scenario tends to be longer than in
the DNN- and MP-based scenarios. In this scenario, the green light phase depends on the
sensor’s vehicle detection. If vehicles are still detected, the green light will be extended until
the maximum limit or no more vehicles are detected. In contrast to ATSC, the MP controller
is stable in terms of queue length, so it quickly changes phase when detecting a larger
pressure in the other direction. Therefore, the length of the green phase in this scenario
is shorter. The DRL-based scenario has the most reasonable green time compared to the
two aforementioned scenarios. After learning, the traffic agent optimized the intersection’s
green time and cycle length. Although the traffic light duration is variable, the trained
model can handle this uncertainty.

The average speed graph of the three scenarios is also expressed in Figure 12. The
average speed of scenarios decreases when many cars must wait in line at the intersection.
With a shorter red and green duration, the model efficiency is improved, and the vehicle
speed is also greater. The speed perturbation is amplified by the RVs between platoons and
reduced by the platooned vehicles. The DRL-based scenario optimizes the waiting time, so
all vehicles (CVs and RVs) move at the highest speed. We can see that this average velocity
is cyclic with traffic signals and peaks at the middle of the green phases. With the current
traffic demand, the average speed of the DRL-based scenario is larger than in the other two
scenarios, but this difference is not significant (approximately 10%).
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4.3. MOE Performance

We evaluated the traffic performance of the three scenarios with the following criteria:
average delay time, waiting time, travel time, and CO2 emissions. Results are shown in
Figure 13 below.

The MOE evaluation showed that the traffic management policy was the most im-
portant aspect that affected the model performance. The DRL-based scenario had the
best results (average delay times were 24.1, 23.5 s, and 22.1 s, corresponding to 3, 2, and
1 vehicles in a platoon). It is 10% and 13% smaller than the MP- and ATSC-based scenarios,
as presented in part a) of Figure 13. This result proves the superiority of the trained model
compared to the other two models.

The waiting time of the 3 scenarios is shown in part (b) of Figure 13. The DRL-based
scenario had considerably higher performance, with an average waiting time of 10.6 s,
because it reached the maximum cumulative reward, as mentioned in Figure 10. Compared
with the ATSC- and MP-based scenarios, the average waiting time of vehicles in the DRL-
based scenario was improved by 20% and 28%, respectively (in the case of a platoon having
3 vehicles).

Part (c) and (d) of Figure 13 show that the DRL-based policy was better than other
policies in terms of travel time and CO2 emissions. However, the difference between these
policies was not large. The minimum travel time was 95.2 s for the DRL-based scenario,
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and the longest travel time was 96.7 s for the ATSC-based scenario, with a difference of 4%
(in the case of a platoon having 3 vehicles).
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Between these scenarios, the DRL-based scenario had the smallest CO2 emissions
(2346 mg/s) for the case with 3 vehicles in one platoon. The MP-based scenarios were
slightly better than the ATSC method. The three scenarios improved the traffic efficiency;
thus, the CO2 emissions were improved further. However, the degree of improvement in
each scenario varied based on the performance of the vehicles.

4.4. Effect of Penetration Rate

To evaluate the effect of CV agents, models were implemented with variable penetra-
tion rates. We compared 5 scenarios with penetration rates of 20%, 40%, 60%, and 80%,
respectively, and with a platoon of size 3. The input flow and model results are shown in
Table 5.

Table 5. Traffic simulation results with different CV penetration rates.

CV
Penetration

Rate

Platoons
(Size = 3) RVs

Cumulative
Negative
Reward

Average
Speed (m/s)

Average Waiting
Time (s)

Average
Delay Time (s)

20% 160 1920 −28,529 8.8 35.8 61.6

40% 320 1440 −15,144 10.19 18.8 35.2

60% 480 960 −9603 11.2 10.6 24.1

80% 640 480 −6987 11.7 8.0 21.2

1000% 800 0 −4886 12.1 5.6 19.0

The cumulative negative reward and delay time in the learning process is shown in
Figure 14 below.
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From Figure 14, it can be seen that when the CV penetration rate increases, the
efficiency of the DQN model is improved. However, this improvement is only achieved
when CV penetration is at a significant level. The model’s improvement is quite insignificant
when the CV penetration rate is low. Because at this rate, the amount of information
collected is not enough for the learning process. The model is only truly improved when
the CV penetration rate is greater than 20%. With a high degree of penetration, platoons can
merge into longer platoons during movement or at an intersection area. This will improve
the model significantly in terms of both throughput and waiting time.

In addition, when the CV penetration rate is low, the fluctuation degree of the reward
curve is large. At a rate of 20%, although the cumulative negative reward curve seems to
converge, the reward fluctuates between −30,000 s and −50,000 s, which is very unstable.
As the CV rate increases, this fluctuation also decreases. It is clear that the higher the
CV rate, the more data the agent gets in each episode, improving the learning model’s
efficiency. The model is the most effective when the CV penetration rate is 100%, i.e., all
vehicles in the model are CVs. With this rate, the model efficiency is improved more than
6 times compared to the scenario with a 20% penetration rate.

5. Discussion

In this paper, we proposed a deep reinforcement learning method having vehicle
platooning at an isolated signalized intersection with partial detection. Other papers often
assume that all vehicles are detected to collect data. This is not true because only vehicles
equipped with a wireless communication system can be connected. In addition, our study
considered the formation of platoons between CVs of different sizes.

After the training, the cumulative waiting time of all vehicles decreased by around
70% compared to that before the training. Through the learning process, the agent learned
gradually, and the total waiting time of all vehicles decreased. It is 50% and 65% better
than that of the MP and ATST-based scenarios for platoons with three vehicles. The results
of this paper demonstrated the advantage of applying DRL in traffic management, similar
to other papers [20,36,47].

However, our model combines DRL with platoon formation, so the results are much
improved compared to that of other papers. Compared with the cumulative reward
curve in [36], our model has higher stability with small fluctuations. Because the platoon
formation changed the behavior and characteristics of car-following models and affected
overall traffic performance. It makes traffic flow stable with a lower waiting time. This is
also shown at the beginning of the learning process, the waiting time in our model also has
a smaller value.

Simulation results have shown that the DRL-based intersection management method is
the most effective. Compared with the ATSC- and MP-based scenarios, the average waiting
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time of vehicles in the DRL-based scenario was improved by 20% and 28%, respectively
(in the case of a platoon having three vehicles). Therefore, other metrics, such as delay
time, travel time, and CO2 emissions, were also reduced compared to other policies. The
DRL-based intersection management policy has also proven its effectiveness.

Our model also shows that as the CV penetration rate increases, traffic efficiency also
improves. At a rate of 20%, although the cumulative negative reward curve seems to
converge, the reward fluctuates between −30,000 s and −50,000 s, which is very unstable.
The model is only truly improved when the CV penetration rate is greater than 20%. As the
CV penetration rate is higher, the model performance is further improved, further reducing
the waiting times of all vehicles. This was also demonstrated in several papers on the
influence of CV penetration rates on traffic efficiency [39,46].

Platoon size is an important factor in the traffic model. The simulation model also
tested the influence of the number of vehicles in the platoon. As the number of vehicles in
the platoon increases, the model’s stability also reduces. The delay time increases by 7%
and 10% when the number of vehicles in the platoon increases from 1 to 2 and 3 vehicles.
Therefore, an appropriate platoon size may be more suitable in urban areas because it could
dampen perturbance better.

We assumed the models perform under ideal conditions and perfect communication
between CVs. So, there was no damage, data package loss, or time delay during the
transmission. In addition, we did not consider the influence of other modes such as buses,
bicycles, or pedestrians. There were only two types of vehicles in our model (CVs and
RVs). Therefore, to implement the model in practice, it is necessary to add more factors to
the model.

Although this approach has been successful for an isolated signalized intersection,
many problems need to be addressed when applying the model to multi-intersection
networks. Many agents (intersections) learn simultaneously to solve a task by interacting
with the same environment in a road network. The algorithm, in this case, is more complex
than the one we used in this study. An action performed by a particular agent can achieve
different rewards depending on the actions performed by other agents. In addition, we need
to model the interaction between agents and how they share information with each other.

6. Conclusions

In this paper, we have presented three intersection management policies (DRL, ATSC,
and MP) in mixed traffic flow (CVs and RVs) with partial detection. In these scenarios, it
was assumed that the wireless communication between platooned vehicles was perfect.
The deep Q-learning model combines two aspects of reinforcement learning, DNN and
Q-learning. Our main goal in this model is to optimize traffic signals and to reduce the
waiting time of all vehicles. There are two types of vehicles in our model. Platooning
vehicles are detected vehicles, and RVs are undetected vehicles. The model only collects
data on detected vehicles (CVs) during training.

Our contribution is to combine DRL and platoon formation to improve traffic efficiency
in urban environments with different CV penetration rates. Therefore, traffic management
agencies can apply this proposed approach to reduce waiting time at signalized intersections.

To compare the effectiveness of the proposed model, we implemented two benchmark
methods, ATSC and MP. These three scenarios were simulated at a signalized intersection
to measure traffic metrics (waiting time, delay time, travel time, speed, and CO2 emissions).
In addition, the model also tested the influence of the platoon by changing the number of
vehicles in the platoon.

In addition, platoon formation increases model efficiency and reduces the fluctuation
of the reward during training. This is a very promising result in the future when the CV
penetration rate is high. Experimental results in three scenarios (DRL, ATSC, and MP) with
different CV penetration rates prove that DRL can handle all kinds of traffic. Although the
results are different for each optimization scenario, DRL is a promising solution to apply to
the overall optimization scheme.
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In this paper, we introduced a traffic simulation model for an isolated signalized inter-
section (single agent), and we believe that this could be applied to multi-agent scenarios to
coordinate traffic lights. In the future, we plan to study complex road networks with many
traffic signal phases and real traffic data in different ways (centralized and decentralized).
In addition, we will devise a scenario that combines both signalized intersections and
unsignalized intersections with different scenarios.
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