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Abstract: Geduldspiele cubes (also known as patience cubes in English) are interesting problems to
solve with robotic systems on the basis of machine learning approaches. Generally, highly dexterous
hand and finger movement is required to solve them. In this paper, we propose a reinforcement-
learning-based approach to solve simple geduldspiele cubes of a flat plane, a convex plane, and a
concave plane. The key idea of the proposed approach is that we adopt a sim-to-real framework
in which a robotic agent is virtually trained in simulation environment based on reinforcement
learning, then the virtually trained robotic agent is deployed into a physical robotic system and
evaluated for tasks in the real world. We developed a test bed which consists of a dual-arm robot
with a patience cube in a gripper and the virtual avatar system to be trained in the simulation world.
The experimental results showed that the virtually trained robotic agent was able to solve simple
patience cubes in the real world as well. Based on the results, we could expect to solve the more
complex patience cubes by augmenting the proposed approach with versatile reinforcement learning
algorithms.

Keywords: geduldspiele cube; robotic agent; sim-to-real transfer; reinforcement learning; proximal
policy optimization

1. Introduction

A reinforcement learning (RL) algorithm solves a problem by finding the optimal
policy through exploitation and exploration for a large number of episodes [1,2]. Dur-
ing this iterative process, the RL algorithm gathers sampling-based statistics, the ex-
pected cost/reward, after performing an action, which in turn serves as a basis to infer a
cost/reward functional. From an algorithmic viewpoint, the RL is also a class of data-driven
approaches to solve a sequential decision-making process given a model-free situation;
therefore, a “the more, the better” rule still holds for the size of datasets [3–5]. For physical
systems in practice, however, running the experiment through the large number of episodes
is somewhat impossible due to the fatigue of mechanical parts as well as safety-related
issues, e.g., potential risk, unexpected behavior, and so on [6].

“Sim-to-real transfer” is one way to overcome the abovementioned problematic issues
in RL. The key idea of sim-to-real transfer is to train a machine learning (ML) agent in a
simulation-based environment and deploy the virtually trained ML agent in the real world.
For a decade, there have been promising results disseminated in a broad range of robotic
application fields, such as peg-in-hole [7–9], cabinet door closing [7,9], handling deformable
object [10], complex dexterous manipulation [11], indoor visual navigation [12,13], and so
on. For machine-vision-involved robotic tasks, e.g., pick-and-place, vision-based grasping,
and deep visual servoing, domain adaptation/randomization has been applied to increase
the variety of domain and enhance task performance [14–17].

Recalling that the sim-to-real transfer aims at solving the real-world RL problems
ultimately, we can consider two implementation directions as follows:
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• A simulation world guarantees a physics engine with superior fidelity in order to
deploy a virtually trained RL agent into the real world directly after training.

• A small discrepancy in sense of physics between the simulation world and the
real world is allowed; however, the RL agent is endowed with the ability to over-
come/adapt the discrepancy that was not experienced during the simulation-based
training.

The former direction corresponds to the recent trend to develop more realistic physics
engines, such as MuJoCo [18], Raisim [19,20], Algoryx [21], Airsim [22], CARLA [23],
RotorS [24], etc. In contrast, the latter one is well exemplified by the meta-learning ap-
proach [16,25] and policy distillation [26,27]. Of course, these two directions have their own
pros and cons. Nevertheless, developing the physics model with superior fidelity would
rather be difficult for tasks involving haptic interactions, i.e., grasping a deformable object.
In addition, if we have perfect knowledge about a system model, including uncertainties,
then it would be better to apply a traditional control-based approach, e.g., a decentralized
control method to control a two-interconnected inverted pendulum [28,29].

A human being is a fast learner who can learn with few data indeed [25,30]. In our
daily living activities, dexterous hand manipulation, e.g., opening a bottle cap, twisting
door knobs, using chopsticks, is the best example showing the human ability to learn
complex tasks [31]. Under the RL framework, the optimal policy imitating human behavior
can be derived [32,33], and an inverse reinforcement learning approach enables us to model
a human behavior as a value function [34,35]. Compared to the RL agent, nonetheless,
the human being uses a meta-heuristic approach when the given task is highly complex,
such as dexterous hand manipulation [32,36]. Existing studies have reported successful
results for placing and pushing [33,37], door-locking, and Jenga [38]; however, the feasibility
of the RL algorithm for learning human-like meta-heuristic behavior in dexterous hand
manipulation has not yet been fully accounted for.

Inspired by the aforementioned findings to develop a dexterous robotic manipula-
tion system, in this paper, we propose an approach to solve the geduldspiele cubes via
sim-to-real transfer. Specifically, we first developed a dual-arm robot to manipulate the
geduldspiele cubes by a wrist–hand action in the real world, as well as a virtual robotic
agent in the simulation world, which serves as the avatar of the real robotic system. Next,
we trained the virtual robotic agent by proximal policy optimization under reinforcement
learning framework and scrutinized the feasibility of solving the more complex geduld-
spiele cube in both the simulation world and the real world. Finally, the experimental
results showed that the dual arm controlled by the virtually trained robotic agent could
solve the given geduldspiele cubes via the proposed sim-to-real transfer. Throughout this
study, our research question was “Can the virtually trained RL agent learn human-like
optimal policy to solve a simple geduldspiele cube?”.

The rest of the paper is organized as follows: our approach to solve the geduldspiele
cubes via sim-to-real transfer is introduced in Section 2. Specifically, our approach to cube
designs, dynamic models, and a developed sim-to real transfer framework are explained.
In Section 3, the experiment to train and evaluate the robotic agent for both the simulation
world problem and the real world problem is presented. The results are reported and
discussed in Section 4. Section 5 will be the conclusion and future work of this paper.

2. Approach to Solving Geduldspiele Cubes via Sim-to-Real Transfer
2.1. Geduldspiele Cubes in a Robotic Gripper: Flat, Convex, and Concave

Figure 1 shows a geduldspiele cube in a robotic gripper (left column) and the three
different types (right column) which are considered throughout this paper. In Figure 1,
those in the top row are the robotic hand and geduldspiele cubes in the real world and
those in the bottom row are objects in the simulation created by Blender (version 3.0.0,
Blender Foundation). The curvatures of a plane in each cube are flat, convex, and concave
from the left to the right, respectively.
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For the geduldspiele cubes, the given task is to locate an iron ball on a center hole
so that the iron ball is stuck to the center hole and does not move. In fact, there exist
24 different types of geduldspiele cubes for which highly dexterous hand manipulation, as
well as patience, is required to complete the cubes. Since the main purpose of this study
is to scrutinize the feasibility of solving the geduldspiele cubes by sim-to-real transfer,
wherein a reinforcement learning will serve as a playground to virtually train a robotic
agent, we start by challenging rather simpler ones.

Figure 1. A geduldspiele cube in a robotic gripper and the three different cube types according to the
curvature of a plane in the cube: the robotic gripper and the cubes in the real world (top row) and
the corresponding objects in the simulation (bottom row).

2.2. Dynamic Models: Ball–Plane Model and Ball–Hole Model

To derive the dynamic models, we hold the following two assumptions:

• The plane of the geduldspiele is flat.
• The linear velocity of the iron ball always passes through the center of the hole.

Our main purpose of analyzing dynamic models is to obtain an insight to define a
state vector and an action to virtually train our robotic agent in a reinforcement learning
framework. Indeed, Singh and Sutton introduced a mountain car problem solution ap-
proach in which the slope is considered as various frictions along the x-axis [39]. On the
basis of their findings, therefore, we also expect that the virtually trained robotic agent can
learn to solve the aforementioned geduldspiele cubes, which are flat, convex, and concave,
by regarding the curvature of the plane as a friction-like effect.

Figure 2 shows the robotic gripper and plane coordinate, wrist joint actuators, and two
ball–plane models with respect to rotating axes. We set the plane coordinates so that x-axis
and y-axis are aligned to rotation axes z4 and z-axis, respectively, as illustrated in Figure 2a.
Consequently, the xy-plane is aligned to the plane of the geduldspiele cube; hence, the iron
ball will be moving by tilting the plane with two actuators, which are denoted by A and B.
For this robotic gripper and geduldspiele cube system, the ball–plane model and ball–hole
model are discussed below. Note that we introduce the two models by recapitulating the
exiting models presented in [40–42].
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Figure 2. Coordinate setting: (a) the robotic gripper and plane coordinate and wrist joint actuators,
(b) actuator A and corresponding iron ball action along y-axis, and (c) actuator B and corresponding
iron ball action along x-axis.

2.2.1. Ball–Plane Model

By following [40,41], let Kp and Kb be the kinetic energy of the plane and the iron ball,
respectively. Kp and Kb can be defined as

Kp =
1
2

Jp θ̇2

Kb =
1
2

Jb β̇2 +
1
2

mbv2
b

(1)

where Jp is the moment of inertia of the plane and θ̇ is the angular velocity of the plane.
For the iron ball, Jb, β̇, mb, and vb represent the moment of inertia, the angular velocity,
the mass, and the linear velocity, respectively. From Figure 2b, we can easily find that β̇
and vb can be expressed by

β̇ =
ṗ
rb

and v2
b = ṗ2 + p2θ̇2 (2)

where rb is the radius of the iron ball. Substituting (2) into Kb in (1) yields

Kb =
1
2

(
Jb

r2
b
+ mb

)
ṗ2 +

1
2

mb p2θ̇2 (3)

Let Up and Ub be the potential energy of the plane and the iron ball, respectively. Up
and Ub are defined by

Up = mpg
l
2
(1 + sin θ)

Ub = mbgp sin θ
(4)



Appl. Sci. 2022, 12, 10124 5 of 17

where l and mp are the length and the mass of the plane, and g is a gravitational constant.
Now we can define the Lagrangian L for the ball–plane system:

L = (Kp + Kb)− (Up + Ub)

=
1
2

(
Jb

r2
b
+ mb

)
ṗ2 +

1
2
(Jp + mb)p2θ̇2 −mpg

l
2

sin(1 + θ)−mbgp sin θ
(5)

Let the generalized coordinate be q(t) = [p(t), θ(t)]T . By the Euler–Lagrange equation
of the first kind,

d
dt

(
∂L
∂ ṗ

)
− ∂L

∂p
= Fµ, (6)

hence, we have (
Jb

r2
b
+ mb

)
p̈ + mbg sin θ −mb pθ̇2 = Fµ (7)

where Fµ is the friction force defined by

Fµ = −µNsign( ṗ) = −µmbg cos θsign( ṗ). (8)

Similarly, by the Euler–Lagrange equation of the second kind,

d
dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= τ, (9)

we obtain
(mb p2 + Jp)θ̈ + 2mb pṗθ̇ + mbgp cos θ + mpg

l
2

cos θ = τ (10)

where τ is a torque generated by the actuator.

2.2.2. Ball–Hole Model

Figure 3 depicts the motion of an iron ball after crossing a closer boundary of a hole.
In Figure 3a, the iron ball is approaching the other side of the hole. β̇− represents the
angular velocity of the iron ball just before hitting the other side, and v−bt and v−br are the
tangential and radial component of vb, respectively. Those three values just after hitting the
other side are represented by β̇+, v+bt, and v+br, as shown in Figure 3b. φ is the angle between
a line connecting a ball center to a contact edge point and the vertical. Figure 3c shows that
the iron ball is at rest.

Figure 3. The motion of the iron ball (a) just before and (b) just after hitting the boundary of the hole,
and (c) the iron ball at rest (this figure is redrawn from [42]).

According to [42], there exist three possibilities for an iron ball after crossing the
boundary of a hole:

(1) v+bt might be negative, which implies the iron ball will be at the rest position eventually.
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(2) v+bt might be positive but small, so that it starts to deviate from the hole (this hap-

pens when v+bt
rb

< g cos φ). If it does not have enough mechanical energy to surely
deviate, then

mb(v+bt)
2

2
+

Jb(β̇+)2

2
< mbgrb(1− cos φ), (11)

and the iron ball will again be at rest.
(3) v+bt might be positive and large enough to deviate from the hole (this happens if

v+bt
rb

> g cos φ ). Afterward, the iron ball will (i) entirely escape from the hole or (ii) hit
the boundary of the hole again.

More elaborated models for ball–hole action can also be found in [43,44].

2.3. Derivation of LTI Ball–Plane System Model

By rewriting (7) and (10) as a standard form, we have

p̈ +
mbg

Jb/r2
b + mb

sin θ − mb p
Jb/r2

b + mb
θ̇2 =

Fµ

Jb/r2
b + mb

θ̈ +
2mb pṗ

mb p2 + Jp
θ̇ +

(
mbgp + mpg l

2
mb p2 + Jp

)
cos θ = τ

(12)

We linearize (12) by analyzing at the equilibrium, say se = [p, ṗ, θ, θ̇]T = [0, 0, 0, 0]T ,
which yields a small angle approximation assumption

θ ≈ 0, sin θ ≈ θ, cos θ ≈ 1− θ2

2
≈ 1.

Consequently, we obtain

p̈ = − mbg
Jb/r2

b + mb
+

Fµ

Jb/r2
b + mb

θ̈ = −
mpgl
2Jp

+
1
Jp

τ

(13)

For clarity, we set
1
Jp

τ =
mpgl
2Jp

+ τ̄

which involves a gravity compensation plus a pure control. Then, (13) becomes

p̈ = − mbg
Jb/r2

b + mb
+

Fµ

Jb/r2
b + mb

θ̈ = τ̄.
(14)

Now, let s = [p, ṗ, θ, θ̇]T ; (14) can be expressed as

ṡ =


0 1 0 0
0 0 − mbg

Jb/rb+mb
0

0 0 0 1
0 0 0 0

s +


0
0
0
1

τ̄ +


0
Fµ

Jr/rb+mb
0
0


= As + bτ̄

(15)
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By checking the controllability matrix, e.g., ctrb(A,b) in MATLAB, we can easily
know that the above system is controllable. Given desired eigenvalues λi, we can find a
state feedback control τ̄ = −ks yielding

ṡ = (A− bk)s (16)

which leads A− bk to be Hurwitz matrix and is stable.
Recall that the geduldspiele cube is controlled by two actuators along with the x- and

y-axis. By restoring p = [x, y]T , θ = [θx, θy]T , and τ̄ = [τ̄x, τ̄y]T , we have a continuous-time
state-space representation as follows:

s = [x, ẋ, θx, θ̇x, y, ẏ, θy, θ̇y]
T (17)

and

ṡ =
[

A11 A12
A21 A22

]
s +

[
b11 b12
b21 b22

]
τ̄ + F̄µ (18)

where

A11 = A22 =


0 1 0 0
0 0 − mbg

Jb/rb+mb
0

0 0 0 1
0 0 0 0

, A12 = A21 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

b11 = b22 = [0, 0, 0, 1]T , b12 = b21 = [0, 0, 0, 0]T ,

and

F̄µ =
1

Jr/rb + mb
[0, Fµ,x, 0, 0, 0, Fµ,y, 0, 0]T

=
1

Jr/rb + mb
[0,−µmbg cos θxsign(ẋ), 0, 0, 0,−µmbg cos θysign(ẏ), 0, 0]T

In addition, the state feedback control has the form of

τ̄ =

[
τ̄x
τ̄y

]
=

[
k1 k2 k3 k4 0 0 0 0
0 0 0 0 k5 k6 k7 k8

]
s (19)

where k1 through k8 can be calculated from given desired eigenvalues.
By rewriting (18) with shorthand notation, we have

ṡ = As + bτ̄ + F̄µ (20)

Now, we can express the corresponding discrete-time state-space representation
of (20) as

sk+1 = (I + A∆t)sk + bτ̄∆t + F̄µ∆t (21)

where I ∈ R8×8 and ∆t is a sampling time. We note that the definition of parameters and
their values appearing throughout the paper are summarized in Table 1.
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Table 1. The definition of variables and parameters.

Name Symbol Value Unit

Ball mass mb 1.057× 10−3 kg

Ball radius rb 3.175× 10−3 m

The moment of inertia
of the ball

Jb 4.262× 10−9 kg ·m2

Plate mass l 10× 10−3 kg

Plate length lx and ly
35.73× 10−3 and

51.14× 10−3 m

The moment of inertia
of the plate

Jp,x and Jp,y
1.064× 10−9 and

8.718× 10−6 kg ·m2

Coefficient of friction µ
0.3604

Identified
(see Section 2.4.1)

2.4. System Architecture for Sim-to-Real Transfer to Solve the Geduldspiele Cubes
2.4.1. Identifying the Friction Coefficient µ

A friction coefficient µ was marked as “identified” in Table 1. The idea to estimate
it by system identification process is that (i) we apply the sequence of control to the real
system and measure the trajectory of an iron ball, and (ii) we find µ which best reconstructs
the measured trajectory of the iron ball under the simulation using (18). The system
identification process to estimate µ is as follows:

1. Apply the sequence of motor command to a GS cube for 30 s, detect the position of
the iron ball, and record those positions (x, y) at every 200 ms.

2. Initialize µ by arbitrary value. Let ∆t = 20 ms and run simulations using (21), and
generate the trajectory of the ball. Extract every 10th x- and y-position of the ball
and store them as (xs, ys) (here, a subscript “s” is employed to distinguish the real
measurement value from the simulation outputs).

3. Define error to be e := ∑K
k=1‖(x, y)− (xs, ys)‖2 and find µ∗ that minimizes e.

By following the abovementioned process, we found µ∗ = 0.3604, which corresponded
approximately to the friction coefficient of dry plastic–metal contact. When the sign(x)
was substituted by tanh(10x) to guarantee continuity, µ∗ = 0.0207 and µ∗ = 0.0213 under
different initial value setting, which was close to the friction coefficient of the lubricated
plastic–metal contact [45].

2.4.2. Defining State, Action, and Algorithm to Virtually Train the Robotic Agent

Let xrel , yrel be the relative position of an iron ball with respect to a hole position (also
the goal of the geduldspiele cube problem) (xg, yg), thus

xrel := x− xg and yrel := y− yg. (22)

From (7), (10) and (11), we can obtain an insight to define a state vector: the state
should involve the generalized coordinate elements as well as the linear and angular
velocities along with them. For time step t, we define the state vector st ∈ R8×1 to be

st = [xrel,t, ẋt, θx,t, θ̇x,t, yrel,t, ẏt, θy,t, θ̇y,t]
T , (23)

Accordingly, the action at ∈ R2×1 can be defined as

at = [θ̈x, θ̈y]
T where θ̈x, θ̈y ∈ [−0.5◦,+0.5◦], (24)

which are related to two torques, τx and τy, proportionally.
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A reward Rt at time step t is defined by

Rt = e−c1(x2
rel,t+y2

rel,t) − c2(θ
2
x,t + θ2

y,t)− c3(θ̈
2
x,t + θ̈2

y,t) (25)

where c1, c2, c3 are tuning parameters and were set to 0.001, 0.1, and 0.05, respectively.
To make the robotic agent learn an optimal policy π∗(at|st), the proximal policy

optimization (PPO) is adopted due to its well-known strength against the problems akin to
control problems in continuous-time such as MuJoCo [46].

2.4.3. Our Sim-to-Real Transfer Architecture

Figure 4 shows the proposed sim-to-real architecture which consists of two main parts:
a robotic manipulator and a geduldspiele cube in the real world, and their avatar system
with the robotic agent in the simulation world. The key features of the proposed sim-to-real
architecture are as follows:

• The robotic agent is pretrained with the geduldspiele cube of a flat plane under a
reinforcement learning framework adopting PPO in the simulation world and knows
π∗(at|st).

• In the beginning, the state st (measured by camera and mask-RCNN) and reward Rt
in/from the real world are sent to the simulator.

• Based on the received state and reward, the robotic agent in the simulation world
generates the action at to control the robotic manipulator.

• The robotic manipulator takes the action to the geduldspiele cube; as a result, st+1 and
Rt+1 are sent to the simulator.

• Repeat the above process.

The details of the proposed sim-to-real architecture are discussed in Section 3 as well.

Figure 4. The proposed sim-to-real architecture: a real system diagram and camera view (left) and a
simulator system diagram and virtual reality view (right).
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3. Experiments
3.1. Experimental Setup
3.1.1. A Dual-Arm Robot, a Geduldspiele Cube, and a Camera in the Real World

Figure 5 shows our dual-arm robot, which will be referred to as geduldspiele (GS)-Bot
throughout this paper. From Figure 5a, the GS-Bot has seven dynamixel actuators (XM430-
W350-T, Robotis, Seoul, Korea): six for joints and one for a gripper per arm. It also has a
pinch-type gripper in one hand, and an Intel RealSense camera (d435i, Intel, Hillsboro, OR,
United States) is mounted on the other hand. All 14 dynamixel actuators are controlled via
a controller + motor driver unit (U2D2 PHB, Robotis, Seoul, Korea) under ROS. The DH
parameter for one arm of the GS-Bot is summarized in Table 2 (we note that the lateral
direction from the shoulder is assumed to be z0 of the base frame).

Figure 5. Our dual-arm robot manipulator. (a) A controller, dynamixel actuators, and Intel RealSense
camera. (b) The dual-arm robot is ready to start solving the given geduldspiele cube.

Table 2. The DH parameter for one arm of our dual-arm robot.

i ai αi di θi Remark

1 0 −π/2 77 0 spherical
shoulder #1

2 0 π/2 0 π/2 spherical
shoulder #2

3 0 −π/2 164 π upper arm

4 24 0 0 −π/2 elbow

5 124 π/2 0 −π/2 spherical
wrist #1

6 0 0 −120 0 spherical
wrist #2

In Figure 5b, the GS-Bot is at a task start position from where the scene presented
in Figure 4 (left bottom) can be taken by the camera from the top of the cube. At the
this position, the xy-plane of the cube coordinate frame is aligned to be parallel to the
ground. YOLO v4 was adopted to detect an iron ball inside a geduldspiele cube and
identify the ball position to calculate the relative position with respect to the center hole.
Then, the calculated relative position was Kalman-filtered. We note that only two actuators
at the spherical wrist joint are used to manipulate the cube during the solving process.
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3.1.2. A Virtual Wrist–Hand System and a Robotic Agent in the Simulation World

Figure 6 shows a virtual wrist–hand system in the simulation world according to three
different cube types: flat, convex, and concave. All characteristics of this virtual wrist–hand
system, e.g., scale, coordinate setting, etc., were matched to the real world system so that
it worked as an avatar system in the simulation world for a robotic agent training and
sim-to-real transfer.

For the training of the robotic agent, again, PPO was adopted under a reinforcement
learning framework, which is supported by the Unity. The hyperparameters were set as
follows: batch size = 10, buffer size = 100, learning rate = 0.0003, beta = 0.001, epsilon = 0.2,
lambda = 0.99, num_epoch = 3, and learning_rate_schedule = linear. The definition of each
hyperparameter can be found at [47].

Figure 6. Virtual wrist–hand system and a robotic agent: (a) a flat plane, (b) a convex plane, and (c) a
concave plane. Two-DoF spherical wrist joint action is only used to solve the given geduldspiele cube.

3.1.3. Miscellaneous

We here summarize the miscellaneous remarks for our environmental setup as follows:

• To train YOLO v4, 13,000 iron ball images were used, including light reflections.
• The OS for the main desktop computer was Ubuntu 20.04.
• ROS release was ROS-noetic.
• Unity version was 2020.3.
• ROS and Unity send/receive data via TCP/IP.

3.2. Experiment 1: Training and Evaluating the Task Performance of the Robotic Agent for Solving
the Virtual Geduldspiele Cubes in the Simulation Environment

In this experiment, we want to solve the problem of:

Given: The three “virtual” geduldspiele cubes.
Train: The robotic agent with the cube of a flat plane in the simulation world.
Solve: Each virtual geduldspiele cube in the simulation world.

The results will be analyzed in terms of success/fail and task completion time accord-
ing to the three virtual geduldspiele cubes.

3.3. Experiment 2: Evaluating the Task Performance of the Trained Robotic Agent for Solving the
Geduldspiele Cubes by Real Robotic Systems via Sim-to-Real Transfer

By performing this experiment, we want to scrutinize the feasibility of the proposed
sim-to-real architecture for:

Given: The three “real” geduldspiele cubes.
Employ: The “virtually trained” robotic agent with the cube of a flat plane in the
simulation world.
Solve: Each real geduldspiele cube in the real world.
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Again, the results will be presented and compared in terms of success/fail and task
completion time according to the three real geduldspiele cubes.

4. Results and Discussion
4.1. Result of Experiment 1

Figure 7 shows the snapshots while the robotic agent is solving the geduldspiele cubes
in simulation world. The pictures in the left column depict the movement of the wrist–hand
system along the time from top–bottom and left–right. The line graphs in the right column
represent the relative distance from the center hole with time stamps corresponding to the
snapshots on the left.
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Figure 7. Snapshots (left) and corresponding relative distance to the hole (right) while the robotic
agent is solving the geduldspiele cubes in the simulation world: (a) flat plane, (b) convex plane,
and (c) concave plane. Time stamps are marked by t0 through t3. The flat cube and the convex cube
are solved, but the concave is not.
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From Figure 7, we can see that the robotic agent could succeed in solving the flat
plane cube and the convex plane cube, but could not for the concave one. Figure 8 shows
that the convex one showed the best performance in terms of task completion time in the
simulation world.
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Figure 8. The comparison result of the trained robotic agent performance given the virtual GS cubes
of the flat plane, convex plane, and the concave plane in terms of success/failure and task completion
time in the simulation world.

4.2. Result of Experiment 2

Figure 9 shows the sim- and the real-world scenes as well as the relative distance
while the trained robotic agent is solving the real geduldspiele cubes. For a flat plane and a
convex plane, as shown in Figure 9a,b, the real geduldspiele cube problems were solved via
our sim-to-real transfer architecture. We note that since the unit of the relative distance is
mm, there exists a small error boundary, which is caused by state observation (thus, camera
measurement error), even after the iron ball reached the center hole.

Again, in the case of the real geduldspiele cube problem, the trained robotic agent
failed to solve the concave one. The failure cases of the concave cube in both the virtual
and the real world will be discussed in detail in the following section. Figure 10 presents
the comparison results of the trained robotic agent performance given the real cubes of
the flat plane, convex plane, and the concave plane in terms of success/failure and task
completion time. For more information, please refer to Video S1.
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Figure 9. The sim- and the real-world scenes as well as the relative distance while the trained robotic
agent is solving the real geduldspiele cubes: (a) flat plane, (b) convex plane, and (c) concave plane.

Figure 10. The comparison results of the trained robotic agent performance given the real GS
cubes of the flat plane, convex plane, and the concave plane in terms of success/failure and task
completion time.
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4.3. Discussion

When the proposed approach was initiated, we expected that the robotic agent trained
with a flat curve would be able to solve the cubes of different curvatures. This expectation
had a basis on the existing findings in [39] and the strength of PPO for continuous-like
control problems, e.g., mountain car, MuJoCo, etc. However, in our sim-to-real framework,
the trained robotic agent failed to solve the concave cubes in both the virtual and the real
world.

One possible reason is the discrepancy of the problem itself between the mountain car
problem and the concave geduldspiele cube, especially for the termination condition. In the
mountain car problem, merely passing the goal is accounted for as a success, although the
car does not stay at the goal. In contrast, for the concave cube problem, the reinforcement
learner should learn the optimal policy to reach the goal as well as to maintain the ball
around the goal.

Another possible reason is that the concave cube problem seems similar to flat and
convex cube problems geometrically; however, the required level of the dexterity for force
control might be truly difficult. In this case, a meta-learning-based approach would be a
promising solution.

Lastly, the limitations of this study can be summarized as follows:

• The geduldspiele cubes considered in this study were simpler ones. Generally,
the other cubes are much more difficult to solve.

• We set the sampling time for both the sending/receiving (st, Rt) and at via TCP/IP
small enough; however, there might exist a delay which can affect the proposed system
performance since it is not indeed real time (or even close to real time).

5. Conclusions and Future Work

This paper proposed an approach to solve the three GS cubes via sim-to-real transfer.
We started by deriving the dynamic models of ball–plane and ball–hole. We then presented
the continuous and discrete state-space model. The optimization-based approach to identify
a friction coefficient was introduced. We also presented the definition of a state as well as
reward function to formulate the RL problem, followed by showing our sim-to-real transfer
architecture. From the experimental result, we could find the answer for our research
question; that is, the virtually trained robotic agent was able to solve the geduldspiele cubes
of a flat plane as well as a convex plane. However, the concave was solved neither in the
real world nor in the virtual world.

The contributions of this paper can be summarized as follows. First, we derived
the dynamic model for a simple GS cube and presented the LTI system model. Next,
the optimization-based approach to estimate a friction coefficient between ball and plate
was introduced. The sim-to-real transfer architecture to solve the GS cube was proposed;
finally, the results showed that the flat and convex planes were solved under the proposed
approach. Therefore, this study substantiates that the optimal policy to imitate human-like
behavior could be obtained by applying the proposed approach.

Future work should be followed in the direction of elaborating the proposed approach
and challenging more complex GS cube problems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app121910124/s1, Video S1: Can a Robotic Agent Solve Simple
Geduldspiele Cubes via Sim-to-Real Transfer?

Author Contributions: Conceptualization: H.-U.Y.; methodology: J.-H.Y. and H.-U.Y.; software:
J.-H.Y., H.-J.J., J.-H.K., D.-H.S. and H.-U.Y.; formal analysis: J.-H.Y., J.-H.K. and H.-U.Y.; investigation:
J.-H.Y., H.-J.J. and H.-U.Y.; resources: D.-H.S. and H.-U.Y.; data curation: J.-H.Y. and H.-U.Y.; writing—
original draft preparation: J.-H.Y., H.-J.J., J.-H.K., D.-H.S. and H.-U.Y.; writing—review and editing:
J.-H.Y., H.-J.J., J.-H.K., D.-H.S. and H.-U.Y.; visualization: J.-H.Y., H.-J.J. and H.-U.Y.; supervision:
H.-U.Y.; project administration: H.-U.Y.; funding acquisition: H.-U.Y. All authors have read and
agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/app121910124/s1
https://www.mdpi.com/article/10.3390/app121910124/s1


Appl. Sci. 2022, 12, 10124 16 of 17

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (Grant No. 2021R1F1A1063339) and the MSIT National
Program for “Excellence in SW (Grant No. 2019-0-01219)” supervised by the Institute of Information
and Communications Technology Planning and Evaluation (IITP) in 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RL Reinforcement learning
ML Machine learning
GS Geduldspiele
LTI Linear time invariant
PPO Proximal policy optimization
ROS Robotic Operating System

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
2. Zhao, W.; Queralta, J.P.; Westerlund, T. Sim-to-real transfer in deep reinforcement learning for robotics: A survey. In Proceedings

of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 737–744.
3. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep reinforcement learning. Found.

Trends® Mach. Learn. 2018, 11, 219–354. [CrossRef]
4. Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274.
5. Levine, S.; Kumar, A.; Tucker, G.; Fu, J. Offline reinforcement learning: Tutorial, review, and perspectives on open problems.

arXiv 2020, arXiv:2005.01643.
6. Garcıa, J.; Fernández, F. A comprehensive survey on safe reinforcement learning. J. Mach. Learn. Res. 2015, 16, 1437–1480.
7. Du, Y.; Watkins, O.; Darrell, T.; Abbeel, P.; Pathak, D. Auto-tuned sim-to-real transfer. In Proceedings of the 2021 IEEE

International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 1290–1296.
8. Jin, S.; Zhu, X.; Wang, C.; Tomizuka, M. Contact pose identification for peg-in-hole assembly under uncertainties. In Proceedings

of the 2021 American Control Conference (ACC), Online, 25–28 May 2021; pp. 48–53.
9. Chebotar, Y.; Handa, A.; Makoviychuk, V.; Macklin, M.; Issac, J.; Ratliff, N.; Fox, D. Closing the sim-to-real loop: Adapting

simulation randomization with real world experience. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8973–8979.

10. Matas, J.; James, S.; Davison, A.J. Sim-to-real reinforcement learning for deformable object manipulation. In Proceedings of the
Conference on Robot Learning, PMLR, Zürich, Switzerland, 29–31 October 2018; pp. 734–743.

11. Rajeswaran, A.; Kumar, V.; Gupta, A.; Vezzani, G.; Schulman, J.; Todorov, E.; Levine, S. Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations. arXiv 2017, arXiv:1709.10087.

12. Sadeghi, F.; Levine, S. CAD2RL: Real Single-Image Flight without a Single Real Image. arXiv 2016, arXiv:1611.04201.
13. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Fei-Fei, L.; Farhadi, A. Target-driven visual navigation in indoor scenes using

deep reinforcement learning. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June 2017; pp. 3357–3364.

14. Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain randomization for transferring deep neural networks
from simulation to the real world. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Kyoto, Japan, 24–28 September 2017; pp. 23–30.

15. Bateux, Q.; Marchand, E.; Leitner, J.; Chaumette, F.; Corke, P. Training deep neural networks for visual servoing. In Proceedings of
the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3307–3314.

16. Arndt, K.; Hazara, M.; Ghadirzadeh, A.; Kyrki, V. Meta reinforcement learning for sim-to-real domain adaptation. In Proceedings
of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Online, 31 May–31 August 2020; pp. 2725–2731.

17. Puang, E.Y.; Tee, K.P.; Jing, W. Kovis: Keypoint-based visual servoing with zero-shot sim-to-real transfer for robotics manipulation.
In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA,
25–29 October 2020; pp. 7527–7533.

18. Todorov, E.; Erez, T.; Tassa, Y. Mujoco: A physics engine for model-based control. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 5026–5033.

http://doi.org/10.1561/2200000071


Appl. Sci. 2022, 12, 10124 17 of 17

19. Hwangbo, J.; Lee, J.; Hutter, M. Per-contact iteration method for solving contact dynamics. IEEE Robot. Autom. Lett. 2018,
3, 895–902. [CrossRef]

20. Ji, G.; Mun, J.; Kim, H.; Hwangbo, J. Concurrent Training of a Control Policy and a State Estimator for Dynamic and Robust
Legged Locomotion. IEEE Robot. Autom. Lett. 2022, 7, 4630–4637. [CrossRef]

21. Berglund, T.; Algoryx Simulation, A.; Mickelsson, K.O.; Servin, L.M. Virtual commissioning of a mobile ore chute. Simulation
2018, 10, 14.

22. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field
and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 621–635.

23. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the
Conference on Robot Learning, PMLR, Mountain View, CA, USA, 13–15 November 2017; pp. 1–16.

24. Furrer, F.; Burri, M.; Achtelik, M.; Siegwart, R. Rotors—A Modular Gazebo Mav Simulator Framework. In Robot Operating System
(ROS); Springer: Berlin/Heidelberg, Germany, 2016; pp. 595–625.

25. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the
International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 1126–1135.

26. Kaplanis, C.; Shanahan, M.; Clopath, C. Continual reinforcement learning with complex synapses. In Proceedings of the
International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 2497–2506.

27. Traoré, R.; Caselles-Dupré, H.; Lesort, T.; Sun, T.; Díaz-Rodríguez, N.; Filliat, D. Continual reinforcement learning deployed in
real-life using policy distillation and sim2real transfer. arXiv 2019, arXiv:1906.04452.

28. Shi, L.; Singh, S.K. Decentralized control for interconnected uncertain systems: Extensions to higher-order uncertainties. Int. J.
Control 1993, 57, 1453–1468. [CrossRef]

29. Amor, R.B.; Elloumi, S. On decentralized control techniques of interconnected systems-application to a double-parallel inverted
pendulum. In Proceedings of the 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET),
Hammamet, Tunisia, 14–17 January 2017; pp. 85–90.

30. Tsividis, P.A.; Pouncy, T.; Xu, J.L.; Tenenbaum, J.B.; Gershman, S.J. Human learning in Atari. In Proceedings of the 2017 AAAI
Spring Symposium Series, Stanford, CA, USA, 27–29 March 2017.

31. Zhu, H.; Gupta, A.; Rajeswaran, A.; Levine, S.; Kumar, V. Dexterous manipulation with deep reinforcement learning: Efficient,
general, and low-cost. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montral, QC,
Canada, 20–24 May 2019; pp. 3651–3657.

32. Finn, C.; Yu, T.; Zhang, T.; Abbeel, P.; Levine, S. One-shot visual imitation learning via meta-learning. In Proceedings of the
Conference on Robot Learning, PMLR, Mountain View, CA, USA, 13–15 November 2017; pp. 357–368.

33. Yu, T.; Abbeel, P.; Levine, S.; Finn, C. One-shot hierarchical imitation learning of compound visuomotor tasks. arXiv 2018,
arXiv:1810.11043.

34. Ng, A.Y.; Russell, S. Algorithms for inverse reinforcement learning. In Proceedings of the Seventeenth International Conference
on Machine Learning (ICML 2000), Stanford, CA, USA, 29 June–2 July 2000; Volume 1, p. 2.

35. Abbeel, P.; Ng, A.Y. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the Twenty-First International
Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 1.
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