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Abstract: The Gorilla Troops Optimizer (GTO) is a novel Metaheuristic Algorithm that was proposed
in 2021. Its design was inspired by the lifestyle characteristics of gorillas, including migration
to a known position, migration to an undiscovered position, moving toward the other gorillas,
following silverback gorillas and competing with silverback gorillas for females. However, like
other Metaheuristic Algorithms, the GTO still suffers from local optimum, low diversity, imbalanced
utilization, etc. In order to improve the performance of the GTO, this paper proposes a modified
Gorilla Troops Optimizer (MGTO). The improvement strategies include three parts: Beetle-Antennae
Search Based on Quadratic Interpolation (QIBAS), Teaching–Learning-Based Optimization (TLBO)
and Quasi-Reflection-Based Learning (QRBL). Firstly, QIBAS is utilized to enhance the diversity
of the position of the silverback. Secondly, the teacher phase of TLBO is introduced to the update
the behavior of following the silverback with 50% probability. Finally, the quasi-reflection position
of the silverback is generated by QRBL. The optimal solution can be updated by comparing these
fitness values. The performance of the proposed MGTO is comprehensively evaluated by 23 classical
benchmark functions, 30 CEC2014 benchmark functions, 10 CEC2020 benchmark functions and
7 engineering problems. The experimental results show that MGTO has competitive performance
and promising prospects in real-world optimization tasks.

Keywords: gorilla troops optimizer; beetle-antennae search based on quadratic interpolation;
teaching–learning-based optimization; quasi-reflection-based learning; function optimization;
engineering design

MSC: 49K35

1. Introduction

Optimization is a vibrant field with diverse applications in optimal control, disease
treatment and engineering design [1–5]. In the past few years, modeling and implementing
Metaheuristic Algorithms (MAs) have proved their worth [6–9]. Compared with other
conventional optimization algorithms, MAs are widely used in engineering applications
for the following reasons: first and foremost, the concepts of MAs are accessible and easy
to implement; second, MAs are better than local search algorithms; and finally, they do
not need derivative-function information. Nature-inspired Metaheuristic Algorithms deal
with optimization problems by mimicking biological or physical phenomena. MAs can
be generally divided into three categories: the physical-based, the evolution-based and
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the swarm-based [10] algorithms, as shown in Figure 1. Although these MAs have some
differences, they all benefit from the above advantages.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 35 
 

 

with optimization problems by mimicking biological or physical phenomena. MAs can be 
generally divided into three categories: the physical-based, the evolution-based and the 
swarm-based [10] algorithms, as shown in Figure 1. Although these MAs have some dif-
ferences, they all benefit from the above advantages. 

        Grey Wolf Optimizer

        Artificial Bee Colony

        Evolution Programming

        Genetic Programming

        Equilibrium Optimizer

        Muti-Verse Optimizer

Optimization Algorithm

Physical-Based
 

Evolution-Based Swarm-Based

        Gravitational Search
        Algorithm         Genetic Algorithm         Particle Swarm

        Optimization

MVO

GA

GP

EP GWO

ABC

PSOGSA

EO

 
Figure 1. The category of Metaheuristic Algorithms. 

A variety of MAs are introduced in this paper. To be specific, the physical-based al-
gorithm originates from the physical, chemical phenomenon and the human intelligence. 
In the literature [11], the Gravitational Search Algorithm (GSA), which works on gravity 
and mass interactions, is discussed. The search agent is a set of interacting masses based 
on the Newtonian gravitation. Furthermore, GSA is wildly used in the field of machine 
learning. Other typical representatives are the Muti-Verse Optimizer (MVO) [12], Simu-
lated Annealing algorithm (SA) [13], Equilibrium Optimizer (EO) [14], etc. In the follow-
ing, one of the types which is affected by the biological evolution is introduced. In 1992, 
the genetic algorithm (GA) [15] was the first and the most popular algorithm to solve op-
timization problems, and it was established by Holland. The GA is derived from the laws 
of Darwinian evolution. This algorithm is regarded as one of the most effective algo-
rithms, and it has been commonly utilized to solve substantial optimization problems 
with two recombination and mutation operators. This algorithm has been proposed with 
various modified and recombination versions [16]. Differential Evolution (DE) [17], Evo-
lutionary Deduction (ED) [18] and Genetic Programming (GP) [19] are some well-known 
algorithms in this category. It is well-known that the swarm-based algorithm is a common 
approach, which derives from the survival habits of animal groups. Particle Swarm Opti-
mization (PSO) [20] is an outstanding instance of the swarm-based algorithm, which was 
inspired by the swarm behavior of natural animals, such as birds and fish, in 1995. Since 
then, PSO has attracted humans’ core attention and formed a desirable research subject 
called swarm intelligence. Another typical algorithm was the Artificial Bee Colony (ABC) 
[21], which was proposed by Karaboga in 2005; it originated from the collective behavior 
of bees. Like other Metaheuristic Algorithms, this algorithm also has some shortcomings. 
Therefore, a modified version was introduced later. Yang introduced a novel algorithm 
based on the luminosity of fireflies in 2010 [22]. The brightness or light of each firefly is 
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A variety of MAs are introduced in this paper. To be specific, the physical-based
algorithm originates from the physical, chemical phenomenon and the human intelligence.
In the literature [11], the Gravitational Search Algorithm (GSA), which works on gravity
and mass interactions, is discussed. The search agent is a set of interacting masses based
on the Newtonian gravitation. Furthermore, GSA is wildly used in the field of machine
learning. Other typical representatives are the Muti-Verse Optimizer (MVO) [12], Simulated
Annealing algorithm (SA) [13], Equilibrium Optimizer (EO) [14], etc. In the following, one
of the types which is affected by the biological evolution is introduced. In 1992, the genetic
algorithm (GA) [15] was the first and the most popular algorithm to solve optimization
problems, and it was established by Holland. The GA is derived from the laws of Darwinian
evolution. This algorithm is regarded as one of the most effective algorithms, and it has
been commonly utilized to solve substantial optimization problems with two recombination
and mutation operators. This algorithm has been proposed with various modified and
recombination versions [16]. Differential Evolution (DE) [17], Evolutionary Deduction
(ED) [18] and Genetic Programming (GP) [19] are some well-known algorithms in this
category. It is well-known that the swarm-based algorithm is a common approach, which
derives from the survival habits of animal groups. Particle Swarm Optimization (PSO) [20]
is an outstanding instance of the swarm-based algorithm, which was inspired by the
swarm behavior of natural animals, such as birds and fish, in 1995. Since then, PSO has
attracted humans’ core attention and formed a desirable research subject called swarm
intelligence. Another typical algorithm was the Artificial Bee Colony (ABC) [21], which
was proposed by Karaboga in 2005; it originated from the collective behavior of bees. Like
other Metaheuristic Algorithms, this algorithm also has some shortcomings. Therefore, a
modified version was introduced later. Yang introduced a novel algorithm based on the
luminosity of fireflies in 2010 [22]. The brightness or light of each firefly is compared to that
of other fireflies. Of course, fireflies sometimes fly randomly, which improves the modified
version of this algorithm. In addition, another swarm-based algorithm called Bat Algorithm
(BA) [23] was proposed by Yang et al. in 2010; it was derived from the echolocation of bats.
The Grey Wolf Optimizer (GWO) [6] is a well-established swarm intelligence algorithm
that was developed by Mirjalili et al. in 2016. Moreover, the GWO was inspired by the
social life and hunting activities of wolves. In 2019, Heidari et al. proposed the Harris
Hawks Optimization (HHO) [24], which simulated the unique cooperative hunting of
Harris hawks. Inspired by the biological behaviors of prey and predators, Faramarzi et al.
established the swarm-based Marine Predators Algorithm (MPA) in 2020 [25].

In 2018, Lin et al. proposed a hybrid optimization method of the Beetle-Antenna
Search Algorithm and Particle Swarm Optimization (PSO) [26]. The BAS has good opti-
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mizing speed and accuracy in low-dimensional optimization problems, but it is easy to
fall into local optimization in high-dimensional problems. Combining the PSO algorithm
with the BAS can improve the BAS’s optimization ability. Moreover, the BAS [27] can
be applied to other Metaheuristic Algorithms to overcome the shortcomings of a single
algorithm. For instance, Zhou et al. proposed a Flower-Pollination Algorithm (FPA) based
on the Beetle-Antennae Search Algorithm to overcome the slow convergence problem of
the original FPA algorithm [28]. The experimental results show that the improved op-
timization algorithm has a faster convergence rate. An improved Artificial-Bee-Colony
Algorithm (ABC) [29] based on the Beetle-Antenna Search (BAS–ABC) was proposed by
Cheng et al. in 2019 [30]. This algorithm makes use of the position-update ability of BAS
to avoid the randomness of searching, so that the original algorithm can converge to the
optimal solution more quickly. The Beetle-Antennae Search Based on Quadratic Interpola-
tion (QIBAS) is an effective swarm intelligence optimization algorithm. QIBAS has been
applied to the Inverse Kinematics Solution Algorithm of Electric Climbing Robot Based on
the Improved Beetle-Antennae Search [31]. It is universally believed that this improved
algorithm improves the convergence accuracy. The teaching–Learning-Based Optimiza-
tion (TLBO) [32] is a very mature swarm intelligence optimization algorithm, which has
been used in the improvement and hybrid of many MAs. Tuo et al. proposed a hybrid
algorithm based on Harmonious Search (HS) and Teaching–Learning-Based Optimization
for complex high-dimensional problems [33]. HS has a strong global search capability,
but its convergence speed is slow. TLBO can make up for this deficiency to increase the
convergence rate. Keesari et al. used the TLBO algorithm to solve the job-shop-scheduling
problem [34] and compared with other optimization algorithms. The experimental results
show that TLBO algorithm is more efficient in the job-shop-scheduling problem. In order
to solve the problem that the TLBO algorithm is prone to local convergence in complex
problems, Chen et al. designed the local learning and self-learning methods to improve
the original TLBO algorithm [35]. It is proved that the improved TLBO has a better global
search ability than other algorithms by testing on a few functions. Quasi-Reflection-Based
Learning (QRBL) [36] is a variant of Opposition-Based Learning (OBL) [37], and it is an
effective intelligent optimization technique. QRBL can be applied to Biogeography-Based
Optimization (BBO) [38], Ion Motion Optimization (IMO) [39] and Symbiotic Organisms
Search (SOS) [40]. The modified algorithm with QRBL has better convergence speed and
the better ability to avoid the local optimal than the basic algorithm.

The Gorilla Troops Optimizer (GTO) [41] is a new swarm intelligence optimization
algorithm that was established by Abdollahzadeh et al. in 2021. The inspiration of GTO is
the migration, competition for adult females and following behavior of the gorilla colony.
Currently, it has been applied to several subject-design and engineering-optimization
problems. However, like other swarm intelligence optimization algorithms, GTO is difficult
to obtain a balance between exploration and exploitation due to the randomness of the
optimization process. Therefore, the algorithm still has some problems, such as low
accuracy, slow convergence and ease of falling into local optimal. It is worth mentioning that
the No Free Lunch (NFL) [42] theorem indicates that no algorithm can solve all optimization
problems perfectly. Therefore, this theorem and the defects of GTO prompt us to improve
and develop the modified swarm-based algorithm to deal with more engineering problems:

(1) A modified GTO, which is called MGTO, is proposed in this paper. The modified
algorithm introduces three improvement strategies. Firstly, the Quadratic Interpolated
Beetle-Antennae Search (QIBAS) [31] is embedded into the GTO that can get the diver-
sity of the silverback’s position. In addition, Teaching–Learning-Based Optimization
(TLBO) [32] is hybridized with GTO to stabilize the performance between the silver-
back and other gorillas. Finally, the Quasi-Reflection-Based Learning (QRBL) [36]
mechanism is used to enhance the quality of the optimal position.

(2) To verify the effectiveness of the MGTO, 23 classical benchmark functions, 30 CEC2014
benchmark functions and 10 CEC2020 benchmark functions are adopted to conduct a
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simulation experiment. The performance of the MGTO is evaluated through a variety
of comparisons with the basic GTO and eight state-of-the-art optimization algorithms.

(3) Furthermore, the MGTO is applied to solve the welded-beam-design problem, pressure-
vessel-design problem, reducer problem, compression/tension-spring problem, three-
bar-truss-design problem, crash-worthiness-design problem and string-design prob-
lem. The experimental results indicate that MGTO has a strong convergence ability
and global search ability.

The rest of this paper is organized as follows: Section 2 introduces the basic GTO.
In Section 3, three strategies and the modified GTO named MGTO are proposed. The
experimental results and the discussion of this work are presented in Section 4. In Section 5,
the MGTO is tested to solve seven kinds of real-world engineering problems. Finally, the
conclusion and future work are given in Section 6.

2. Gorilla Troops Optimizer (GTO)

The Gorilla Troops Optimizer is a swarm-inspired algorithm that simulates the social
life of gorillas. The gorilla is a social animal, and it is the largest primate on earth at present.
Because of the white hair on its back, the adult male is also known as a silverback.

A gorilla group always consists of an adult male gorilla, several adult female gorillas
and their offspring. Among them, the adult male gorilla is the leader, whose responsibilities
are to defend the territory, make decisions, direct other gorillas to find abundant food and
so on. The research shows that the male and female gorillas deviate from their birth with
high probability. Generally, the male gorillas incline to abandon their quondam groups for
appealing female gorillas, and then they will form a new group. Nevertheless, the male
gorillas sometimes prefer to stay in the group in which they were born, with the hope that
they will have the chance to dominate the whole group one day. The fierce competition
for females between male gorillas is inevitable. Male gorillas can expand their territory by
competition. The relationship between male and female gorillas is close and stable, while
the relationship among female gorillas is cold relatively.

This algorithm includes two stages: Exploration and exploitation. Five different
operators emulate the optimization operation for the behavior of gorillas in this algorithm.
There are three operators in the exploration stage: moving to an undiscovered position,
moving toward the other gorillas, moving to a known position. In the exploitation stage,
two different operators of tracking the silverback and competing for adult females are
adopted to improve the search performance.

2.1. Exploration

The operation procedures of the exploration stage are described in this subsection. It
is commonly known that a gorilla group is governed by a silverback who has the capacity
to conduct all actions. Sometimes gorillas will go to other places which they have visited
before or that are new to them in nature. At each optimization operation stage, the optimal
candidate solution is regarded as a silverback solution. Furthermore, three mechanisms at
this stage are introduced.

Equation (1) is used to denote three mechanisms in the exploration stage. In the
equation, p is a parameter ranging from 0 to 1 which is utilized to choose the mechanism of
migration for an unknown position. For the sake of clarity, the mechanism for migration
to an unknown position will be chosen when rand < p. Then, if rand ≥ 0.5, the second
mechanism, that of movement toward the other gorillas, will be selected. If rand < 0.5, the
mechanism for migration to a known position will be selected.

GX(t + 1)

=


(UB− LB)× r1 + LB rand < p

(r2 − C)× Xr(t) + L× H rand ≥ 0.5
X(i)− L× (L× (X(t)− GXr(t)) + r3 × (X(t)− GXr(t))) rand < 0.5

(1)
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where GX(t+1) indicates the candidate position vector of the gorilla at the next iteration,
and X(t) is the current position vector of the gorilla. Moreover, r1, r2, r3 and rand are the
random values between 0 and 1. UB and LB indicate the upper and lower bounds of the
variables, respectively. Xr and GXr are the candidate position vectors of gorillas that are
selected randomly.

The equations that are used to calculate C, L and H are as follows:

C = F×
(

1− It
MaxIt

)
(2)

where It indicates the current iteration value, and MaxIt is the maximum iteration value. At
the initial stage, the variation values are generated in a large interval, and then the changed
interval of variation values will decrease in the final optimization stage. F can be calculated
by the following equation:

F = cos(2× r4) + 1 (3)

where r4 is a random value that is in between [−1,1].
L is a parameter for which the calculation equation is as follows:

L = C× l (4)

where l is a random value from 0 to 1. Moreover, the Equation (4) is utilized to simulate the
silverback leadership. Because of inexperience, silverback gorillas always hard to make the
correct decisions to find food or manage the group. However, they can obtain adequate
experience and extreme stability in the leadership process. Additionally, H in Equation (1)
is calculated by Equation (5). Z in Equation (5) is calculated by Equation (6), where Z is a
random value in the range of [−C, C]:

H = Z× X(t) (5)

Z = [−C, C] (6)

At the end of the exploration, a group operation is performed to calculate the cost of
all GX solutions. If the cost is identified as GX(t) < X(t), the X(t) solution will be substituted
by GX(t) solution. Therefore, the best solution at this stage is regarded as the silverback,
as well.

2.2. Exploitation

In the exploitation stage of the GTO algorithm, the two behaviors of following the
silverback and competing for adult females are adopted. The silverback leads all the gorillas
in the group, and it is responsible for various activities in the group. Competing for adult
females is another behavior. The C value indicates that the adult males can choose to follow
the silverback or compete with other males. W is a parameter which should be set before
the optimization operation. If C satisfies different conditions, the above mechanism will
be selected.

2.2.1. Following the Silverback

When the silverback and other gorillas are young, they can perform their duties
well. For instance, male gorillas follow the silverback easily. Moreover, each member can
influence other members. That is to say, if C ≥ W, the strategy will be performed. By
mimicking this behavior, Equation (7) is used to illustrate this mechanism, as follows:

GX(t + 1) = L×M× (X(t)− Xsilverback) + X(t) (7)



Appl. Sci. 2022, 12, 10144 6 of 30

where Xsilverback is the vector of the silverback, which presents the optimal solution. M can
be expressed as follows:

M =

(∣∣∣∣∣ 1
N

N

∑
i=1

GXi(t)

∣∣∣∣∣
g) 1

g

(8)

where GXi(t) refers to the vector position of each candidate gorilla at iteration, t; N indicates
the sum of gorillas; and g is estimated by Equation (9) as follows:

g = 2L (9)

2.2.2. Competition for Adult Females

Competing for females with other male gorillas is a main stage of puberty for young
gorillas. This competition is always fierce, which will persist for days and affect other
members. Equation (10) is used to emulate this behavior:

GX(i) = Xsilverback − (Xsilverback ×Q− X(t)×Q)× A (10)

Q = 2× r5 − 1 (11)

A = β× E (12)

E =

{
N1, rand ≥ 0.5
N2, rand < 0.5

(13)

where Q is adopted to simulate the impact, which is calculated by Equation (11). Moreover,
r5 is a random value between 0 and 1. Equation (12) is used to calculate the coefficient vector
of the violence degree in conflict, where β is the parameter that needs to be given before
the optimization operation. E is used to simulate the effect of violence on the solution’s
dimensions. If rand ≥ 0.5, E will be equal to a random value in the normal distribution and
the problem’s dimensions. However, if rand < 0.5, E will be equal to a random value in the
normal distribution; rand is a random value between 0 and 1.

3. Modified Algorithm Implementation
3.1. Beetle-Antennae Search Based on Quadratic Interpolation (QIBAS)

The beetle hunts through two antennae. Inspired by this, the Beetle-Antennae Search
(BAS) algorithm was proposed by Jiang et al. in 2017 [27]. Different odors in the space
correspond to different function values. The beetle can detect odor values on both sides of
itself and search for the position with the highest odor. The position with the highest odor
is the specific position of food. The habits of the beetle are shown in Figure 2, where the
black line represents the propagation of odor, and the blue line denotes the trajectory of
the beetle.
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3.1.1. Searching Behavior of Beetles

To model the searching behavior, the random direction of the beetle’s searching is
represented as follows:

→
b =

rands(k, 1)
‖rands(k, 1)‖ (14)

where
→
b is the unit vector, rands is a random value and k is the dimension of the position.

In addition, the searching behavior of the left and right sides of the beetle are given,
respectively, as follows: {

xl = x(t) + d× b
xr = x(t)− d× b

(15)

where xr indicates the right side of searching area, xl denotes the left side of searching area
and d represents the length of the antennae.

3.1.2. Detecting Behavior of Beetles

To simulate the detecting behavior, the iterative model corresponding to the odor
detection is as shown below:

xt+1 = xt − s× b× sign( f (xl)− f (xr)) (16)

where x represents the position of the beetle, and f (x) represents the strength of the odor
at position x. The maximum value of f (x) donates the source point of the odor, and s is
the step length of the searching. The function, sign(x); the antennae length, d; and the step
length, s, are represented as follows:

sign(x) =


1 i f x > 0
0 i f x = 0
−1 otherwise

(17)

dt+1 = 0.95dt + 0.01 (18)

st+1 = 0.95st (19)

3.1.3. Quadratic Interpolation Based on Beetle-Antennae Search (QIBAS)

The BAS algorithm has the advantages of accessible principle and high convergence
speed. In order to further improve its ability to solve optimization problems, the quadratic
interpolation operator is introduced, which can be presented as follows:

xi =
1
2

(
x2

lk − x2
bk
)

f (xr) +
(
x2

bk − x2
rk
)

f (xl) +
(

x2
rk − x2

lk
)

f (xb)

(xlk − xbk) f (xr) + (xbk − xrk) f (xl) + (xrk − xlk) f (xb)
(20)

where k is the dimension of the position, and xb denotes the global optimal solution.
The quadratic interpolation is adopted to obtain a new solution, xi, which varies from

the existing solution, xt. The fitness values of the two positions are compared to determine
whether xt is preserved or replaced.

3.2. Teaching–Learning-Based Optimization

The Teaching–Learning-Based Optimization (TLBO) was proposed in 2012; it was
inspired by the influence of the teacher on the output of learners [32]. The output is
evaluated by results and grades. Generally, a teacher is considered to be a knowledgeable
person who trains and shares knowledge with students. Learners earn better grades with
the help of a well-qualified teacher. Moreover, learners can learn interactively, as well, to
improve their own knowledge. The result of learners can be considered as the “fitness”,
and the teacher can be considered as the optimal solution currently.
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3.2.1. Teacher Phase

As mentioned above, a knowledgeable teacher can increase the mean level of a class.
However, it is difficult for the teacher to bring learners up to the same level as him/her. In
fact, a teacher can only improve the mean of the class to a certain degree according to the
capability of this class. It is a random process that relies on some factors. Mi represents the
mean at iteration, i. Ti is the teacher who strives to bring Mi up to his/her level. Hence,
the new mean can be designated as Mnew. The updated solution based on the difference
between the current mean and new mean is given as follows:

Di f f erence_Meani = ri(Mnew − TF Mi) (21)

where TF is the teaching factor to change the mean, and ri is a random value ranging from
0 to 1. The value of TF can be represented as follows:

TF = round[1 + rand(0, 1)] (22)

To reduce the difference, the existing solution is modified according to the following equation:

Xnew,i = Xold,i + Di f f erence_Meani (23)

3.2.2. Learner Phase

Learners increase their knowledge in two different patterns: one is the input of the
teacher, and the other is the interaction among themselves. Learners interact randomly
with other learners through group cooperation, presentations, debates, etc. Learners learn
from others who have more knowledge. The modified learner can be expressed as follows:

Xnew,i = Xold,i + ri
(
Xi − Xj

)
; i f f

(
Xj
)
< f (Xi) (24)

Xnew,i = Xold,i + ri
(
Xj − Xi

)
; i f f (Xi) < f

(
Xj
)

(25)

3.3. Quasi-Reflection-Based Learning

A new Quasi-Reflection-Based Learning (QRBL) mechanism was established based
on Opposition-Based Learning (OBL) and Quasi-Opposition-Based Learning (QOBL) by
Ewees et al. in 2018. The quasi-reflection number, xqr, of the solution, x, is obtained
as follows:

xqr = rand
(

lb + ub
2

, x
)

(26)

where rand((lb+ub/2),x) is a random number which distributes uniformly between (lb+ub/2)
and x. The quasi-reflection value can be extended into D-dimensional space, which is
expressed as follows:

xqr
i = rand

(
lbi + ubi

2
, xi

)
(27)

3.4. The Proposed MGTO

Like other swarm intelligence algorithms, GTO still falls into local optimum and
suffers from slow convergence easily. To overcome these shortcomings and further enhance
the performance of the GTO, a modified MGTO is proposed that introduces QIBAS, TLBO
and QRBL into the GTO. First, the QIBAS algorithm is employed to enrich the initial
position of the silverback. Then TLBO is hybridized with the stage involving following the
silverback into the exploitation phase. In this stage, the silverback can be considered as a
teacher, and other gorillas learn from the silverback. Through this operation, the search
ability of gorillas is enhanced, and the differences between the silverback and gorillas are
reduced. Thirdly, QRBL is adopted to update the position of the silverback at the end of
the stage, thus facilitating the quality of the optimal position.
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In the initialization phase, the MGTO generates the random population, Xi, and
initializes the position of the silverback. Then the QIBAS algorithm is used to calculate
the search positions on both sides of the silverback. The NewPosition can be calculated by
Equation (28). The quadratic interpolation function is employed to generate NewPosition1.
NewPosition1 can be expressed by Equation (29). To choose an optimal position, the fitness
values of these two positions are compared, and then, if the fitness value of the “new
position” is better than the previous one, it will replace the previous position:

Newposition = xt − s× b× sign( f (xl)− f (xr)) (28)

Newposition1 =

1
2
(x2

lk−Silverback2) f (xr)+(Silverback2−x2
rk) f (xl)+(x2

rk−x2
lk) f (Silverback)

(xlk−Silverback) f (xr)+(Silverback−xrk) f (xl)+(xrk−xlk) f (Silverback)
(29)

In the exploitation phase, the TLBO algorithm is adopted to update the behavior of
following the silverback with 50% probability. The first step is calculating the mean, M, of
the population. Secondly, the teach factor, F, and the difference, Difference, between gorillas
and the silverback are calculated. In addition, the third step is to update the position, as
shown below:

GX(i) = Xold,i + Di f f erence_Meani (30)

In the final phase, in order to get a new position of the silverback, QRBL is used to gen-
erate the quasi-reflection position XSilverback

qr. By comparing the fitness values of XSilverback
and XSilverback

qr, the position is selected from two positions as the final optimal position:

Positions_ROL = rand
(

lbi + ubi
2

, xi

)
(31)

Eventually, repeating the steps mentioned until the maximum value of iterations is
reached. The pseudo-code is represented below. And the flowchart of MGTO is shown in
Figure 3.
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Algorithm 1. The pseudo-code of MGTO

% MGTO setting
Inputs: the size of population, N; the maximum number of iterations, T; and parameters β, p, W, d
and s.
Outputs: Xsilverback and its fitness value
% Initialization
Initialize the random population Xi (I = 1,2, . . . ,N)
Calculate the fitness values of Xi
% Main Loop
while (stopping condition is not met) do

Equation (2) is used to update C
Equation (4) is used to update L
Equation (28) is used to update the “new position” of silverback Newposition
for (j ≤ variables_no) do

Equation (29) is used to update the “new position” of silverback Newposition1
end for
Calculate the fitness values of Newposition and Newposition1
if Newposition1 is better than Newposition, replace it
if “new position” is better than the previous position, replace it
% Exploration phase
for (each Gorilla (Xi)) do

Equation (1) is used to update the position of Gorilla
end for
% Establish group
Calculate the fitness values of Gorilla
if GX is better than X, replace it
% Exploitation phase
for (each Gorilla (Xi)) do

if (|C| ≥ 1) then
if rand>0.5 then

Update the position of Gorilla by using Equation (30)
else

Update the position of Gorilla by using Equation (7)
end if

else
Update the position of Gorilla by using Equation (10)
end if

end for
% Establish group
Calculate the fitness values of Gorilla
if GX is better than X, replace it
Equation (31) is used to update the position of silverback
Calculate the fitness value of silverback
if “new solution” is better than the previous solution, replace it

end while
Return Xsilverback and its fitness value

4. The Results and Discussion of Experiment

In this section, 23 classical benchmark functions are used to evaluate the performance
of the proposed algorithm. Furthermore, nine optimization algorithms are selected for
comparison, namely the Gorilla Troops Optimization (GTO) [41], Arithmetic Optimization
Algorithm (AOA) [43], Salp Swarm Algorithm (SSA) [2], Whale Optimization Algorithm
(WOA) [44], Grey Wolf Optimizer (GWO) [6], Particle Swarm Optimization (PSO) [20],
Random-Opposition-Based Learning Grey Wolf Optimizer (ROLGWO) [45], Dynamic Sine–
Cosine Algorithm (DSCA) [46] and Hybridizing Sine–Cosine Algorithm with Harmony
Search (HSCAHS) [47]. For the sake of fairness, the maximum iteration and population
size of all algorithms are set to 500 and 30, respectively.
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The 23 classical benchmark functions can be divided into three categories: unimodal
functions (UM), multimodal functions (MM) and composite functions (CM). The unimodal
functions (F1~F7) have only one optimal solution that is fluently used to evaluate the
exploration ability of the algorithm. The multimodal functions (F8~F13) are characterized
by multiple optimal solutions. These functions can be utilized to evaluate the ability of
jumping out from the local optimal solution in complex situations. The composite functions
(F14~F23) are usually adopted to evaluate the stability of algorithms [48].

In addition, the benchmark functions (F1~F30) provided in CEC2014 and the bench-
mark functions (F1~F10) provided in CEC2020 are used in the other experiments [49].
These benchmarks are applied in many papers to evaluate the performance for the ability of
solving problems. The standard to evaluate the performance of the optimization algorithm
is whether it can keep the balance between exploration and development and avoid the
local optimum.

4.1. The Experiments on Classical Benchmark
4.1.1. The Convergence Analysis

In order to evaluate the advantages of the MGTO algorithm on the benchmark func-
tions, the MGTO is compared with traditional GTO, AOA, SSA, WOA, GWO, PSO, ROL-
GWO, DSCA and HSCAHS algorithms. The results in Figure 4 show that the proposed
MGTO can achieve more efficient and better results compared with other optimization algo-
rithms. Furthermore, this paper selects “semi-logarithms” to draw the convergence curve
with the purpose of making the difference of curve convergence obviously. Because “0” has
no logarithms, the iterative curve is interrupted in the figure. As shown in F1~F4, F9 and
F11, the modified algorithm does not display curves in the subsequent process, just because
it converges to 0, which reflects the high convergence accuracy of this algorithm. In addi-
tion, the proposed algorithm is superior to other algorithms in the benchmark-functions
(F1~F13) experiments. It is obvious that the MGTO has the excellent property of keeping
balance between exploration and exploitation when solving complicated problems. In the
benchmark functions (F14~F23), the MGTO can obtain great superiority, thus indicating
that the proposed algorithm is competitive in solving composite functions. However, the
results of the benchmark functions (F17~F18) and the DSCA and PSO algorithms demon-
strate that these algorithms give an excellent performance to obtain high-quality results. In
summary, the MGTO performs well in benchmark functions (F14~F23). What is more, the
MGTO can find excellent solutions compared with other algorithms in most cases. Thus, in
the comparative experiment, the MGTO has certain advantages over the other algorithms.
The effectiveness of the MGTO can be proved by the experiment results.
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4.1.2. The Results of the Classical Benchmark

The results of 23 classical functions are listed in Table 1. All results are expressed by
average value (Avg) and standard deviation (Std): The average value represents better con-
vergence performance, and the standard deviation indicates the better stability. According
to Table 1, it is obvious that the MGTO performs better in major tests. In particular, the
optimal value of most functions is precisely calculated by MGTO, whereas other algorithms
cannot find the optimal solution. Compared with the GTO, the proposed mechanism can
improve the performance of obtaining the best solution.

Table 1. The results of the classical test.

MGTO GTO AOA SSA WOA SHO RSA ROLGWO DSCA HSCAHS

F1
Avg 0 0 4.72 × 10−6 1.49 × 10−7 3.26 × 10−69 0 0 0 2.89 × 10−111 1.33 × 10−50

Std 0 0 1.97 × 10−6 1.17 × 10−7 1.78 × 10−68 0 0 0 1.58 × 10−110 5.89 × 10−50

F2
Avg 0 3.69 × 10−189 2.14 × 10−3 1.93 8.20 × 10−51 0 0 8.09 × 10−204 6.39 × 10−59 1.06 × 10−27

Std 0 0 2.06 × 10−3 1.40 2.24 × 10−50 0 0 0 3.49 × 10−58 1.24 × 10−27

F3
Avg 0 0 1.07 × 10−3 1.35 × 103 4.45 × 104 0 0 0 7.60 × 10−62 1.92 × 10−48

Std 0 0 7.62× 10−4 5.88 × 102 1.54 × 104 0 0 0 4.16 × 10−61 7.43 × 10−48

F4
Avg 0 8.19 × 10−192 1.98 × 10−2 1.31 × 101 5.01 × 101 0 0 3.78 × 10−183 6.09 × 10−39 1.26 × 10−25

Std 0 0 1.19 × 10−2 4.83 2.94 × 101 0 0 0 3.34 × 10−38 2.55 × 10−25

F5
Avg 2.54 × 10−5 4.81 2.80 × 101 5.26 × 102 2.80 × 101 2.88 × 101 1.55 × 101 2.74 × 101 2.86 × 101 2.88 × 101

Std 3.94 × 10−5 9.77 2.74 × 10−1 1.15 × 103 4.71 × 10−1 1.12 × 10−1 1.47 × 101 8.20 × 10−1 3.05 × 10−1 5.19 × 10−2

F6
Avg 3.37 × 10−14 2.06 × 10−7 3.11 1.73 × 10−7 4.70 × 10−1 3.55 7.24 9.06 × 10−1 5.53 6.71
Std 3.76 × 10−14 2.68 × 10−7 2.19 × 10−1 2.69 × 10−7 2.78 × 10−1 2.47 4.48 × 10−1 5.21 × 10−1 2.78 × 10−1 1.90 × 10−1

F7
Avg 7.67 × 10−5 8.68 × 10−5 9.64 × 10−5 1.77 × 10−1 3.16 × 10−3 1.13 × 10−4 1.69 × 10−4 8.21 × 10−5 1.61 × 10−3 9.55 × 10−5

Std 4.50 × 10−5 5.90 × 10−5 9.89 × 10−5 7.77 × 10−2 3.97 × 10−3 1.81 × 10−4 1.17 × 10−4 6.62 × 10−5 1.75 × 10−3 1.70 × 10−4

F8
Avg −1.26 × 104 −1.26 × 104 −5.44 × 103 −7.32 × 103 −1.01 × 104 −2.45 × 103 −5.35 × 103 −5.17 × 103 −4.48 × 103 −2.53 × 103

Std 1.03 × 10−6 6.74 × 10−5 3.23 × 102 6.74 × 102 1.77 × 103 4.12 × 102 4.01 × 102 1.50 × 103 3.50 × 102 2.93 × 102

F9
Avg 0 0 1.35 × 10−6 6.17 × 101 1.89 × 10−15 0 0 0 0 0
Std 0 0 1.14 × 10−6 1.96 × 101 1.04 × 10−14 0 0 0 0 0

F10
Avg 8.88 × 10−16 8.88 × 10−16 4.51 × 10−4 2.49 5.03 × 10−15 8.88 × 10−16 8.88 × 10−16 2.07 × 10−15 8.88 × 10−16 8.88 × 10−16

Std 0 0 1.81 × 10−4 7.86 × 10−1 3.11 × 10−15 0 0 1.70 × 10−15 0 0

F11
Avg 0 0 2.41 × 10−3 1.87 × 10−2 8.13× 10−3 0 0 0 0 0
Std 0 0 6.04 × 10−3 1.25 × 10−2 4.45 × 10−2 0 0 0 0 0

F12
Avg 1.64 × 10−8 4.27 × 10−8 7.42 × 10−1 7.17 2.96 × 10−2 2.09 × 10−4 1.33 5.64 × 10−2 7.75 × 10−1 1.06
Std 3.12 × 10−8 9.20 × 10−8 2.43 × 10−2 4.31 3.44 × 10−2 2.39 × 10−5 4.55 × 10−1 2.52 × 10−2 8.18 × 10−2 1.10 × 10−1

F13
Avg 1.00 × 10−7 1.77 × 10−3 2.96 1.19 × 101 4.94 × 10−1 2.94 1.19 1.09 2.84 2.84
Std 1.43 × 10−7 5.61 × 10−3 2.90 × 10−2 1.25 × 101 2.41 × 10−1 2.41 × 10−2 1.41 4.99 × 10−1 4.52 × 10−2 3.26 × 10−2

F14
Avg 9.98 × 10−1 9.98 × 10−1 1.11 × 101 1.33 4.04 9.47 3.57 5.30 1.65 2.91
Std 4.12 × 10−17 7.14 × 10−17 3.49 9.49 × 10−1 3.73 4.18 2.23 4.44 8.33 × 10−1 2.70 × 10−1

F15
Avg 3.07 × 10−4 3.99 × 10−4 4.55 × 10−3 1.59 × 10−3 7.20 × 10−4 3.19 × 10−4 2.72 × 10−3 3.62 × 10−4 1.28 × 10−3 2.70 × 10−3

Std 3.29 × 10−19 2.79 × 10−4 7.95 × 10−3 3.56 × 10−3 3.78 × 10−4 7.46 × 10−6 1.55 × 10−3 7.11 × 10−5 3.48 × 10−4 1.69 × 10−3

F16
Avg −1.03 −1.03 −1.03 −1.03 −1.03 −9.27 × 10−1 −1.03 −1.03 −1.03 −1.02
Std 5.45 × 10−16 6.58 × 10−16 2.19 × 10−11 2.99 × 10−14 2.51 × 10−9 2.01 × 10−1 1.66 × 10−3 6.88 × 10−5 1.54 × 10−4 7.55 × 10−3

F17
Avg 3.98 × 10−1 3.98 × 10−1 3.99 × 10−1 3.98 × 10−1 3.98 × 10−1 6.37 × 10−1 4.23 × 10−1 3.98 × 10−1 4.02 × 10−1 7.16 × 10−1

Std 0 0 3.58 × 10−3 9.58 × 10−15 1.50 × 10−5 6.71 × 10−1 2.04 × 10−2 1.19 × 10−6 3.22 × 10−3 3.91 × 10−1

F18
Avg 3.00 3.00 2.15 × 101 3.00 3.00 2.83 × 101 7.68 3.00 3.01 3.01
Std 1.28 × 10−15 1.29 × 10−15 3.02 × 101 2.10 × 10−13 2.62 × 10−4 5.09 × 101 1.68 × 101 3.53 × 10−5 5.91 × 10−3 1.56 × 10−2

F19
Avg −3.86 −3.86 −3.86 −3.86 −3.86 −3.56 −3.79 −3.86 −3.83 −3.43
Std 2.60 × 10−15 2.67 × 10−15 6.28 × 10−6 1.31 × 10−12 4.40 × 10−3 3.82 × 10−1 5.65 × 10−2 1.29 × 10−4 1.98 × 10−2 2.62 × 10−1

F20
Avg −3.30 −3.27 −3.27 −3.25 −3.24 −2.57 −2.66 −3.26 −3.01 −1.64
Std 4.51 × 10−2 6.03 × 10−2 5.93 × 10−2 6.67 × 10−2 1.25 × 10−1 3.51 × 10−1 2.86 × 10−1 8.43 × 10−2 9.72 × 10−2 5.62 × 10−1

F21
Avg −1.02 × 101 −1.02 × 101 −7.38 −6.81 −8.01 −4.08 −5.06 −5.10 −4.19 −5.78 × 10−1

Std 5.83 × 10−15 6.08 × 10−15 2.91 3.50 2.66 1.11 3.09 × 10−7 9.97 × 10−1 1.29 1.62 × 10−1

F22
Avg −1.04 × 101 −1.04 × 101 −7.61 −8.48 −7.30 −3.65 −5.09 −5.78 −4.27 −7.20 × 10−1

Std 6.60 × 10−16 9.33 × 10−16 3.11 3.28 3.20 1.12 7.75 × 10−7 2.28E 4.48 × 10−1 1.79 × 10−1

F23
Avg −1.05 × 101 −1.05 × 101 −7.10 −8.56 −7.17 −4.09 −5.13 −6.83 −4.10 −8.79 × 10−1

Std 1.23 × 10−15 1.51 × 10−15 3.39 3.37 3.06 1.21 1.97 × 10−6 2.81 5.89 × 10−1 2.92 × 10−1
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Therefore, as far as numerous unimodal functions are concerned, the MGTO still
remains the excellent searching performance, thus clearly proving the superiority of the
exploitative ability in the MGTO. In contrast to unimodal functions, multimodal functions
have multiple optimal solutions, which have many local optimal solutions. These mul-
timodal functions are usually adopted to evaluate the convergence ability of algorithms.
As Table 1 shows, the results can indicate that the proposed model has slight advantages
in getting out of the local solutions. The primary cause is that the basic GTO has already
provided competitive results. The functions F14~F23 can be used to test the stability and
searching capability of algorithms. From Table 1, it can be seen that the performance of
MGTO surpasses the traditional GTO, and the solution results of multiple functions are
extremely close to the true value. Evidently, it can be concluded that the MGTO maintains
high stability and exploitative ability consistently in the test.

4.2. The Experiments on CEC2014 and CEC2020

In this section, the CEC2014 tests are utilized to prove the performance of the MGTO.
The results of the MGTO in complicated CEC2014 functions are compared with nine
Metaheuristic Algorithms which are frequently quoted in the literature. The comparison
results of CEC2014 benchmark functions are represented in Table 2. It can be seen from
Table 2 that the MGTO provides the best results in 12 out of 30 cases for Avg and 15 out for
30 cases for Std. For other cases, it can be summarized as follows: SSA provides the best
results in F24 and F25 for Avg; ROLGWO provides the best results in F6, F9 and F11 for Avg
and F13 for Std; GTO provides the best results in F12 for Std; AOA provides the best results
in F5 for Std; DSCA provides the best results in F6 for Std; and HSCAHS provides the best
results in F9, F10, F11 and F16 for Std. In these cases, other algorithms are better than the
MGTO, with a slightly different result. It can be proved that the MGTO has better efficiency
and stability in solving global optimization problems. The MGTO can search the whole
space consistently through subsequent iterations, and this can improve the convergence.

Table 2. The results of the CEC2014 test.

MGTO GTO AOA SSA WOA SHO RSA ROLGWO DSCA HSCAHS

F1
Avg 6.14 × 103 1.89 × 104 2.45 × 108 2.37 × 106 1.52 × 107 2.07 × 109 1.10 × 109 8.34 × 106 3.34 × 107 1.04 × 108

Std 5.43 × 103 2.30 × 104 2.19 × 108 2.25 × 106 1.04 × 107 2.44 × 108 2.67 × 108 4.68 × 106 1.45 × 107 4.35 × 107

F2
Avg 2.00 × 102 1.96 × 103 1.01 × 1010 3.81 × 103 4.09 × 107 8.61 × 1010 7.38 × 1010 1.02 × 108 1.54 × 109 7.22 × 109

Std 1.91 × 10−1 2.38 × 103 2.64 × 109 3.73 × 103 3.33 × 107 7.49 × 109 4.16 × 109 3.24 × 108 4.83 × 108 9.48 × 108

F3
Avg 3.07 × 102 3.93 × 102 1.90 × 104 1.52 × 104 6.58 × 104 9.36 × 105 8.10 × 104 6.69 × 103 1.82 × 104 1.66 × 104

Std 1.65 × 101 1.54 × 102 4.76 × 103 8.05 × 103 3.62 × 104 1.53 × 106 1.01 × 104 3.98 × 103 5.62 × 103 2.41 × 103

F4
Avg 4.16 × 102 4.24 × 102 2.67 × 103 4.32 × 102 4.55 × 102 1.94 × 104 1.00 × 104 4.37 × 102 5.51 × 102 1.55 × 103

Std 1.68 × 101 1.79 × 101 1.43 × 103 1.73 × 101 3.67 × 101 3.33 × 103 2.91 × 103 2.48 × 101 4.59 × 101 4.77 × 102

F5
Avg 5.20 × 102 5.20 × 102 5.20 × 102 5.20 × 102 5.20 × 102 5.21 × 102 5.21 × 102 5.20 × 102 5.20 × 102 5.21 × 102

Std 5.29 × 102 6.87 × 102 3.95 × 10−3 1.05 × 10−1 1.44 × 10−1 5.63 × 10−2 6.15 × 10−2 1.86 × 10−1 9.02 × 10−2 1.11 × 10−1

F6
Avg 6.04 × 102 6.06 × 102 6.11 × 102 6.05 × 102 6.09 × 102 6.47 × 102 6.40 × 102 6.03 × 102 6.10 × 102 6.10 × 102

Std 1.67 1.80 9.21 × 10−1 2.06 1.69 2.10 2.20 1.84 4.79 × 10−1 7.12 × 10−1

F7
Avg 7.00 × 102 7.00 × 102 9.03 × 102 7.00 × 102 7.02 × 102 1.57 × 103 1.35 × 103 7.02 × 102 7.27 × 102 8.47 × 102

Std 7.14 × 10−2 2.84 × 10−1 6.65 × 101 1.19 × 10−1 7.09 × 10−1 9.37 × 101 1.10 × 102 2.39 7.94 3.10 × 101

F8
Avg 8.07 × 102 8.24 × 102 8.65 × 102 8.28 × 102 8.40 × 102 1.22 × 103 1.16 × 103 8.15 × 102 8.59 × 102 8.96 × 102

Std 5.31 1.01 × 101 1.45 × 101 1.06 × 101 1.30 × 101 3.38 × 101 1.96 × 101 6.40 7.34 8.65

F9
Avg 9.29 × 102 9.31 × 102 9.53 × 102 9.34 × 102 9.52 × 102 1.31 × 103 1.24 × 103 9.28 × 102 9.61 × 102 9.70 × 102

Std 1.01 × 101 1.03 × 101 5.49 1.85 × 101 2.00 × 101 2.21 × 101 2.15 × 101 1.40 × 101 7.87 5.19

F10
Avg 1.25 × 103 1.49 × 103 1.75 × 103 1.72 × 103 1.69 × 103 9.94 × 103 8.00 × 103 1.55 × 103 2.39 × 103 2.44 × 103

Std 1.50 × 102 2.60 × 102 1.95 × 102 3.27 × 102 2.81 × 102 6.23 × 102 4.68× 102 2.20× 102 1.54× 102 1.48× 102

F11
Avg 1.88 × 103 1.93 × 103 2.25 × 103 2.07 × 103 2.31 × 103 3.48 × 103 2.69 × 103 1.86 × 103 2.81 × 103 2.88 × 103

Std 3.06 × 102 2.61 × 102 2.40 × 102 3.48 × 102 3.51 × 102 2.70 × 102 2.12 × 102 3.39 × 102 1.86 × 102 1.38 × 102

F12
Avg 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103

Std 2.19 × 10−1 2.12 × 10−1 5.82 × 10−1 2.31 × 10−1 3.83 × 10−1 9.75 × 10−1 3.40 × 10−1 6.99 × 10−1 3.63 × 10−1 4.35 × 10−1

F13
Avg 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103

Std 9.91 × 10−2 1.26 × 10−1 7.31 × 10−1 1.75 × 10−1 1.62 × 10−1 7.51 × 10−1 7.51 × 10−1 6.86 × 10−2 2.14 × 10−1 5.47 × 10−1

F14
Avg 1.40 × 103 1.40 × 103 1.44 × 103 1.40 × 103 1.40 × 103 1.45 × 103 1.42 × 103 1.40 × 103 1.40 × 103 1.42 × 103

Std 7.90 × 10−2 1.85 × 10−1 1.20 × 101 2.68 × 10−1 2.00 × 10−1 7.93 8.11 2.09 × 10−1 1.40 4.30

F15
Avg 1.50 × 103 1.50 × 103 2.16 × 104 1.50 × 103 1.50 × 103 1.86 × 104 5.83 × 103 1.50 × 103 1.54 × 103 2.61 × 103

Std 4.31 × 10−1 2.30 1.14 × 104 1.01 4.80 1.98 × 104 4.32 × 103 7.88 × 10−1 3.84 × 101 6.20 × 102

F16
Avg 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103

Std 3.92 × 10−1 3.28 × 10−1 2.32 × 10−1 3.26 × 10−1 2.93 × 10−1 2.41 × 10−1 1.32 × 10−1 3.24 × 10−1 1.82 × 10−1 9.54 × 10−2

F17
Avg 2.23 × 103 2.68 × 103 4.73 × 105 2.78 × 104 4.02 × 105 4.92 × 106 4.59 × 105 3.11 × 104 1.70 × 105 4.89 × 105

Std 2.40 × 102 1.18 × 103 9.71 × 104 3.72 × 104 7.54 × 105 4.15 × 106 1.27 × 105 9.63 × 104 1.19 × 105 9.53 × 104

F18
Avg 1.87 × 103 1.92 × 103 1.09 × 104 1.01 × 104 1.41 × 104 3.18 × 107 3.04 × 105 1.17 × 104 4.11 × 104 6.66 × 104

Std 4.04 × 101 8.19 × 101 3.89 × 103 8.38 × 103 1.20 × 104 3.29 × 107 7.20 × 105 3.36 × 103 3.35 × 104 2.38 × 104

F19
Avg 1.90 × 103 1.90 × 103 1.95 × 103 1.90 × 103 1.91 × 103 1.97 × 103 1.93 × 103 1.90 × 103 1.91 × 103 1.92 × 103

Std 9.81 × 10−1 1.34 3.06 × 101 1.24 1.86 4.13 × 101 1.37 × 101 1.15 1.02 8.40

F20
Avg 2.05 × 103 2.08 × 103 1.26 × 104 7.78 × 103 1.08 × 104 5.54× 106 2.19 × 104 7.86 × 103 3.39 × 104 2.06 × 104

Std 3.90 × 101 6.52 × 101 3.80 × 103 6.77 × 103 7.51 × 103 9.13 × 106 3.30 × 104 3.72 × 103 2.41 × 104 8.97 × 103
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Table 2. Cont.

MGTO GTO AOA SSA WOA SHO RSA ROLGWO DSCA HSCAHS

F21
Avg 2.38 × 103 2.48 × 103 1.95 × 106 7.03 × 103 6.03 × 105 3.97 × 106 9.29 × 105 1.11 × 104 5.15 × 104 2.00 × 105

Std 2.38 × 102 3.13× 102 2.72 × 106 6.91 × 103 1.99 × 106 5.03 × 106 1.66 × 106 6.76 × 103 3.60 × 104 9.92 × 104

F22
Avg 2.22 × 103 2.24 × 103 2.43 × 103 2.30 × 103 2.32 × 103 2.76 × 103 2.42 × 103 2.30 × 103 2.31 × 103 2.48 × 103

Std 6.65 3.90× 101 1.29 × 102 7.42× 101 8.59× 101 1.87 × 102 7.55× 101 6.25× 101 4.01× 101 5.16× 101

F23
Avg 2.50 × 103 2.50 × 103 2.50 × 103 2.63 × 103 2.64 × 103 2.50 × 103 2.50 × 103 2.58 × 103 2.52 × 103 2.50 × 103

Std 0.00 0.00 3.81 × 104 8.83 2.83 × 101 0.00 0.00 6.56 × 101 6.02 × 101 0.00

F24
Avg 2.59 × 103 2.57 × 103 2.60 × 103 2.54 × 103 2.58 × 103 2.60 × 103 2.60 × 103 2.57 × 103 2.57 × 103 2.60 × 103

Std 2.53 × 101 3.34 × 101 8.14 2.35 × 101 2.57 × 101 0.00 6.37 × 10−1 3.80 × 101 9.06 6.25

F25
Avg 2.69 × 103 2.70 × 103 2.70 × 103 2.68 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103

Std 1.03 × 101 1.37 × 101 0.00 2.60 × 101 3.74 0.00 8.21 × 10−2 1.19 × 10−1 4.70 1.48 × 10−1

F26
Avg 2.70 × 103 2.70 × 103 2.71 × 103 2.70 × 103 2.70 × 103 2.71 × 103 2.71 × 103 2.70 × 103 2.70 × 103 2.70 × 103

Std 6.83 × 10−2 9.84 × 10−2 2.43 × 101 1.24 × 10−1 1.82 × 101 2.43 × 101 2.44 × 101 1.01 × 10−1 1.83 × 10−1 5.51 × 10−1

F27
Avg 2.83 × 103 2.84 × 103 3.18 × 103 3.03 × 103 3.16 × 103 2.90 × 103 2.90 × 103 3.04 × 103 3.07 × 103 2.90 × 103

Std 9.37 × 101 9.08 × 101 1.90 × 102 1.51 × 102 1.13 × 102 0.00 0.00 1.16 × 102 1.07 × 102 3.08

F28
Avg 3.00 × 103 3.00 × 103 3.37 × 103 3.21 × 103 3.42 × 103 3.00 × 103 3.00 × 103 3.24 × 103 3.24 × 103 3.00 × 103

Std 0.00 0.00 5.04 × 102 6.65× 101 1.26 × 102 0.00 0.00 6.45 × 101 1.10 × 101 0.00

F29
Avg 3.22 × 103 2.01 × 105 2.39 × 107 1.93 × 105 3.06 × 105 3.10 × 103 3.10 × 103 1.72 × 105 1.85 × 104 2.45 × 106

Std 1.02 × 102 7.74 × 105 1.95 × 107 5.76 × 105 9.66 × 105 0.00 0.00 5.40 × 105 1.25 × 104 2.55 × 106

F30
Avg 3.93 × 103 3.96 × 103 1.52 × 105 4.68 × 103 6.29 × 103 3.20 × 103 3.20 × 103 4.39 × 103 6.54 × 103 4.03 × 104

Std 3.99 × 102 3.55 × 102 3.73 × 105 7.67 × 102 1.86 × 103 0.00 0.00 6.23 × 102 1.48 × 103 3.56 × 104

For CEC2020 benchmark functions, the functions (F1~F4) are as follows: translational
rotation function, translational rotation schwefel function, translational rotation lunacek
bi-rastrigin function and expansion rosenbrock’s plus griewangk function. F5~F7 functions
are mixed functions. F8~F10 functions are composite functions. The results of CEC2020
calculated by MGTO, GTO, AOA, SSA, WOA, GWO, PSO, ROLGWO, DSCA and HACAHA
are displayed in Table 3. According to Table 3, MGTO provides the best results in 6 out of 10
cases for Avg and 7 out for 10 cases for Std. For other cases, it can be summarized as follows:
ROLGWO provides the best results in F3 for Avg, RSA provides the best results in F3 for
Std and SSA provides the best results in F9 for Std. In function F4, all algorithms achieve
the same Avg of 1.90E+03. Therefore, it can be concluded that the proposed algorithm can
enhance the performance of GTO and solve CEC2020 functions better. Generally speaking,
the MGTO has a better performance in solving optimization problems.

Table 3. The results of the CEC2020 test.

MGTO GTO AOA SSA WOA SHO RSA ROLGWO DSCA HSCAHS

F1
Avg 1.51 × 102 2.39 × 103 1.62 × 1010 3.39 × 103 6.69 × 107 1.65 × 1010 1.18 × 1010 7.85 × 107 4.52 × 109 1.08 × 1010

Std 1.76 × 102 2.62 × 103 5.21 × 109 3.42 × 103 8.73 × 107 4.17 × 109 3.77 × 109 1.61 × 108 1.68 × 109 2.05 × 109

F2
Avg 1.80 × 103 1.92 × 103 2.32 × 103 2.01 × 103 2.24 × 103 3.55 × 103 2.82 × 103 1.98 × 103 2.59 × 103 2.98 × 103

Std 1.82 × 102 2.81 × 102 2.40 × 102 3.22 × 102 3.68 × 102 2.70 × 102 1.98 × 102 2.98 × 102 2.16 × 102 1.90 × 102

F3
Avg 7.46 × 102 7.53 × 102 8.01 × 102 7.47 × 102 7.86 × 102 8.70 × 102 8.10 × 102 7.44 × 102 8.20 × 102 8.38 × 102

Std 1.26 × 101 1.54 × 101 1.24 × 101 1.54 × 101 2.45 × 101 2.47 × 101 1.18 × 101 1.35 × 101 1.20 × 101 1.20 × 101

F4
Avg 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103

Std 0.00 0.00 0.00 1.06 4.23 × 10−1 0.00 0.00 0.00 0.00 0.00

F5
Avg 2.15 × 103 2.57 × 103 4.81 × 105 2.80 × 104 3.80 × 105 3.21 × 106 4.43 × 105 4.32 × 104 3.82 × 105 4.91 × 105

Std 2.15 × 102 7.72 × 102 1.34 × 105 4.05 × 104 6.12 × 105 3.02 × 106 1.48 × 105 1.42 × 105 1.64 × 105 8.70 × 104

F6
Avg 1.68 × 103 1.77 × 103 2.22 × 103 1.77 × 103 1.90 × 103 2.65 × 103 2.22 × 103 1.76 × 103 1.90 × 103 2.26 × 103

Std 6.65 × 101 1.25 × 102 1.76 × 102 1.22 × 102 1.25 × 102 2.82 × 102 1.68 × 102 8.14 × 101 1.15 × 102 1.46 × 102

F7
Avg 2.40 × 103 2.50 × 103 3.11 × 106 9.57 × 103 9.69 × 105 4.70 × 106 1.47 × 106 9.38 × 103 5.47 × 104 1.67 × 105

Std 1.83 × 102 2.40 × 102 4.14 × 106 9.09 × 103 1.58 × 106 5.60 × 106 2.63 × 106 5.34 × 103 5.64 × 104 7.36 × 104

F8
Avg 2.30 × 103 2.30 × 103 3.48 × 103 2.38 × 103 2.48 × 103 3.70 × 103 3.37 × 103 2.32 × 103 2.64 × 103 3.03 × 103

Std 1.16 1.60 × 101 3.78 × 102 2.79 × 102 4.36 × 102 5.55 × 102 3.61 × 102 2.31 × 101 1.14 × 102 1.32 × 102

F9
Avg 2.66 × 103 2.71 × 103 2.96 × 103 2.74 × 103 2.79 × 103 2.96 × 103 2.91 × 103 2.73 × 103 2.76 × 103 2.86 × 103

Std 9.75 × 101 1.06× 102 1.23 × 102 4.72 × 101 4.91 × 101 8.53 × 101 6.60 × 101 7.69 × 101 1.18 × 102 6.37 × 101

F10
Avg 2.93 × 103 2.94 × 103 3.86 × 103 2.93 × 103 2.97 × 103 3.90 × 103 3.46 × 103 2.94 × 103 3.18 × 103 3.53 × 103

Std 2.15 × 101 2.79 × 101 3.67 × 102 2.37 × 101 6.41 × 101 2.85 × 102 2.01 × 102 2.46 × 101 7.61 × 101 5.98 × 101

4.3. The Non-Parametric Statistic Test

Although the superiority of the MGTO was confirmed by the above benchmark
functions, in order to further demonstrate the advantages of the MGTO, the Wilcoxon’s rank-
sum test [50,51] with 5% accuracy is used to evaluate and research the difference between
the proposed algorithm and other algorithms. The p-values of Wilcoxon’s rank-sum test are
shown in Tables 4–6. The p-value less than 0.05 decides the significant differences between
two algorithms. According to Tables 4–6, the superiority of the MGTO is statistically
significant in most of the benchmark functions since most of the p-values are less than
0.05. Thus, the MGTO is considered to have significant advantages compared with other
algorithms.
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Table 4. Wilcoxon’s rank-sum test of classical function.

GTO AOA SSA WOA SHO RSA ROLGWO DSCA HSCAHS

F1 1.000000 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.000000 1.000000 1.000000 6.10 × 10−5 6.10 × 10−5

F2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.000000 1.000000 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F3 1.000000 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.000000 1.000000 1.000000 6.10 × 10−5 6.10 × 10−5

F4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.000000 1.000000 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F5 0.041260 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 0.002625 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F6 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F7 0.006714 0.010254 6.10 × 10−5 0.000122 0.015076 0.002014 0.041260 6.10 × 10−5 0.018066
F8 0.018066 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F9 1.000000 6.10 × 10−5 6.10 × 10−5 0.250000 1.000000 1.000000 1.000000 1.000000 1.000000
F10 1.000000 6.10 × 10−5 6.10 × 10−5 0.000977 0.500000 1.000000 0.015625 1.000000 1.000000
F11 1.000000 6.10 × 10−5 6.10 × 10−5 0.125000 1.000000 1.000000 1.000000 1.000000 1.000000
F12 0.002014 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F13 0.047913 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F14 0.500000 6.10 × 10−5 0.015625 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F15 0.005615 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F16 1.000000 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F17 1.000000 6.10 × 10−5 0.000977 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F18 0.001953 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F19 1.000000 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F20 0.031250 6.10 × 10−5 0.000610 0.005371 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F21 1.000000 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F22 1.000000 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F23 1.000000 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

Table 5. Wilcoxon’s rank-sum test of CEC2014.

GTO AOA SSA WOA SHO RSA ROLGWO DSCA HSCAHS

F1 0.006714 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F3 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F4 0.013428 6.10 × 10−5 0.015076 0.002014 6.10 × 10−5 6.10 × 10−5 0.002625 6.10 × 10−5 6.10 × 10−5

F5 0.000854 0.002014 0.012451 0.002625 0.000122 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F6 0.000610 6.10 × 10−5 0.030151 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 0.004272 6.10 × 10−5 6.10 × 10−5

F7 0.004272 6.10 × 10−5 0.047913 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F8 0.000183 6.10 × 10−5 0.000183 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 0.021545 6.10 × 10−5 6.10 × 10−5

F9 0.041260 6.10 × 10−5 0.041260 0.000305 6.10 × 10−5 6.10 × 10−5 0.012451 6.10 × 10−5 6.10 × 10−5

F10 0.010254 0.000305 0.003357 0.000427 6.10 × 10−5 6.10 × 10−5 0.001526 6.10 × 10−5 6.10 × 10−5

F11 0.000854 0.000122 0.018066 0.005371 6.10 × 10−5 6.10 × 10−5 0.002014 6.10 × 10−5 6.10 × 10−5

F12 0.025574 0.012451 0.021545 0.000610 6.10 × 10−5 6.10 × 10−5 0.030151 6.10 × 10−5 6.10 × 10−5

F13 0.041260 6.10 × 10−5 0.002014 0.000305 6.10 × 10−5 6.10 × 10−5 0.030151 6.10 × 10−5 6.10 × 10−5

F14 0.021545 6.10 × 10−5 0.021545 0.021545 6.10 × 10−5 6.10 × 10−5 0.006714 6.10 × 10−5 6.10 × 10−5

F15 6.10 × 10−5 6.10 × 10−5 0.002014 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 0.047913 6.10 × 10−5 6.10 × 10−5

F16 0.047913 6.10 × 10−5 0.008362 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 0.012451 6.10 × 10−5 6.10 × 10−5

F17 0.047913 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F18 0.021545 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F19 0.004272 6.10 × 10−5 0.018066 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 0.001160 6.10 × 10−5 6.10 × 10−5

F20 0.018066 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F21 0.041260 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F22 0.030151 6.10 × 10−5 6.10 × 10−5 0.000427 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F23 1.000000 1.000000 6.10 × 10−5 0.000122 1.000000 1.000000 0.000977 0.003906 1.000000
F24 0.035278 0.031250 0.000854 0.041260 0.031250 0.031250 0.016113 0.004272 0.015625
F25 0.046875 0.031250 0.035339 0.021484 0.031250 0.031250 0.031250 0.031250 0.031250
F26 0.047913 6.10 × 10−5 0.035339 0.005371 6.10 × 10−5 6.10 × 10−5 0.000122 6.10 × 10−5 6.10 × 10−5

F27 0.037109 6.10 × 10−5 0.000610 0.000122 0.031250 0.031250 0.003357 0.015076 0.031250
F28 1.000000 0.000977 6.10 × 10−5 6.10 × 10−5 1.000000 1.000000 6.10 × 10−5 6.10 × 10−5 1.000000
F29 0.012451 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 0.000488 0.000488 6.10 × 10−5 6.10 × 10−5 0.000305
F30 0.047913 6.10 × 10−5 0.006714 0.000610 0.000122 0.000122 0.021545 6.10 × 10−5 6.10 × 10−5

Table 6. Wilcoxon’s rank-sum test of CEC2020.

GTO AOA SSA WOA SHO RSA ROLGWO DSCA HSCAHS

F1 0.000122 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F2 0.010254 0.000427 0.012451 0.003357 6.10 × 10−5 6.10 × 10−5 0.041260 6.10 × 10−5 6.10 × 10−5

F3 0.021545 6.10 × 10−5 0.025574 0.000305 6.10 × 10−5 6.10 × 10−5 0.021545 6.10 × 10−5 6.10 × 10−5

F4 1.000000 1.000000 6.10 × 10−5 0.031250 1.000000 1.000000 1.000000 1.000000 1.000000
F5 0.025574 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F6 0.047913 6.10 × 10−5 0.041260 0.001160 6.10 × 10−5 6.10 × 10−5 0.000610 6.10 × 10−5 6.10 × 10−5

F7 0.035339 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F8 0.002625 6.10 × 10−5 0.015076 0.002625 6.10 × 10−5 6.10 × 10−5 0.041260 6.10 × 10−5 6.10 × 10−5

F9 0.006714 0.000122 0.003357 0.000305 6.10 × 10−5 6.10 × 10−5 0.041260 0.000183 6.10 × 10−5

F10 0.021545 6.10 × 10−5 0.041260 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 0.041260 6.10 × 10−5 6.10 × 10−5

5. MGTO for Solving Engineering-Optimization Problems

In this section, seven engineering problems are used to evaluate the superiority of
the MGTO, namely the welded-beam-design problem, pressure-vessel-design problem,
speed-reducer-design problem, compression/tension-spring-design problem, three-bar-
truss-design problem, car-crashworthiness-design problem and the tubular-column-design
problem. The MGTO runs independently 30 times for each issue, with the maximum
iterations setting at 500 and the population size at 30. In addition, the MGTO is compared
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to other algorithms in regard to dealing with engineering problems, as represented in the
following tables; the corresponding conclusions are also discussed.

5.1. Welded-Beam Design

The welded-beam-design problem is a common engineering-optimization problem
that was developed by Rao et al. [52]. Figure 5 offers a schematic diagram of a welded
beam. In this problem, the constraints may be divided into four categories: shear stress,
bending stress, buckling load and deflection of beam. The cost of welding materials is
minimized as much as possible under the four constraints. Furthermore, there are four
variables in the welded-beam-design problem: The thickness of the weld (h), the length of
the weld (l), the height of the welded beam (t) and the thickness of the bar (b).
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Figure 5. Welded-beam-design problem: three-dimensional model diagram (left) and the structural
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The mathematical model of the above problem is presented as follows:
Consider:

→
x = [x1, x2, x3, x4] = [h, l, t, b] (32)

Minimize:
f (
→
x ) = 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2) (33)

Constraints:

g1(
→
x ) = τ(

→
x )− τmax

g2(
→
x ) = σ(

→
x )− σmax

g3(
→
x ) = δ(

→
x )− δmax

g4(
→
x ) = x1 − x4 ≤ 0

g5(
→
x ) = P− PC(

→
x ) ≤ 0

g6(
→
x ) = 0.125− x1 ≤ 0

g7(
→
x ) = 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5 ≤ 0

(34)

where we have the following:

τ(
→
x ) =

√
(τ′)2 + 2τ′τ′′

x2

2R
+ (τ′′)2 (35)

τ′ =
P√

2x1x2
, τ′′ =

MR
J

, M = P
(

L +
x2

2

)
(36)

R =

√
x2

2
4

+ (
x1 + x3

2
)

2
(37)

J = 2

{
√

2x1x2

[
x2

2
4

+ (
x1 + x3

2
)

2
]}

(38)
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σ(
→
x ) =

6PL
x2

3x4
, δ(

→
x ) =

6PL3

Ex3
3x4

(39)

PC(
→
x ) =

4.013E
√

x2
3x6

4
36

L2

(
1− x3

2L

√
E

4G

)
(40)

τ(
→
x ) =

√
(τ′)2 + 2τ′τ′′

x2

2R
+ (τ′′)2 (41)

Variable range:

P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi (42)

τmax= 13600 psi, σmax= 30000 psi, δmax= 0.25 in (43)

The results of the MGTO and other comparative optimization algorithms are listed in
Table 7. According to Table 7, it can be concluded that the MGTO was able to obtain the
effective solution for welded-beam-design problems compared with other algorithms.

Table 7. The comparative optimization results for the welded-beam design.

Algorithm
Optimal Values for Variables Optimal

Costh L t B

MGTO 0.2057 3.2531 9.0366 0.2057 1.6952
GTO 0.2059 3.2510 9.0331 0.2059 1.6958
HS 0.2442 6.2231 8.2915 0.2400 2.3807

WOA 0.205395 3.528467 9.004233 0.207241 1.735344
GSA 0.182129 3.856979 10.000 0.202376 1.87995
MVO 0.205463 3.473193 9.044502 0.205695 1.72645

OBSCA 0.230824 3.069152 8.988479 0.208795 1.722315
PHSSA 0.202369 3.544214 9.04821 0.205723 1.72802

5.2. The Pressure-Vessel Problem

The pressure-vessel problem proposed by Kannan and Kramer [53] aims to reduce
the cost of the pressure vessel under the pressure requirements. Figure 6 is a schematic
diagram of the pressure vessel. The parameters include the following details: the thickness
of the shell (Ts), the thickness of the head (Th), the inner radius of the vessel (R) and the
length of the cylindrical shape (L).
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Figure 6. Pressure-vessel-design problem.

Consider:
→
x = [x1 x2 x3 x4] = [Ts Th R L] (44)

Minimize:

f (
→
x ) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3 (45)
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Constraints:
g1(
→
x ) = −x1 + 0.0193x3 ≤ 0 (46)

g2(
→
x ) = −x3 + 0.00954x3 ≤ 0 (47)

g3(
→
x ) = −πx2

3x4 −
4
3

πx3
3 + 1296000 ≤ 0 (48)

g4(
→
x ) = x4 − 240 ≤ 0 (49)

Variable range: 
0 ≤ x1 ≤ 99
0 ≤ x2 ≤ 99

10 ≤ x3 ≤ 200
10 ≤ x4 ≤ 200

(50)

From Table 8, we can see that the optimal solution of the function obtained by the
MGTO is 5734.9131, while x is equal to 0.7424, 0.3702, 40.3196 and 200. The lowest cost cal-
culated by the MGTO is superior to other optimization algorithms, including the GTO [41],
HHO [24], SMA [54], WOA [44], GWO [6], MVO [12] and GA [15], indicating that the
proposed model has the merits in solving the pressure-vessel problem.

Table 8. The comparative optimization results for pressure-vessel-design problem.

Algorithm
Optimum Variables

Optimum Cost
Ts Th R L

MGTO 0.7424 0.3702 40.3196 200 5734.9131
GTO 1.2404 0.5844 65.2252 10 7141.3611
HHO 0.8175838 0.4072927 42.09174576 176.7196 6000.46259
SMA 0.7931 0.3932 40.6711 196.2178 5994.1857
WOA 0.8125 0.4375 42.0982699 176.6389 6059.7410
GWO 0.8125 0.4345 42.0892 176.7587 6051.5639
MVO 0.8125 0.4375 42.090738 176.7386 6060.8066
GA 0.8125 0.4375 42.097398 176.6540 6059.94634

5.3. Speed-Reducer Design

The main intention of this problem is to minimize the weights of the speed reducer,
which can be limited by seven variables, namely the face width (x1), the teeth module (x2),
the discrete design variables representing the teeth in the pinion (x3), the length of the first
shaft between the bearings (x4), the length of the second shaft between the bearings (x5),
the diameters of the first shaft (x6) and diameters of the second shaft (x7) [55]. In this case,
there are four constraints that should be satisfied: covered stress, bending stress of the gear
teeth, stresses in shafts and transverse deflection of the shafts, which are shown in Figure 7.
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In addition, the formulas of this problem are expressed as follows:
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Minimize:

f (
→
x ) = 0.7854x1x2

2
(
3.3333x2

3 + 14.9334x3 − 43.0934
)

−1.508x1
(
x2

6 + x2
7
)
+ 7.4777

(
x3

6 + x3
7
) (51)

Constraints:
g1(
→
x ) =

27
x1x2

2x3
− 1 ≤ 0 (52)

g2(
→
x ) =

397.5
x1x2

2x2
3
− 1 ≤ 0 (53)

g3(
→
x ) =

1.93x3
4

x2x3x4
6
− 1 ≤ 0 (54)

g4(
→
x ) =

1.93x3
5

x2x3x4
7
− 1 ≤ 0 (55)

g5(
→
x ) =

√
( 745x4

x2x3
)

2
+ 16.9× 106

110.0x3
6

− 1 ≤ 0 (56)

g6(
→
x ) =

√
( 745x4

x2x3
)

2
+ 157.5× 106

85.0x3
6

− 1 ≤ 0 (57)

g7(
→
x ) =

x2x3

40
− 1 ≤ 0 (58)

g8(
→
x ) =

5x2

x1
− 1 ≤ 0 (59)

g9(
→
x ) =

x1

12x2
− 1 ≤ 0 (60)

g10(
→
x ) =

1.5x6 + 1.9
x4

− 1 ≤ 0 (61)

g11(
→
x ) =

1.1x7 + 1.9
x5

− 1 ≤ 0 (62)

Variable range: 

2.6 ≤ x1 ≤ 3.6
0.7 ≤ x2 ≤ 0.8
17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3
7.8 ≤ x5 ≤ 8.3
2.9 ≤ x6 ≤ 3.9
5.0 ≤ x7 ≤ 5.5

(63)

The comparative optimization results of the speed-reducer-design problem are shown
in Table 9.

Table 9. The comparative optimization results of the speed-reducer-design problem.

Algorithm
Optimum Variables Optimum

Weightx1 x2 x3 x4 x5 x6 x7

MGTO 3.4975 0.7 17 7.3000 7.8000 3.3500 5.2855 2995.4373
AO 3.5021 0.7 17 7.3099 7.7476 3.3641 5.2994 3007.7328
PSO 3.5001 0.7 17.0002 7.5177 7.7832 3.3508 5.2867 3145.922
AOA 3.50384 0.7 17 7.3 7.72933 3.35649 5.2867 2997.9157
MFO 3.49745 0.7 17 7.82775 7.71245 3.35178 5.28635 2998.9408
GA 3.51025 0.7 17 8.35 7.8 3.36220 5.28772 3067.561
SCA 3.50875 0.7 17 7.3 7.8 3.46102 5.28921 3030.563
MDA 3.5 0.7 17 7.3 7.67039 3.54242 5.24581 3019.5833
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Compared with the AO [56], PSO [20], AOA [43], MFO [57], GA [15], SCA [58] and
MDA [59], it can be observed that the MGTO achieves 2995.4373, which is the best optimum
weight. Thus, it can be certified that the MGTO has an obvious advantage in solving the
speed-reducer-design problem.

5.4. Compression/Tension-Spring Design

Compression/tension-spring-design problems minimize the weight of the spring
(shown in Figure 8) [60]. The three constraints impacting frequency, shear stress and
deflection should be satisfied in the optimization design. There are three variables displayed
in Figure 8, namely the wire diameter (d), mean coil diameter (D) and the number of active
coils (N).
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The mathematical model is as follows:
Consider:

→
x = [x1 x2 x3 x4] = [d D N] (64)

Minimize:
f (
→
x ) = (x3 + 2)x2x2

1 (65)

Constraints:

g1(
→
x ) = 1−

x3
2x3

71785x4
1
≤ 0 (66)

g2(
→
x ) =

4x2
2 − x1x2

12566
(

x2x3
1 − x4

1
) + 1

5108x2
1
≤ 0 (67)

g3(
→
x ) = 1− 140.45x1

x2
2x3

≤ 0 (68)

g4(
→
x ) =

x1 + x2

1.5
− 1 ≤ 0 (69)

Variable range: 
0.05 ≤ x1 ≤ 2.00
0.25 ≤ x2 ≤ 1.30

2.00 ≤ x3 ≤ 15.00
(70)

As Table 10 shows, the optimal solution calculated by MGTO is 0.0099, when variable
x is equal to 0.05000, 0.3744 and 8.5465. According to the results, it is clear that the MGTO
is capable of obtaining the best solution in comparison with other optimization algorithms.
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Table 10. The comparative optimization results of the compression/tension-spring problem.

Algorithm
Optimum Variables Optimum

WeightD D N

MGTO 0.05000 0.3744 8.5465 0.0099
AO 0.0502439 0.35262 10.5425 0.011165

HHO 0.051796393 0.359305355 11.138859 0.012665443
SSA 0.051207 0.345215 12.004032 0.0126763

WOA 0.051207 0.345215 12.004032 0.0126763
GWO 0.05169 0.356737 11.28885 0.012666
PSO 0.051728 0.357644 11.244543 0.0126747
HS 0.051154 0.349871 12.076432 0.0126706

5.5. Three-Bar-Truss Design

The three-bar-truss-design problem [61] is a typical engineering problem which can be
utilized to evaluate the performance of algorithms. The main intention is to minimize the
weight, which is subject to deflection, stress and buckling constraints on each of the truss
members, by adjusting the cross-sectional areas A1, A2 and A3. It is illustrated in Figure 9.
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The problem considers a non-linear function with three constraints and two decision
variables. The mathematical model is given as follows:

Consider:
→
x = [x1 x2] = [A1 A2] (71)

Minimize:
f (
→
x ) =

(
2
√

2x1 + x2

)
∗ l (72)

Constraints:

g1(
→
x ) =

√
2x1 + x2√

2x2
1 + 2x1x2

P− σ ≤ 0 (73)

g2(
→
x ) =

x2√
2x2

1 + 2x1x2
P− σ ≤ 0 (74)

g3(
→
x ) =

1√
2x2 + x1

P− σ ≤ 0 (75)

Variable range:
0 ≤ x1, x2 ≤ 1 (76)

where we have the following:

l = 100 cm, P = 2KN/cm2, σ = 2KN/cm2 (77)

The results of the three-bar-truss-design problem are shown in Table 11, and it can
be seen that the MGTO has significant superiority compared with other optimization
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algorithms in solving this problem. The proposed model can obtain the lowest optimum
weight when x is equal to 0.7884 and 0.4081.

Table 11. The comparative optimization results of the three-bar-truss-design problem.

Algorithm
Optimum Variables

Optimum Weight
x1 x2

MGTO 0.7884 0.4081 263.8523464
AO 0.7926 0.3966 263.8684

HHO 0.788662816 0.408283133832900 263.8958434
SSA 0.78866541 0.408275784 263.89584

AOA 0.79369 0.39426 263.9154
MVO 0.78860276 0.408453070000000 263.8958499
MFO 0.788244771 0.409466905784741 263.8959797
GOA 0.788897555578973 0.407619570115153 263.895881496069

5.6. Car-Crashworthiness Design

The car-crashworthiness-design problem proposed by Gu et al. aims to improve the
safety of the vehicle and reduce casualties. The details are shown in Figure 10 [62].
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In this case, eleven parameters are adopted to reduce the weight, namely the inside of
the B-pillar, reinforcement of the B-pillar, the inside of the floor side, the crossbeam, the
door beam, the door-strip-line reinforcement, the roof rail of the car (x1–x7), the materials
of inside of B-pillar and reinforcement of B-pillar (x8, x9), the thickness of barrier height
and the impact position (x10, x11). The mathematical formula is represented as follows:

Minimize:

f (
→
x ) = 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7 (78)

Constraints:

g1(
→
x ) = 1.16− 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 ≤ 1 (79)

g2(
→
x ) = 0.261− 0.0159x1x2 − 0.188x1x8 − 0.019x2x7
+0.0144x3x5 + 0.0008757x5x10 + 0.080405x6x9
+0.00139x8x11 + 0.00001575x10x11 ≤ 0.32

(80)
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g3(
→
x ) = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9

+0.03099x2x6 − 0.018x2x7 + 0.0208x3x8
+0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10
−0.0005354x6x10 + 0.00121x8x11 ≤ 0.32

(81)

g4(
→
x ) = 0.074− 0.061x2 − 0.163x3x8 + 0.001232x3x10

−0.166x7x9 + 0.227x2
2 ≤ 0.32

(82)

g5(
→
x ) = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10
+6.63x6x9 − 7.7x7x8 + 0.32x9x10 ≤ 32

(83)

g6(
→
x ) = 33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2

−11.0x2x8 − 0.0215x5x10 − 9.98x7x8 + 22.0x8x9 ≤ 32
(84)

g7(
→
x ) = 46.36− 9.9x2 − 12.9x1x8 + 0.1107x3x10 ≤ 32 (85)

g8(
→
x ) = 4.72− 0.5x4 − 0.19x2x3 − 0.0122x4x10

+0.009325x6x10 + 0.000191x2
11 ≤ 4

(86)

g9(
→
x ) = 10.58− 0.674x1x2 − 1.95x2x8 + 0.02054x3x10

−0.0198x4x10 + 0.028x6x10 ≤ 9.9
(87)

g10(
→
x ) = 16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10

−0.0556x9x11 − 0.000786x2
11 ≤ 15.7

(88)

Variable range: 
0.5 ≤ x1 − x7 ≤ 1.5
x8, x9 ∈ (0.192, 0.345)
−30 ≤ x10, x11 ≤ 30

(89)

The results of the car-crashworthiness-design problem are listed in Table 12. From the
contents, we can see that the optimal weight obtained by the MGTO is 23.1894. Furthermore,
it is certain that the MGTO is an efficient algorithm in solving the car-crashworthiness-
design problem.

Table 12. The comparative optimization results of the car-crashworthiness problem.

Algorithm MGTO GTO AOA SSA WOA ROLGWO PSO

x1 0.5000 1.3249 0.50000 0.6770 1.1079 0.5008 0.5000
x2 1.2294 0.8819 1.2827 1.1695 1.1202 1.2439 1.2222
x3 0.5000 0.5000 0.6364 0.5000 0.6965 0.5000 1.5000
x4 1.2006 1.2322 1.3636 1.1805 1.1535 1.1921 0.7412
x5 0.5000 0.5000 0.50000 0.9549 0.6840 0.5037 0.5000
x6 1.0917 1.0985 1.50000 0.9809 0.8071 1.2917 1.5000
x7 0.5000 0.5000 0.50000 0.5000 0.9805 0.5012 0.5000
x8 0.3450 0.34385 0.3450 0.3413 0.2748 0.3449 0.34500
x9 0.3450 0.19200 0.3084 0.2229 0.2587 0.2536 0.34500

x10 0.6436 4.4782 0.5795 3.5908 8.4836 3.1707 −0.20845
x11 0.3162 2.6609 −9.62291 −1.22041 17.8255 3.3177 3.2759

Optimal weight 23.1894 23.2046 25.8678 23.3121 28.9580 23.2527 23.1902

5.7. Tubular-Column Design

According to Figure 11, a tubular column is given to decrease the cost of supporting
the compressive load, p = 2500 kgf, and it consists of the yield stress, elastic modulus
and density.
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The functions, including the material and manufacturing costs, are considered. The
formulas can be expressed as follows:

Minimize:
f (d, t) = 9.8dt + 2d (90)

Constraints:
g1 =

P
πdtσy

− 1 ≤ 0 (91)

g2 =
8PL2

π3Edt(d2 + t2)
− 1 ≤ 0 (92)

g3 =
2.0
d
− 1 ≤ 0 (93)

g4 =
d

14
− 1 ≤ 0 (94)

g5 =
0.2
t
− 1 ≤ 0 (95)

Variable range:
0.01 ≤ d, T ≤ 100 (96)

The comparative optimization results of the tubular-column-design problem are
shown in Table 13.

Table 13. The comparative optimization results of the tubular-column-design problem.

Algorithm
Optimal Values for Variables

Optimal Cost
d T

MGTO 5.4511 0.2919 26.5313
HSCAHS 5.4170 0.3128 27.4745

AOA 7.5313 0.2223 31.5088
WOA 5.7562 0.2764 27.1415
GWO 5.4513 0.2919 26.5333

ROLGWO 5.4510 0.2919 26.5326
DSCA 5.5179 0.2899 26.7494
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The optimal solution obtained by the MGTO is 26.5313 when the variable x is 5.4511
and 0.2919. It is obvious that the proposed algorithm has advantages in solving the tubular-
column-design problem.

In summary, the advantages of the proposed algorithm are shown in this section.
Because the MGTO has great exploration and exploitation ability, it is superior to the
traditional GTO and other existing algorithms in regard to performance. Therefore, the
MGTO can be applied in practical engineering problems.

6. Conclusions and Future Work

The MGTO was proposed to modify the performance of GTO in this paper. Three
strategies were used to modify the basic GTO. Firstly, the QIBAS algorithm was utilized to
increase the diversity of the position of the silverback. Secondly, TLBO was introduced to
the exploitation phase to reduce the difference of the silverback and gorillas. Thirdly, the
QRBL generates the quasi-refraction position of the silverback to enhance the quality of the
optimal position.

For the comprehensive evaluation, the proposed MGTO was compared to the basic
GTO and eight other state-of-the-art optimization algorithms, namely AOA, SSA, WOA,
GWO, PSO, ROLGWO, DSCA and HSCAHS, on 23 classical benchmark functions, 30
CEC2014 benchmark functions, and 10 CEC2020 benchmark functions. The statistical
analysis results disclosed that MGTO is a very competitive algorithm and outperforms
other algorithms in regard to exploitation, exploration, escaping local optimum, and
convergence behavior. In order to further investigate the superior capability of the MGTO in
solving real-word engineering problems, the proposed algorithm was compared with other
algorithms, using seven constrained, complex and challenging problems. The obtained
results confirmed the high competency of MGTO to optimize real-word problems with
complicated and unknown search domains.

In future works, we hope that the MGTO will perform particularly well on more
real-world problems, such as image segmentation, feature selection and so on. Moreover,
the NFL theorem has also prompted researchers to improve more algorithms.
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