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Featured Application: The paper intends to illustrate a methodology to design and implement
fractance with tunable fractor’s order, suitable for implementing fractional order circuits in a
more flexible way.

Abstract: There is an increasing number of studies in the literature to implement fractional order
components by means of equivalent circuits based on integer order components. Such implementa-
tions aim to realize laboratory equipment that can exhibit a fractional behavior in a certain range of
frequencies. One of the main limitations of the existing implementation is the fixed fractor’s order.
In practice, every time the experimenter wants to change fractor’s order, it is necessary to calculate
again the equivalent circuit and implement it again. In order to overcome this limitation, in this
paper we propose a new implementation of a fractional order component that enables to tune the
fractor’s order. This is achieved by means of variable resistors and a proper control methodology.
The methodology can be applied in microwave circuits, for instance for the implementation of filters:
a low-pass one is discussed in this paper.

Keywords: fractional calculus; fractional order circuits; low pass filter; microwave circuit; tunable
component

1. Introduction

Fractional calculus is a branch of mathematics dealing with the extension of the concept
of derivative and integral. The name is due to fact that the order of derivative is not just an
integer value but may be fractional or even real. Namely, for a function f (t), in fractional
calculus it is defined as the expression:

dα f
dtα

with α ∈ R (1)

Fractional derivative concept was discussed for the first time about three centuries
ago, but only in the last fifty years it has been studied in deep. Formally, the operator
aDα

t f (t) denotes the fractional derivative of a function f (t) defined in the interval [a, b].
Several representations of the fractional derivative have been proposed in the literature.
The most recognized ones are the so-called Caputo derivative [1] and the Caputo-Weyl
derivative [2–4].

The Caputo definition is more commonly adopted in time domain, while the Caputo-
Weyl definition is usually adopted in frequency domain, where the Fourier transform of
the fractional derivative operator exhibits the following property:

F (W
−∞Dα

t f (t)) = (jω)αF(ω) (2)

being F(ω) the Fourier transform of f (t) and W
−∞Dα

t f (t) the Caputo-Weyl derivative of f (t).
This is the fractional extension of the derivative property of the Fourier transform.
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Fraction calculus nowadays has practical applications in several branches of science
and technology, including viscoelasticity, electrochemistry, neuro-dynamics, and heat
transfer in heterogeneous media [5–9].

In electrical engineering is used for the modeling some kind of supercapacitors, trans-
formers and non-linear circuits [10–12]. Additionally, it has been theorized the existence
of dual port components with fractional order characteristic. This kind of components,
usually called Fractances [13–15], exhibit an impedance that can be expressed as:

Z(ω) =
1

F(jω)α =
1

Fωαejαπ/2 (3)

where ω is the angular frequency, α a real parameter ranging from –1 to 1, and F is a
constant value termed as fractance and its unit is [0s−α]. Fractances can be considered as a
generalization of the traditional components, representing a resistor for α = 0, a traditional
inductor for α = −1, and a traditional capacitor for α = 1. However, higher interest towards
these components arises for non-integer values of α, where the components produce non-
traditional behaviors.

It is worth to note that, according to (3), fractances have a magnitude with a constant
slope of −α20 dB/dec and a phase not depending by the frequency and equal to −απ/2.
For this reason, the fractances are classified as Constant Phase Components (CPCs).

By a theoretical point of view, fractances find several applications in the design of
fractional order filters [16–19] and in chaotic circuits and systems [20–22]. Anyway, one
of the most practical limitations in the study of fractances is the difficulty to implement
such a component in reality. Several studies in the literature try to implement fractances
in different ways. Among the proposed solution, it has been found that the fractor’s
order is always a pre-defined value of the implementation. This requires changing the
implementation any time it is necessary to change the fractor’s order. In this paper, we
propose a new methodology to implement a fractance with tunable fractor’s order, that can
be adopted in experimental studies without the need to re-implement the circuit when the
fractor’s order is changed.

The paper is organized as follow: apart from this Introduction, in Section 2 the state
of art of fractances’ implementation is discussed. In Section 3, the new methodology for
implementing fractances with tunable fractor’s order is discussed and applied in a practical
example. Finally, the Conclusions are presented.

2. State of Art of Fractances’ Implementation

One of the main problems related to the study and the consequent application of
fractances in reality is the absence of physical components exhibiting a fractional behavior.
In fact, no ideal circuit is able to implement it so far. Therefore, several research studies
nowadays focus on the physical creation of fractances [23]. Although the final challenge
is to realize physical components with fractional order behavior, at the current stage this
goal seems far from being achieved. Therefore, most of the efforts focus on the realization
of equivalent circuits that can behave as fractances in such ranges of frequencies. In the
following sections, the state of art of fractances’ implementation is briefly discussed.

2.1. Equivalent Passive Circuits

One of the main solutions to realize a fractance in experimental set-up is the implemen-
tation of a passive equivalent circuit, composed of traditional integer order components,
exhibiting an equivalent fractional impedance in a certain frequency range. These ap-
proximate representations generally reconstruct the fractional operator by means of a
rational function, whose circuital representation can be easily realized [24–28]. Relevant
methods adopted in the literature are the ones based on the Continued Fraction Expan-
sions, the Matsuda’s method, the Carlson’s method, the Oustaloup’s method, and the
Chareff’s method.
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2.2. Equivalent Active Circuits

An alternative solution to the equivalent passive circuits is the synthesis of fractances
by means of networks involving active components. Most of them are based on operational
amplifiers [29]. Some implementations also try to use the non-linear behavior of transistors
characteristic in order to reproduce a fractional behavior. However, so far these solutions
are not as popular as the ones based on passive networks.

2.3. Single Componet

In the literature, some studies are focusing on the possibility to construct the first dual
port components that exhibit themselves a fractional order behavior, without the need
to use equivalent circuits. This research aims to define processes for the production of
commercial fractances. If achieved, this result would really boost the experimental research
on fractances and the consequent increase of potential applications.

So far, the research studies focus on the use of particular materials that can exhibit a
fractional behavior. In particular, implementations have been tested employing ionic gel-
Cu electrode based, porous polymers, graphene-polymer, ionic polymer-metal composite,
or CNT-polymer composite [30–32]. Although these research studies are promising, a
commercial solution is not yet available. Therefore, most of the current studies mainly
focus on efficient implementations of equivalent circuits.

3. Fractances with Tunable Fractor’s Order

By the analysis of the experimental studies of fractances published in the last year, it
emerges that the representations by means of equivalent circuits with passive integer order
components are by far the most adopted ones. Ladder networks nested networks and tree
networks are some of the most popular implementations.

One of the main limitations of these implementations is the fixed characteristic of the
equivalent circuit. In an experimental set-up, especially at a research stage, it would be
highly desirable to easily change the characteristic of the fractance. Instead, the equivalent
circuits have of course a fixed amplitude and a fixed fractor’s order. If the experimenter
wants to change fractor’s order, he has to calculate again the equivalent circuit, and physi-
cally implement it again. In case of a ladder network with even 50 components, this may
be considerably frustrating.

Recently, some studies have been proposed in order to realize equivalent circuits of
fractances with tunable amplitude [33]. However, these implementations again do not
allow to change the fractor’s order, that is the main characterizing parameter of the element.

In this paper, we propose for the first time an implementation that allows changing
in some ranges the fractor’s order, without the need of substituting the implemented
network. This is a relevant improvement by the experimental point of view since it allows
realizing just one implementation in order to test circuits with different fractor’s order. As
example of practical implementation, a microwave filter is considered. Anyway, since the
innovative contribution of the paper is the tunable fractance, the efficiency of the proposed
method is discussed. The performance of the fractional order filter is not addressed since it
has been already discussed in the literature and the tunable fractance does not imply an
improvement of the performances.

3.1. Equivalent Circuit through Rational Approximation

First of all, the methodology for representing a fractance in terms of equivalent integer
order circuit is illustrated. Several methodologies have been proposed in the literature, also
corresponding to different kind of circuits’ topologies [34].

Let us consider the expression of the fractance Z(ω) = 1/F 1/(jω)α and let us try to
find a rational approximation G(ω) as:

G(s) =
A(jω/b1 + 1)(jω/b2 + 1) . . . (jω/bn + 1)
(jω/a1 + 1)(jω/a2 + 1) . . . (jω/an + 1)

(4)
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where A, ai, and bi are all positive numbers. Such an expression consists of n first-order
damp elements and n first-derivative elements. Each couple of damp and derivative
elements, separately considered, represent a piecewise linear function. So, if we consider
the operator Z(ω), we can define a tolerance threshold 2δ and require that the piecewise
linear is included in the upper and lower boundaries, as shown in Figure 1.
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Figure 1. Example of amplitude behavior of the operator Z(ω) and the piecewise function.

The approximation of the fractional characteristic will be acceptable in a certain
bandwidth, depending by the accepted tolerance δ and by the order n of the rational
function G(ω). It is worth to define as ω0 the central frequency of the approximation and
as Z0 the magnitude of the impedance for ω = ω0. Taking n as odd value and starting from
the central point (ω0, Z0), it is possible to graphically calculate the coefficients ai and bi as:

a(n+1)/2 = ω010δ/20α (5)

ai+1 = ai10δ/(10α(1−α)) (6)

bi+1 = ai10δ/(10(1−α)) (7)

A = Z0(1/a1)
α10δ/20 (8)

Once the parameters of (4) have been identified, it is possible to expand the rational
approximation as:

G(s) = A0 +
A1

jω/a1 + 1
+ . . . +

An

jω/an + 1
(9)

where the parameters A0 . . . An can be calculated as:

A0 = A(a1a2 . . . an)/(b1b2 . . . bn) (10)

Ai = (ω−ωi)G(s)/ai|ω=ωi
(11)

The single first order rational functions composing (9) correspond, in terms of circuits,
to a series of R-C parallels where:

Ri = Ai (12)

Ci = 1/(ai Ai) (13)

In Figure 2, the obtained equivalent circuit is represented, corresponding to a low-pass
filter with constant phase.
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In order to make a numerical example, let us try to represent a fractance with fractor’s
order α = 0.5 and for the representation we choose n = 7, f 0 = 100 Hz, Z0 = 50 Ω, and
δ = 2 dB. The parameters for the equivalent circuit are obtained as show in Table 1.

Table 1. Parameters for the equivalent circuit.

i 0 1 2 3 4 5 6

R [Ω] 3.15 541 154 58.9 23.2 9.10 3.26
C [pF] - 0.293 0.163 0.068 0.027 0.011 0.005

In Figures 3 and 4, the amplitude and the angle of impedance are represented. It is
worth nothing that while the amplitude well approximates the fractional impedance in
about 5 decades, the phase exhibits a faster variation.
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3.2. Tuning of the Fractor’s Order

In order to calculate a good approximation of the fractional impedance, every time
the fractor’s order α changes, the whole representation should be re-calculated. However,
representing the resistances in a logarithmic scale, all the values are on a line that rotates
clockwise to the variation of α around the (n + 3)/2 value. For the values of n, ω0, Z0, and
δ the variation is show in Figure 5. So, once a set of resistances is found for a given value of
α0, is possible to suppose to find a rule for the variation of Ri as function of α.
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The family of straight lines can be expressed as:

log10 Ri − log10 R(n+3)/2 = m(α)(i− (n + 3)/2) (14)

Once the equivalent network is calculated for a reference fractor’s order α0, it is
possible to easily calculate m(α0). The, it is found that applying the empirical law:

m(α) = m(α0) eα/α0−1 (15)

Additionally, practically it found that the resistances changes with α much more than
the capacitances. So, it is worth to consider a network where the resistances vary with
α according to (14) and (15) and capacitors are fixed. Such a network is a very good
approximation of the fractional impedance for the value of α0 adopted to compute the
capacitances. However, it will be able to approximate fractional impedances for different
values of α, in a bandwidth always as smaller as the fractor’s order differs from the starting
value of α0.

Such a kind of circuit can be easily implemented by means of the same configuration
in Figure 2 and adopting traditional capacitors and variable resistors. For instance, by using
digital potentiometers connected to a controller, it is possible to program the synchronous
variation of all the potentiometers according to the programmed rules, in order to obtain
the wished set of resistances and so in the end the wished fractional impedance.

In order to provide a numerical example, we can consider once again the previously
values of n, ω0, Z0, and δ. If we consider as reference fractor’s order α0 = 0.5, then we
obtain m(α0) = −0.402. This allows to compute the coefficients m(α) and then new values
of Ri for different values of α.

In Figures 6 and 7, we show the amplitude and the phase of the rational approximation
G(ω) for different values of α computed with this procedure. The reference amplitudes and
phases of Z(ω) are not shown to make the pictures more readable. Anyway, the amplitude
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comparison would have been neglectable, as for the special case of Figure 3, while the
phase of G(ω) has to be compared with a constant value of course.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 9 
 

imation of the fractional impedance for the value of α0 adopted to compute the capaci-
tances. However, it will be able to approximate fractional impedances for different values 
of α, in a bandwidth always as smaller as the fractor’s order differs from the starting value 
of α0. 

Such a kind of circuit can be easily implemented by means of the same configuration 
in Figure 2 and adopting traditional capacitors and variable resistors. For instance, by us-
ing digital potentiometers connected to a controller, it is possible to program the synchro-
nous variation of all the potentiometers according to the programmed rules, in order to 
obtain the wished set of resistances and so in the end the wished fractional impedance. 

In order to provide a numerical example, we can consider once again the previously 
values of n, ω0, Z0, and δ. If we consider as reference fractor’s order 𝛼 = 0.5, then we 
obtain 𝑚 𝛼 = −0.402. This allows to compute the coefficients 𝑚 𝛼  and then new val-
ues of 𝑅  for different values of α. 

In Figures 6 and 7, we show the amplitude and the phase of the rational approxima-
tion G(ω) for different values of α computed with this procedure. The reference ampli-
tudes and phases of Z(ω) are not shown to make the pictures more readable. Anyway, the 
amplitude comparison would have been neglectable, as for the special case of Figure 3, 
while the phase of G(ω) has to be compared with a constant value of course. 

  
Figure 6. Amplitude of the rational approximation G(ω) for different values of α. 

 

Figure 7. Phase of the rational approximation function G(ω) for different values of α. 

Again, the amplitude plot represents the fractional impedance in a wider bandwidth 
than the phase plot. 

Am
pl

itu
de

Ph
as

e

Figure 6. Amplitude of the rational approximation G(ω) for different values of α.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 9 
 

imation of the fractional impedance for the value of α0 adopted to compute the capaci-
tances. However, it will be able to approximate fractional impedances for different values 
of α, in a bandwidth always as smaller as the fractor’s order differs from the starting value 
of α0. 

Such a kind of circuit can be easily implemented by means of the same configuration 
in Figure 2 and adopting traditional capacitors and variable resistors. For instance, by us-
ing digital potentiometers connected to a controller, it is possible to program the synchro-
nous variation of all the potentiometers according to the programmed rules, in order to 
obtain the wished set of resistances and so in the end the wished fractional impedance. 

In order to provide a numerical example, we can consider once again the previously 
values of n, ω0, Z0, and δ. If we consider as reference fractor’s order 𝛼 = 0.5, then we 
obtain 𝑚 𝛼 = −0.402. This allows to compute the coefficients 𝑚 𝛼  and then new val-
ues of 𝑅  for different values of α. 

In Figures 6 and 7, we show the amplitude and the phase of the rational approxima-
tion G(ω) for different values of α computed with this procedure. The reference ampli-
tudes and phases of Z(ω) are not shown to make the pictures more readable. Anyway, the 
amplitude comparison would have been neglectable, as for the special case of Figure 3, 
while the phase of G(ω) has to be compared with a constant value of course. 

  
Figure 6. Amplitude of the rational approximation G(ω) for different values of α. 

 

Figure 7. Phase of the rational approximation function G(ω) for different values of α. 

Again, the amplitude plot represents the fractional impedance in a wider bandwidth 
than the phase plot. 

Am
pl

itu
de

Ph
as

e

Figure 7. Phase of the rational approximation function G(ω) for different values of α.

Again, the amplitude plot represents the fractional impedance in a wider bandwidth
than the phase plot.

Moreover, as expected, the quality of the approximation, especially in the phase plot,
decreases for higher values of α.

4. Conclusions

In this paper, a methodology for designing a fractional order component with tunable
fractor’s order has been proposed. It represents a step forward in the research of equivalent
circuits for the practical realization of fractances, since the proposed method allows to
realize a unique implementation able to cover a range of fractor’s orders, not requiring any
more a new circuit implementation any time the fractor’s order has to be changed. The
procedure has been presented in detail and applied to the case of a low-pass microwave
filter. Being the procedure generic, it can be easily applied in order to physically implement
the circuit on a small board. With a simple control of the digital potentiometers, it is possible
to change fractor’s order in a certain range, depending by the number of elements in the
ladder and by the accepted tolerance.

A more detailed investigation on the control methodology may allow extending the
range of tuning. For this reason, we expect to introduce in the near future an optimization
algorithm instead of the empirical procedure in order to improve the method’s performance.
In addition, comparison between the designed model and the real implementation will
allow to better understand the real effectiveness of the design process.
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