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Abstract: As the complexity and cost of industrial systems continue to increase, so does the need
for the safety and reliability of industrial systems. In recent years, in the field of mechanical fault
diagnosis, methods based on deep learning are gradually gaining popularity. The traditional deep
learning method assumes that the training set and the test set belong to the same working condition,
which is contrary to the actual industrial process. In order to improve the general ability of the fault
diagnosis model, researchers start to study the domain adaptation method. However, most domain
adaptation methods do not impose constraints on the test set, which leads to the occurrence of the
domain mismatch problem. This paper proposes a multi-source consistency domain adaptation
neural network MCDANN, which uses sub-domain division alignment and multi-source prediction
consistency to achieve fine-grained domain matching and improve the transfer accuracy of the model.
This paper conducts domain adaptation experiments on the open-source bearing fault dataset CWRU
and DIRG bearing dataset and compares them with other classical methods. Experiments show that
in the case of a signal-to-noise ratio of −4, the MCDANN model achieves an average diagnostic
accuracy of more than 96% on the CWRU dataset and the DIRG dataset on noisy fault signals from
the target domain, and is superior in almost all fields than other adaptive models.

Keywords: deep learning; domain adaptation; fault diagnose

1. Introduction

With the increasing complexity and cost of industrial systems, people’s tolerance for
equipment performance degradation and safety hazards is getting lower and lower, and
the requirements for safety and reliability are gradually increasing. Early detection and
identification of faults to avoid dangerous situations is crucial [1–3]. A fault is defined as a
phenomenon in which the deviation between one or more parameters of the system and the
normal state exceeds a certain threshold, resulting in the inability of the system to perform
the specified function. Fault diagnosis is the process of discovering and distinguishing
fault types in time according to the state of these parameters. The current fault diagnosis
methods mainly carry out fault diagnosis from the three perspectives of signal, model and
knowledge [4]. Signal-based methods require certain prior knowledge to transform [5],
extract representative features in the time or frequency domain using advanced signal
processing techniques [6,7], and often combined with machine learning methods or neural
networks to achieve good results [8,9]. As mechanical systems become increasingly com-
plex, developing the physical models required for model-based approaches is difficult and
expensive [5]. At the same time, the increased availability of data collected from multiple
monitoring sensors and the ability of artificial intelligence algorithms to process the data has
brought great potential for the development of advanced data-driven approaches [10,11].
Therefore, data-driven knowledge-based methods have also become one of the current
research hotspots.

With the development of deep neural networks, in recent years, intelligent fault diag-
nosis has ushered in a new stage of development. The latest achievements in the field of
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deep learning in the computer field are continuously applied to the field of fault diagno-
sis, such as convolutional neural networks (CNN) [12–14], Deep Belief Networks [15–17],
Residual Networks [18], Deep Auto-encoder (DAE) [19] as well as the latest Attention
Networks [20–22].

In practical applications, the training data and the actual running data often come from
different distributions, so although deep learning methods have made impressive progress,
these practical problems will hinder their application in the industry [23]. Specifically, its
main contradiction is as follows: In practical industrial applications, the source domain
labeled data and the target domain unlabeled data collected under different working
conditions have different distributions, which means that the deep learning model learned
on the source domain can not be directly used on the target domain data. It is better to
obtain the labeled fault data of the machine on the target domain; At the same time, for
rotating machines, the labeled fault data on the source domain can be artificially generated
during testing, so that It can be obtained at a small cost; Bnd once it enters the actual
industrial production conditions, that is, the target domain, to obtain the labeled fault data,
not only requires a high time cost but also may pay huge economic losses even life costs.
Therefore, to solve the above contradictions, the development of a domain adaptation
model is an important method and is getting more and more attention.

Domain adaptation is mainly achieved through discrepancy-based strategies or con-
ducting adversarial learning strategies [24]. Discrepancy-based methods try to enhance
the domain similarity by measuring the distance between the source and target domains
on the feature layer of the model and reducing this distance using statistical methods or
machine learning methods so that the model learned on the source domain can be used on
the target domain. For example, Zhang et al. combined the maximum variance discrepancy
with the MMD for the feature matching [25]. Deng et al. developed an ordered spectrum
transfer algorithm to transfer the target data to the source domain [26]. Zhu et al. [27]
and Che et al. [28] realizes domain alignment on the last two feature extraction layers of
their networks. Adversarial-based methods learn invariant features between domains
by introducing a domain discriminator to encourage domain confusion [29]. Jiao et al.
proposed a Double-level adversarial network that simultaneously achieves domain align-
ment and class alignment [30]. Based on the use of domain classifiers, Li et al. enhanced
the generalization of the learned features by using multiple class classifiers [31]. Guo
et al. learn domain-invariant features via a domain classifier and MMD distance [32]. Li
et al. adversarial training and distance metric, and scale the vibration data to enhance
robustness [33]. Zhao et al. get an accurate value of joint discrepancy by improving joint
distribution adaptation [34]. In the work of Zhang et al. [35], a new framework WDCNN
combined with adaptation batch normalization was proposed. The one-dimensional signal
is used as input in the first convolutional layer, and convolution is performed with a wide
kernel (64) to suppress high-frequency noise. Domain adaptation is then achieved by
extracting the mean and variance of the target domain signal and passing them to AdaBN.

Although the above domain adaptation methods have achieved good results, they
all match the features in the domain from a global perspective, without considering more
fine-grained information. This may allow the model to match different classes of data
between the source and target domains, a phenomenon known as domain mismatch. In
order to solve this problem, people are also studying how to introduce fine-grained (such
as label) information into domain matching. Zhu et al. [36] proposed a Deep Subdomain
Adaption Network (DSAN), which divided the original domain into several subdomains
according to the similarity of the samples and then aligns the corresponding subdomains
in the source domain as well as the target domain. However, this method only has a
good effect on some specific data sets, and even has the opposite effect on the bearing
fault data set. In order to effectively improve the accuracy of sub-domain alignment, this
paper proposes a method of multi-source prediction consistency to improve the prediction
accuracy of pseudo-labels, so as to achieve more accurate sub-domain alignment.
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The main contributions of this paper are as follows: (1) A domain adaptation network
combining DANN [37] and LMMD is proposed; (2) Fine-grained alignment with LMMD
method is greatly improved with Multi-source consistency and majority voting. (3) Experi-
ments are performed on the CWRU and DIRG [38] dataset to demonstrate the effectiveness
of the proposed method.

The rest of the paper is organized as follows: Section 2 describes the proposed method
and the structure of the model. Section 3 presents the experiments and results. Section 4
discusses the pros and cons of several distance metrics, as well as the effectiveness of multi-
source methods. Section 5 provides the conclusion and possible future research directions.

2. Proposed Model

In this paper, we propose a multi-source consistency domain adaptation neural net-
work MCDANN. First, on a CNN network, a gradient reversal layer is used to connect a
domain classifier with the feature extractor, and the transfer of the model between domains
is realized through the adversarial training of the feature extractor and the domain classifier.
For the domain mismatch problem in domain adaptation training, subdomain alignment
and multi-source domain adaptation methods are used to perform more fine-grained match-
ing on domains. Taking the label of the data as a sub-domain, the pseudo-label method is
applied to realize the division and alignment of the unlabeled target domain and the labeled
source domain. In order to improve the accuracy of pseudo-labels, classifiers trained in
different source domains are used to predict the target domain. The pseudo-labels are
determined from several groups of predictions by the method of majority voting, and the
cross-entropy loss is used to calculate the difference between the predictions of each group
as a consistency loss which will be added to the loss function. Extract features from data
with the same label in different domains, and use LMMD to calculate the distance between
them and add the distance to the loss. The proposed model framework is shown in Figure 1
and will be described in detail below.
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Figure 1. MCDANN architecture.

2.1. Domain Adaptation Network Based on DANN and MK-MMD

The model proposed in this paper is based on the Domain Adversarial Neural Network
(DANN) [37]. DANN is a pioneering work that uses an adversarial method to complete
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domain adaptation, which is inspired by the adversarial generative network. The DANN
network is divided into three parts, one is the feature extractor, which maps the source
domain and the target domain into a feature space with small distribution differences; the
other is the label classifier, the source domain data features is obtained through the feature
extractor and classified through label classifier, the loss is calculated for the classification
result, and the parameters of the feature extractor and the label classifier are updated; the
third is the domain classifier, the source domain data features and the target domain data
features are obtained through the feature extractor, and are input to the domain classifier,
the loss is calculated for the domain classification result, and the parameters of the feature
extractor and the domain classifier are updated. The feature extractor and the domain
classifier form an adversarial network. The feature extractor improves the ability to confuse
the domain in the confrontation, and the domain classifier improves the ability of the
domain classification in the confrontation, so this loss is called the adversarial loss. At
the same time, the gradient reversal layer GRL is applied in this adversarial network, so
that the feature extractor and domain classifier in the adversarial network can perform
parameter updates at the same time. The training process of the DANN network is shown
in Figure 2.

Feature 
Extractor

Label 
Predictor

Domain 
Classifier

Adversarial 
Loss

Source and 
Target Data

Target
Feature

Source 
Feature

Classfication 
Loss

GRL

Loss
Function
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Figure 2. DANN training process.

The loss function of the DANN network includes label classification loss and domain
adversarial loss, as shown in Formula (1):

E = ∑
i=1,...,N

di=0

Ly

(
Gy

(
G f (xi)

)
, yi

)
− λ ∑

i=1,...,N
Ld

(
Gd

(
G f (xi)

)
, yi

)
(1)

where the function G f represents the feature extractor, which maps the input xi into a feature
space. Gy is the label classifier, giving label predictions on the data. Gd is the domain classifier,
used to predict the domain of the data. Ly is the difference between the prediction of the label
classifier and the real label, and di = 0 means that only the source domain data is predicted.
Ld is the difference between the predicted domain and the real domain.
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In addition, DANN introduces a gradient reversal layer which allows the loss func-
tion to be calculated as a whole, thereby realizing an end-to-end network structure.
The Formula (2) of the gradient reversal layer and its derivative Formula (3) are as follows:

Rλ(x) = x (2)

dRλ

dx
= −λI (3)

Equations (2) and (3) indicate that, on the gradient reversal layer, the data does not
change during the forward propagation process, but the opposite gradient direction will
be obtained during backward propagation. Using this feature, a gradient reversal layer is
connected before the domain classifier. During backpropagation, the gradient result from
the domain classification loss function will be automatically reversed at this layer, so that
the domain classification loss and the classification loss can be a whole for training. At this
time, the formula of the loss function is as shown in (4):

E = ∑
i=1,...,N

di=0

Ly

(
Gy

(
G f (xi)

)
, yi

)
+ ∑

i=1,...,N
Ld

(
Gd

(
Rλ

(
G f (xi)

))
, yi

)
(4)

Based on a CNN network consisting of three layers of convolution and pooling, one
layer of global average pooling and two fully connected layers, we use a gradient reversal
layer to connect a pattern classifier whose output is 2 categories, with the feature extractor
to implement a basic domain adaptation network.

The basic domain adversarial adaptation network performs well in cross-domain
diagnosis of pure signals. In various cross-domain tests, it can achieve nearly 100% accuracy
on the target domain, but there is still room for improvement when it comes to the cross-
domain performance of noisy signals. For example, on a noisy signal with a signal-to-noise
ratio of −4, the classification of the source domain is close to 100%, while the accuracy rate
on the target domain is only about 90% on average. Therefore, other methods need to be
introduced to assist the domain adversary neural network to find a better feature space.

In order to further improve the accuracy of model transfer, it is worthwhile to use
appropriate metrics to assist network training based on adversarial theory. In the field of
transfer learning, Maximum Mean Discrepancy (MMD) distance is one of the most classic
metrics. Map a distribution with a Gaussian kernel function to a point on the corresponding
Reproducing Kernel Hilbert Space (RKHS), and the inner product between points can be
used to describe the relationship between their corresponding distributions. The expression
of MMD distance is as described in Equation (5):

MMD[F, p, q] := sup
f∈F

(
Ep[ f (xs)]− Eq[ f (xt)]

)
(5)

where f is a function belonging to the function domain F. The intuitive meaning of this
formula is to map the data from two fields having different distributions with an arbitrary
function from the defined function domain, and then take the maximum value of the
expected difference of the two mapped values as the MMD distance.

In MMD, the chosen kernel function to map the source domain and the target domain is
fixed, and the kernel function such as Gaussian kernel or linear kernel is selected manually.
However, manual selection cannot determine which kernel function is suitable for solving
the problem. To this end, Gretton et al. proposed the MK-MMD distance. That is to use
multiple kernels to construct a kernel, the formula of MK-MMD is shown in (6):

d2
k(p, q) ,

∥∥Ep[ϕ(xs)]− Eq[ϕ(xt)]
∥∥2

Hk
(6)
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where Hk is the RKHS obtained by a feature kernel k, which is defined by multiple kernels
together, as shown in Formula (7):

K ,

{
k =

m

∑
u=1

βuku : βu ≥ 0, ∀u

}
(7)

Note that the kernel function of MK-MMD is obtained from m different weighted
kernels, and the weight is βu.

On the basic network structure shown in Figure 2, let the target domain data also
participate in the training of the label classifier, and then use the output of each layer in
the label classifier as the feature space. Take the feature output of the source domain data
and target domain data in these network layers, compute their MK-MMD distance, and
incorporate it into the original loss function as part of the loss function. The way to apply
the MK-MMD distance is shown in Figure 3, specifically, conv1, 2, 3 are convolutional
layers, the gap is the global average pooling layer, fc1, 2 are fully connected layers, and
these two feature extraction networks in the figure are actually the same one. A loss is
obtained by calculating the mk-mmd distance of the features of different domain data from
the gap layer, fc1 and fc2 layers, and added to the overall loss.

Conv1 Conv2 Conv3 Gap Fc1

Conv1 Conv2 Conv3 Gap Fc1

Source
Data

Target
Data

Fc2

Fc2

Source
Pred.

Target
Pred.

Distance Loss

MK-MMDMK-MMDMK-MMD

Figure 3. Application of MK-MMD distance.

Compared with the original adversarial network, the adversarial network combined
with the MK-MMD distance can achieve a certain accuracy improvement. However, the
accuracy improvement by adding MK-MMD distance is still limited, and there are still
different degrees of errors in cross-domain diagnosis. This is due to the existence of the
domain mismatch problem. Therefore, other methods should be applied to deal with it.

2.2. MCDANN
Subdomain Division and Alignment

In the process of domain adaptation network training, when the adversarial loss
and feature distance are small enough and the network approaches convergence, there
are still many errors in fault identification in the target domain, and the classification
accuracy remains at a certain level for a long time. If the ground truth and predicted labels
are printed, it can be observed that the model will always misidentify one type of fault
as another.

Therefore, DSAN [36] proposes to divide the original domain into several sub-domains
according to the similarity of the samples, and then align the corresponding sub-domains
from the source and target domains, as shown in Figure 4.

Based on the idea of sub-domain adaptation, this paper uses data labels as the basis
for sub-domain division and aligns the features of the source domain data and the target
domain data with the same label. Since the target domain is unlabeled in the training
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process of domain adaptation, we use the predicted pseudo-label of the target domain to
align with the real label of the source domain. The label classifier obtained by supervised
training on the source domain is used to predict pseudo-labels of the target domain’s data;
afterward, these pseudo-labels were used to correspond to the real label of the data from
the source domain, finally divide these two domains into sub-domains according to the
labels and align every two subdomains having the same labels which come from the source
domain and target domain, respectively.

Source Target

Divide and Align

Figure 4. Schematic diagram of Domain Adaptation.

After aligning the subdomains, the distance loss is changed from Equation (6) to the
Local MMD distance (LMMD) shown in Equation (8):

d2
k(p, q) =

1
C

c

∑
c=1

∥∥∥∥∥∥∥ ∑
xs

i∈Ds

wsc
i ϕ(xs

i )− ∑
xt

j∈Dt

wtc
j ϕ
(

xt
j

)∥∥∥∥∥∥∥
2

Hk

(8)

Among them, c represents the label, and w represents the weight. In this paper, since
the label is used as a subdomain, the definition of the weight is shown in (9):

wsc
i =

yic

∑(xj ,yj)∈D yjc
(9)

However, this method relies on the predicted label from the classifier. The weight
update of the label classifier still only relies on the source domain data, while no constraints
are imposed on the target domain data. Since the target domain data does not have real
labels that can be used to test the correctness of the predictions, it is difficult to correct the
predicted labels of the classifier for data from the target domain.

Therefore, using the pseudo-label method cannot really solve the problem of domain
mismatch. In the bearing data studied in this paper, using the LMMD distance is even
less effective than using the MK-MMD distance. In order to improve the accuracy of
pseudo-labels, a multi-source domain adaptation method is introduced in this paper.

2.3. Multi-Source Prediction Consistency

When using a single labeled source domain to align with the target domain, the fine-
grained information that can be obtained is limited, and only the source domain label can
help the subdomain alignment. Using data from multiple source domains with different
distributions and allowing them to participate in domain adaptation training at the same
time can obtain more label information. This richer label information can be used to correct
the alignment of sub-domains, which can improve pseudo-label prediction accuracy. The
difference between single-source domain adaptation and multi-source domain adaptation
is shown in Figure 5.
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Target Source1 Source2 Source3

Single-Source Domain 
Adaptation

Multi-Source Domian 
Adaptation

Figure 5. Single-source domain adaptation and multi-source domain adaptation.

Use two or more working conditions as the source domain and the remaining one as
the target domain. Weighting the adversarial loss and distance loss between several source
and target domains before optimizing them yields higher accuracy than using only a single
working condition as the source domain.

In addition, using data from multiple source domains can also improve the accuracy
of pseudo-labels prediction in the target domain. When matching different source domains
and target domains, if the model transfer is successful, it means that when the label
classifiers from different source domains are applied to predict the same data in the target
domain, the obtained pseudo labels should be consistent. The difference between several
pseudo-labels can also be added to training as a loss function. In this way, the accuracy of
the pseudo-label can be greatly improved.

When using multiple source domains for training, the training of the model is divided
into two stages. In the first stage, the model is trained on multiple source domains,
respectively. We can obtain the label classification loss and adversarial loss from the
domain discriminator on each source domain, and take out their feature output on the
feature layer for subsequent calculations. At the same time, for training on each source
domain, the obtained label classifier is used to predict the target domain data, and then the
pseudo-label of the target domain is determined by majority voting.

In the second stage, train on the target domain data to obtain the adversarial loss of
the domain discriminator, and combine the adversarial loss calculated by multiple source
domain data to obtain the overall domain adversarial loss. After obtaining the feature
output on the target domain, the LMMD distances are calculated with the output feature of
other source domains separately according to the pseudo-label, which are then summed
as the distance loss. The difference between the pseudo-labels predicted in the first stage
is also calculated with cross-entropy and then taken into consideration as the consistency
regularization loss.

The loss function of multi-source domain adaptation is shown in Equation (10):

E = ∑
i=1,...,N

(
Ly(si) + Ld(si, t) + Ll(si, t)

)
+ ∑

i,j=1,...,N
Lce
(
Gy(si), Gy

(
sj
))

(10)

where Ly is the loss function of the label classifier, Ld represents the domain loss function
of the source domain and the target domain, Ll represents the distance loss between the
source domain and the target domain (using LMMD distance), and Lce is the cross entropy
loss function. The difference between the pseudo-labels predicted by the classifiers trained
on the different source domains is taken as the consistency regularization loss.

This model combining multiple domain losses and constraining pseudo-labels with
consistency regularization is called Multi-Source Consistency Domain Adaptation Neural
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Network (MCDANN). MCDANN consists of three network components, which are a
feature extractor, a domain classifier, and a label classifier. The feature extractor includes
three network blocks, which have the same network structure, including a convolutional
layer, a ReLU layer, a BatchNorm layer, a convolutional layer, and a ReLU layer. The
label classifier and domain classifier have the same network structure, including a fully
connected layer, a BatchNorm layer, a ReLU layer, a fully connected layer, and a Softmax
layer. The network structure of the three network components in MCDANN is shown in
Figure 6.

Conv ReLU

BatchNorm

Conv ReLU

Images

Features

Conv ReLU

BatchNorm

Conv ReLU

Conv ReLU

BatchNorm

Conv ReLU

(a)

Fc BatchNorm

ReLU

Fc Softmax

Features

Labels

Fc BatchNorm

ReLU

Fc Softmax

Features

Domains

(b) (c)

Figure 6. Network structure of the feature extractor, label classifier and domain classifier in MC-
DANN. (a) Feature Extractor; (b) Label Classifier; (c) Domain Classifier.

The pseudo-code of the proposed MCDANN training process is shown in Algorithm 1.

Algorithm 1 Training process of MCDANN.

Input: Source domain data D1
S, . . . , DN

S , target domain data Dt
Output: Parameters θ f , θy, θd in the model

1: for i = 1→ n do
2: Forward:
3: Calculate classification loss
4: Calculate adversarial loss
5: Calculate consistency loss
6: Get pseudo labels by majority voting
7: Calculate distance loss
8: Backward:
9: Calculate gradient

10: Update:
11: Update model parameter θ
12: end for
13: return θ f , θy, θd
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3. Experiments
3.1. Dataset

The dataset used in this paper is the bearing dataset from Case Western Reserve Uni-
versity(CWRU) and Polytechnic University of Turin(DIRG). These two datasets are widely
used in the domain of machine learning research and testing. We conduct comprehensive
experiments with the CWRU dataset, and also validate our model on the DIRG dataset.

In the CWRU dataset, we choose the various motor loads as the domains. Under each
motor load condition, faults ranging from 0.007 inches in diameter to 0.040 inches in diameter
were seeded separately at the inner raceway, rolling element (i.e., ball) and outer raceway, and
for the faults at the raceway, we only include those whose positions are at 6 o’clock. Besides,
there is one more normal working condition for each motor load. In summary, there are four
kinds of motor load and each of them has 10 fault modes. In terms of signal, use the signal
collected from the driving end sensor whose sampling frequency is 12K. The bearing data of
Case Western Reserve University used in this paper is shown in Table 1:

Table 1. CWRU bearing dataset.

Fault Indices Fault Position Fault Diagram
Load (HP)

0 1 2 3

1 0.007 B007_0 B007_1 B007_2 B007_3
2 Ball 0.014 B014_0 B014_1 B014_2 B014_3
3 0.021 B021_0 B021_1 B021_2 B021_3
4 0.007 IR007_0 IR007_1 IR007_2 IR007_3
5 Inner raceway 0.014 IR014_0 IR014_1 IR014_2 IR014_3
6 0.021 IR021_0 IR021_1 IR021_2 IR021_3
7 0.007 OR007_0 OR007_1 OR007_2 OR007_3
8 Outer raceway 0.014 OR014_0 OR014_1 OR014_2 OR014_3
9 0.021 OR021_0 OR021_1 OR021_2 OR021_3
0 Normal normal_0 normal_1 normal_2 normal_3

For convenience, as shown in Table 1, this paper marks the normal signal as the No. 0 fault
mode, and marks the 9 fault modes from B007 to OR021 as the No. 1 to No. 9 fault modes in
sequence, and marks the 4 working conditions of 0~3HP as the working conditions of No. 0~3.

The signals are processed using wavelet transform and converted into an image, and
the data is enhanced by the method of overlapping sampling. Sampling is performed at
every 128 signal points, which means the adjacent samples have 128 signal points that are
identical. Each sample has 1024 signal points, and 880 images are collected for each type of
fault mode. Under motor load condition 0, the wavelet transform image of 10 fault modes
is shown in Figure 7.

Figure 7. Wavelet transform images of different fault modes under load condition 0.
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3.2. Experiment Result

This paper first conducts a single-source domain adaptation experiment to verify the
effectiveness of the composite model. This paper takes the working conditions (bearing
loads) as the domains, trains on 10 kinds of fault modes data under each load condition,
and then tests the trained model under another load condition.

The data from each domain is divided into a training set and a test set at a ratio of
8:2. For each iteration during training, the model is first trained with the training sets from
the source and target domains, and then the test set from the source and target domains
are used to test the performance of the model and observe the classification accuracy of
the model on the source and target domains. The number of training iterations is 100
and repeated 10 times. The classification result is the average of the optimal classification
accuracy on the target domain.

Considering the noise-resistant requirement of the model, the dataset selects the signal
containing noise for experiments. The 2DCNN network as the benchmark model still has
a classification accuracy of more than 99% on the noisy signal with SNR = −4, and the
accuracy will decrease on the noisy signal with a lower signal-to-noise ratio. In order to
ensure that the models participating in the experiment have a relatively high accuracy in
the source domain so as to compare their domain adaptation capabilities, a noisy signal
with SNR = −4 is selected for cross-domain experiments.

Among the methods for comparison, the classical CNN is first selected as the bench-
mark model to show the transfer performance of the model without any transfer method.
Feature-based domain adaptation methods are then selected for comparison, represented
by DAN using the MK-MMD distance and DSAN using the LMMD distance. In addition,
adversarial-based domain adaptation methods are also selected for comparison, repre-
sented by DANN networks. The last is a composite model that combines the DANN and
MK-MMD distance.

The classification accuracy of each method under cross-working conditions is shown
in Table 2. The left side of the arrow represents the source domain, and the right side
represents the target domain. The accuracy shown in the table is the classification accuracy
of the model on the target domain. The accuracy on the source domain is close to 100%, so
it is not shown in this table.

Table 2. Cross-domain classification accuracy of different models.

Model
Cross-Working Condition

Average
0→1 0→2 0→3 1→2 1→3 2→3

CNN 91.59 81.82 85.68 86.02 83.52 93.86 87.08
DAN 90.34 85.57 85.57 87.27 83.41 96.36 88.09

DSAN 85.11 78.23 80.34 83.41 78.52 91.47 87.08
DANN 95.00 88.86 90.11 89.87 88.41 97.15 91.57

DANN+MK-MMD 96.02 91.13 95.91 92.16 88.52 96.81 93.43

Note: The bold number mean it is the largest in this column.

The results in Table 2 show that considering the CNN without any optimization and
domain adaptation methods as the benchmark, the average accuracy of the CNN model on
the unlabeled target domain is 87.08%.

However, DAN and DSAN, which use the distance method for domain adaptation,
both perform mediocrely. DAN only outperforms the CNN model on a few cross-domain
tasks, with no advantage in average accuracy. The DSAN method is even negative optimiza-
tion, which is due to the fact that the image is filled with yellow areas representing noise
signals, blurring the distribution between subfields and aligning non-identical sub-fields,
resulting in negative optimization, while the use of the DANN network can improve the
cross-domain accuracy to a certain extent. With an improvement of 3% to 4% in various
cross-domain tasks, the average accuracy rate is increased to 91.57%. This result indicates
that domain-invariant features can be found through adversarial training. On the basis
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of conversary, the composite model combined with the MK-MMD distance can further
improve the cross-domain accuracy by 1% to 5%, indicating that the composite model
combining these two methods can achieve a good classification result.

Figure 8 shows the accuracy result of the baseline CNN model, the feature-based DAN
model, the adversarial-based DANN model, and the composite model.
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Figure 8. Classification accuracy of each method under cross-working conditions.

It can be seen from Figure 8 that the composite model has high diagnosis accuracy
on three cross-domain tasks of 0→1, 0→3, 2→3, all above 95%. On the cross-domain tasks
of 0→2, 1→2, 1→3, The diagnosis accuracy is slightly lower, all around 90%. Compared
with other methods, the composite model has the greatest improvement on the 0→3 cross-
domain task, while the improvement in other cross-domain tasks is a bit smaller.

Although the composite model can improve the accuracy of diagnosis on various
cross-domain tasks, the disadvantage of combining the two methods is that the model
becomes bloated, and the loss function is complicated, resulting in a reduced training speed.
This is where the composite model falls short.

Then this paper conducts multi-source domain adaptation experiments. The multi-
source methods compared with the MCDANN method proposed in this paper fall into two
categories. The first is the single-source domain optimal method. For each source domain,
we use this method to operate a singe-source cross-domain test on the target domain and get
the best accuracy as the benchmark accuracy. The second is the multi-source methods which
are extended to single-source domain methods. Among the feature-based methods, the
DAN method is selected for multi-source domain expansion, and the MK-MMD distance
between each source domain and target domain is calculated and the weighted sum is
performed as the domain loss function for training; Among the adversarial-based methods,
the DANN method is selected for expansion, computing the adversarial loss between
each source and a target domain and weighted summation as the domain loss function
for training. The multi-source methods all take three source domains to participate in the
training, and the comparison results of several methods are shown in Table 3.

Table 3 indicates that among the single-source domain methods, the composite model
still has the best performance. Compared with the single-source domain, the DAN method
and the DANN method using multi-source extension have a considerable improvement,
which proves that multiple source domains can indeed provide more information to correct
the problem of accuracy drop in cross-domain.

For the MCDANN method proposed in this paper, a consistency regularization loss is
introduced besides the domain loss and classification loss, which improves the accuracy
of the model by reducing the prediction difference on the target domain by models from
several source domains. Therefore, we can get cross-domain diagnosis results in various
domains with an accuracy of more than 96%, which proves its effectiveness.
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However, the introduction of consistency loss also makes the loss function more
complicated, thus affecting the speed of model training, making it slightly slower than
other methods. This is also the disadvantage of MCDANN.

Table 3. CWRU classification accuracy of different models on unknown working condition without
labels. (SNR = −4)

Model
Domain

Average
0 1 2 3

Single DAN 86.15 90.34 87.27 96.36 90.03
Single DANN 90.32 95 89.87 97.15 93.09

Single DANN+MK-MMD 93.15 96.02 92.16 96.87 94.55
Multi DAN 92.14 93.43 90.67 97.05 93.32

Multi DANN 94.54 97.32 95.33 99.15 96.59
MCDANN 96.17 98.56 97.74 99.23 97.93

Note: The bold number mean it is the largest in this column.

Figure 9 shows the accuracy comparison of several methods using multi-source do-
mains under different working conditions. As can be seen from the figure, under the four
unknown working conditions, the MCDANN method proposed in this paper has achieved
the best accuracy. All these methods have lower accuracy on working conditions 0 and 2
and higher accuracy on 1 and 3. On working condition 3, since other methods have already
achieved high diagnostic accuracy, the improvement of MCDANN is not large. On working
condition 2, the MCDANN has the largest relative improvement.

In addition to the CWRU dataset, we also tested our model on DIRG bearing dataset.
DIRG dataset is an open source dataset acquired on the rolling bearing test rig of the
Dynamic and Identification Research Group (DIRG) from the Department of Mechanical
and Aerospace Engineering at Politecnico di Torino [38]. This dataset includes a variety of
speed and static load conditions, each with 6 failure modes, including two fault locations,
inner ring or roller, each location includes 3 sizes of indentations, 450 um, 250 um, and
150 um. Due to the lack of some data, we decide to set the static load to 1000 N, and the
rotational speed to 100 Hz, 200 Hz, 300 Hz, and 400 Hz as the four working conditions of
No. 0~3 to carry out multi-source domain adaptive experiments. Except for the rotation
speed as the working condition and these 6 fault modes as labels, other details are the same
as the multi-source domain adaptation experiments on CWRU. The experimental results
are shown as follows:
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Figure 9. CWRU classification accuracy comparasion of three multi-source domain adaptation models
on unknown working conditions without labels (SNR = −4).
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Table 4 and Figure 10 show that our model achieved the best accuracy on most
cross-domain conditions except one when tested on the DIRG dataset without fine-tuning,
indicating that it is not by chance that our model can achieve a good result, proving the
effectiveness of our method.
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Figure 10. DIRG classification accuracy comparison of three multi-source domain adaptation models
on unknown working conditions without labels. (SNR = −4, static load = 1000 N).

Table 4. DIRG classification accuracy of different models on unknown working conditions without
labels. (SNR = −4, static load = 1000 N)

Model
Domain

Average
0 1 2 3

Multi DAN 95.51 93.40 96.37 93.21 94.62
Multi DANN 98.45 92.15 93.66 95.48 94.93

MCDANN 98.49 92.02 98.51 95.81 96.20

Note: The bold number mean it is the largest in this column.

4. Discussion
4.1. Ablation Study

To test the effect of the MK-MMD distance, a fault signal with SNR = −4 is used
for experiments, and compare the performance of the original adversarial model and the
model combined with different distance losses in cross-domain diagnosis. Each model is
trained for 100 iterations. In each iteration, the training set of the source domain and the
target domain is used for training, and then the model is applied to the test set from the
source domain and the target domain to obtain the classification result. The test is repeated
10 times and obtains the average classification accuracy of the optimal accuracy from each
time on the target domain as the classification result. As shown in Table 5, indices 0, 1, 2,
and 3 represent the working conditions of the bearing under different loads, respectively,
and the arrows indicate the direction of the cross-working condition.
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Table 5. Classification accuracy of models using distance for domain adaptation in cross-working
conditions.

Model
Cross-Working Conditon

Average
0→1 0→2 0→3 1→2 1→3 2→3

DANN 95 88.86 90.11 89.87 88.41 97.15 91.57
DANN+MMD 96.31 90.17 93.22 91.24 88.33 96.34 92.6

DANN+MK-MMD 96.02 91.13 95.91 92.16 88.52 96.81 93.43

Note: The bold number mean it is the largest in this column.

As can be seen from Table 5, compared with the original adversarial network, the
adversarial network that adds various distance metrics to correct the domain adversarial
loss has a certain accuracy improvement, and the adversarial network that combines the
MK-MMD distance has the best overall performance. However, the accuracy of adding
MK-MMD distance is not so high. Due to the problem of domain mismatch, there are still
different degrees of errors in cross-domain diagnosis.

Table 6 shows the result comparison of single-source and multi-source methods. In
Table 6, for each domain, only one source domain is used for cross-domain diagnosis. We
choose the optimal source domain cross-domain diagnosis result as the benchmark, which
is compared with the result of dual-source domain MCDANN and triple-source domain
MCDANN.

Table 6. Classification accuracy of cross-domain models with different number of source domains
under cross-working conditions.

Model
Working Conditions

Average
0 1 2 3

MK-MMD+DANN 93.15 96.02 92.16 96.87 94.55
Dual source domains MCDANN 94.67 98.17 94.54 98.35 96.48
Three source domains MCDANN 96.17 98.56 97.74 99.23 97.93

Note: The bold number mean it is the largest in this column.

In this table, the accuracy improvement of MCDANN from dual-source domain to
triple-source domain indicates that, as the number of source domains involved in training
increases, the diagnostic accuracy of MCDANN will also improve.

4.2. Visualization Analysis

We performed Visual analysis of the model with confusion matrix and t-SNE [39]
distribution. First, perform a visual analysis with the confusion matrix. We choose the
composite model’s 0→2 cross-domain task with relatively lower accuracy for display. The
visualization matrix of the results of applying the composite model to the test dataset
from working condition 2 is shown in Figure 11a. It can be seen from the figure that the
classification results of the composite model on the B021 fault have serious errors, and
nearly 40% of the B021 faults are misclassified as B007 faults. Besides, 5.29% and 3.95% of
the samples from the B007 fault and B014 fault were incorrectly classified as B021 fault,
respectively, indicating that the composite model did not well distinguish the feature
distributions corresponding to several fault diameters on the rolling ball. On the IR014
fault, 9.43% of the samples were incorrectly classified as the OR021 fault, indicating that
the composite model could not completely classify the IR014 fault effectively. We believe
that this is due to the phenomenon of domain mismatch because in this transfer, most
of the classifications have achieved good results while only a few classes are seriously
misclassified. The result indicates that the model incorrectly matches some B021 data of
the target domain with the B007 data of the source domain, and calculates and reduces the
field distribution between the two, so that this part of the B021 data is incorrectly classified
as B007 data.
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Then we show the confusion matrix of the results of applying MCDANN on the test
set of working condition 2, as shown in Figure 11b. The classification accuracy of the
MCDANN method on ball faults is generally low, and there are a few misclassifications
between IR014 and OR021. However, although the misclassification problem of domain
adaptation on ball faults cannot be completely solved, the MCDANN method still achieves
a great improvement in this. On the B021 fault whose originally classification accuracy is
61.15%, the accuracy was increased to 92.55%, with an increase of more than 30%. Originally
only 93.75% of B007 faults have been increased to 97.8%. The classification accuracy of the
B007 fault is improved from 93.75% to 97.8% while the classification accuracy of B014 faults
just has a slight improvement, from 95.39% to 95.97%.
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Figure 11. Confusion matrix of single source model and multi-source model on working condition 2.
(SNR = −4). (a) DANN+MK-MMD; (b) MCDANN.

Then the features obtained by these methods in the domain are visualized with t-SNE
distribution, with working condition 0 as the source domain and working condition 2 as
the target domain. Their t-SNE distribution of the feature from the last layer of the network
is shown in Figure 12.

(a) (b) (c)

Figure 12. Different models’ domain distribution output of the test set from working condition 2.
(SNR = −4). (a) CNN; (b) DANN+MK-MMD; (c) MCDANN.

In this figure, the red part is the feature distribution of the target domain, that is, the
distribution of the feature output of the last layer of the network on the test set of working
condition 2. The gray part is the feature distribution of the source domain, that is, the
output of the last layer of the network on the test set from working condition 0. The higher
the degree of overlap between the two, the closer their domain distributions are. Since the
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domain adaptation model is trained on the labeled source domain, the prediction of the
target domain is made according to the source domain label, so the prediction of the target
domain can be judged by the degree of overlap between the gray area and the red area.
For the convenience of observation, the gray area is placed on the upper layer, so that the
degree of overlap between the two can be judged by observing the coverage of the gray area
to the red area, and then the transfer performance of the model is analyzed accordingly.

Figure 12a is the result of the CNN model without any transfer method. It can be seen
from the figure that the gray area is divided into 10 clusters, corresponding to the 10 fault
modes in working condition 0. The distances between these gray clusters are not short,
which indicates that the CNN model has successfully classified the data on the source
domain. In the red area, there are only 8 clusters. In the upper right corner of the figure,
we can see that there is a large red area covering two gray areas, indicating that two fault
modes are confused together in the classification process of working condition 2, thus being
classified into one cluster. On the right side of the figure, there is little overlap between
the red area and the gray area, which indicates that there is a large distribution difference
between the source and target domains on a specific fault mode. There is a gray area at the
bottom of the figure with almost no red area overlapping with it, indicating that the CNN
model hardly recognizes a certain fault in this working condition, so most samples of this
fault are misclassified into other clusters. In other clusters, the gray area and the red area
have some overlap, but they are not completely covered.

Figure 12b is the result of the composite domain adaptation model that combines the
DANN network and the MK-MMD distance. It can be seen that the overall coverage of gray
to red has improved, and each gray area covers the red area, indicating that the composite
model improves the recognition rate of faults in working condition 2, and faults can be
successfully classified into 10 categories. However, there are still only 9 red clusters, and
there is still a large red area connected together in the upper left corner, indicating that the
two confused faults have not been effectively distinguished.

Figure 12c is the result of the MCDANN model using a multi-source domain for
domain adaptation. In the final feature output of the model, it can be seen that the gray
coverage is quite high, and the red part that can be seen in the figure is the least. Not only
the gray area can be divided into 10 clusters, but the red area can also be roughly divided
into 10 clusters. Although there are two red areas on the left that are still connected, it is
much better than the connected red areas in (a) and (b). This shows that the MCDANN
model performs well on the unlabeled test set from working condition 2, which also proves
the effectiveness of the method proposed in this paper.

5. Conclusions and Future Work

This paper proposes a multi-source consistency domain adaptation model MCDANN
that can adapt the fault diagnosis model to other unknown working conditions. MCDANN
is based on the domain adversarial network, using the MK-MMD distance to further reduce
the difference between the source domain and the target domain in the feature space, and
using sub-domain alignment and multi-source domain adaptation methods to perform
more fine-grained matching in the domain to solve the domain Mismatch problem. On the
CWRU data set, experiments are carried out using the noisy fault data set with a signal-to-
noise ratio of −4. The experiments show that the MCDANN can achieve an accuracy rate
of more than 96% under various unknown working conditions, which is better than other
adaptation methods.

The current experiments are only carried out on the bearing dataset. If more fault
datasets containing domains can be obtained, the optimization of the existing model can
undoubtedly go further. In addition, the current method has many ideal preconditions,
such as the same number of labels in the source and target domains, and the source domain
has many and abundant data. Compared with the experimental conditions, the actual
situation is undoubtedly much more complicated, and this is also a direction that can be
further expanded, such as small sample learning, local domain adaptation, etc. On the
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other hand, domain adaptation methods usually need to access the target domain data.
Although the target domain data has no labels, the information contained in the target
domain data itself is enough for the model to learn enough knowledge to complete the
domain transfer. However, if one or more source domain data can be used for training to
obtain a model with excellent performance without accessing the target domain data in the
unknown domain, it is undoubtedly more practical work, which is also an extension of the
domain adaptation problem and domain generalization problem.
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Nomenclature

CNN convolutional neural network
DAE deep auto-encoder
SDA stacked denoising autoencoder
DANN domain-adversarial training of neural networks
MMD maximum mean discrepancy
MK-MMD multi-kernels maximum mean discrepancy
WDCNN deep convolutional neural networks with wide first-layer kernel
AdaBN adaptive batch normalization
DSAN deep subdomain adaption network
MCDANN multi-source consistency domain adaptation neural network
G f feature extractor
Gy label classifier
Gd domain classifier
Ly difference between the prediction of the label classifier and the real label
Ld difference between the predicted domain and the real domain
F function domain
f a function belonging to the function domain F
Hk the RKHS obtained by a feature kernel k
βu the weight of kernel u
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