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Abstract: The safe and efficient function of critical national infrastructure (CNI) relies on the accurate
demand forecast. Cyber-physical system-based demand forecasting systems (CDFS), typically found
in CNI (such as energy, water, and transport), are highly vulnerable to being compromised under false
data injection attacks (FDIAs). The problem is that the majority of existing CDFS employ anomaly-
based intrusion detection systems (AIDS) to combat FDIAs. Since the distribution of demand time
series keeps changing naturally with time, AIDS treat a major change in the distribution as an
attack, but this approach is not effective against colluding FDIAs. To overcome this problem, we
propose a novel resilient CDFS called PRDFS (Proposed Resilient Demand Forecasting System).
The primary novelty of PRDFS is that it uses signature-based intrusion detection systems (SIDS)
that automatically generate attack signatures through the game-theoretic approach for the early
detection of malicious nodes. We simulate the performance of PRDFS under colluding FDIA on High
Performance Computing (HPC). The simulation results show that the demand forecasting resilience
of PRDFS never goes below 80%, regardless of the percentage of malicious nodes. In contrast, the
resilience of the benchmark system decreases sharply from about 99% to less than 30%, over the
simulation period as the percentage of malicious nodes increases.

Keywords: resilient demand forecasting system; false data injection; intrusion detection systems;
data trustworthiness; node reputation

1. Introduction

Our critical national infrastructure (CNI) systems like those driving power generation
and distribution, water treatment, electricity production, and other platforms are being
increasingly digitized and controlled by the Internet of Things (IoT) [1]. The task of
forecasting demand for CNI is fundamental and crucially important to run CNI smoothly
and make sound operational decisions [2]. Demand specifies the number of goods and
services that will be used or consumed in an economy at a given time. Cyber physical
system (CPS)-based demand forecasting systems (CDFS) are ubiquitous in CNI [2] where
sensor nodes are deployed in the environment to monitor the current demand for the
services of CNI (e.g., traffic and electricity consumption) [3–7]. The sensors transmit their
measurements at a regular interval to a base station through one or more intermediate nodes
depending on the distance between the sensor and the base station. In the base station,
the measurements of all sensors are aggregated using aggregate operators like average
and sum. The forecasting model stored in the base station uses the values of the aggregate
demand time series to develop an estimate of expected demand during a specified future
period. The demand forecast is transmitted to the application layer to adjust the supply
of the services of CNI such as electricity, water, gas, transportation, etc., to the forecasted
demand. Inaccurate demand forecasts can create an imbalance of demand and supply
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which may have a devastating impact in terms of lives lost, infrastructure damage, and
economic disruption [8–10]. The accuracy of demand forecasting depends on the reliability
of the inputs to the forecasting model. In CPS, sensor nodes are deployed in remote areas
without any physical protection [11]. Furthermore, sensors are resource-constrained tiny
nodes, due to which the implementation of traditional cryptographic techniques is not
possible [11]. Hence, sensor nodes are highly vulnerable to attacks, and attackers can easily
tamper with the sensor node and compromise it [6,12]. Once a sensor node is compromised,
attackers can launch any form of attack they desire [13]. A false data injection attack (FDIA)
is the worst possible attack that could be made on a forecasting system. In FDIAs, attackers
modify the measurements of the compromised sensors to change the demand forecasts to
their desired level [14,15]. To resolve this issue, it is necessary to improve the resilience of
CDFS to stealthy attacks. Resilience is twofold. Firstly, the CDFS must be robust against
attacks (that is, be able to either prevent the attacks or detect them at a very early stage),
and secondly, it should bounce back quickly to its baseline before the attack [4].

Recently, several resilient CDFS have been proposed that consider any drastic change
in demand distribution as an attack [9,16–18]. The problem with this approach is that
the joint probability distribution of demand time series keeps changing naturally with
time [2]. The approach often produces an extremely high false positive rate [9]. In addition,
the attackers have figured out how to avoid detection. They launch collusion attacks in
which the attacker takes control of multiple sensor nodes and alters the readings of those
sensors slightly, such that the aggregate value of all sensors’ readings is skewed towards
the attacker’s desired direction [19]. This aggregate measurement estimated at the time step
t is incorporated into the training set. The demand forecasting models are adapted to recent
history to make out-of-sample forecasts so that the machine learning forecasting system
dynamically adapts to data distributions that evolve over time. Since the forecasting model
is evolving toward false data, over time, the normal sensors are marked as compromised.
They have an increasingly reduced influence on the model’s evolution. This way, through
careful selection of reported values, the attackers manage to shift the accepted value far
away from the actual value. To make the attack even stealthier, at each time point, attackers
randomly select a subset of sensors from the set of compromised sensors, and only the
selected compromised nodes inject false data. In contrast, the other compromised sensors
provide unadjusted, untampered measurements [20,21]. To protect the CDFS from stealthy
attacks, we propose a novel CDFS called PRDFS (Proposed Resilient Demand Forecasting
System). The key advantage of the PRDFS over the existing CDFS is its signature-based
intrusion detection system (SIDS) trained on autonomously generated attack signatures.

The rest of this paper is organised as follows: Section 2 provides definitions of several
important concepts used within this paper, an overview of challenges in demand fore-
casting, and how the existing resilient CDFS deal with these challenges. Section 2 also
contains an overview of existing defence schemes against stealthy FDIA. Section 3 presents
our proposed CDRFS (PRDFS). Section 4 explains the research methodology, including a
description of the benchmark CDFS, adversary model, performance criteria, and evaluation
methodologies for resilient CDFS. Section 5 presents the results, wherein we discuss the
advantages and disadvantages of PRDFS and the benchmark CDFS in detail. Section 6
concludes this work.

2. Related Work

Resilient demand forecasting is a relatively new area of research [9,16–18]. Most of
the existing resilient CDFS consist of two subsystems—the demand forecasting system
(DFS) and the intrusion detection system (IDS). The first subsystem consists of normal time
series forecasting algorithms that predict future demand for a particular product/service.
Kalman Filtering models and Long Short-Term Memory (LSTM) networks (a special variant
of recurrent neural networks) are by far the most popular choices for forecasting demand
among the existing resilient CDFS [9,17,22,23]. The Kalman Filter is a model-based linear
estimator unsuitable for complex demand signals with unknown characteristics.
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The purpose of the second subsystem (IDS) of the resilient CDFS is to mitigate the
adverse effects of attacks on demand forecasting. We organise this section as follows.
Important concepts are defined in Section 2.1. The major challenges in demand forecasting
and how the existing resilient CDFS address these challenges are discussed in Section 2.2.
An overview of existing attack detection and mitigation algorithms used in IDS is discussed
in Section 2.3.

2.1. Definitions

This section aims to provide an operational definition of “an attack on CDFS” and
define three core concepts (trust, trustworthiness, and reputation) that are frequently used
in this paper.

An attack on a system is defined as “a threat action that undesirably alters system
operation by adversely modifying system functions or data” [24]. For this study, an attack
on CDFS is defined as systematically deviating the point forecasts and interval forecasts for
k-step ahead aggregate demands from the actual values to a certain direction (upwards or
downwards) over time by adversely modifying sensor data. The success of the attack is
measured on the following two indicators: (1) the higher the deviations of the single-point
demand forecast from the actual demand for a given period, the more successful the attack,
and (2) the ultimate success of the attack is achieved when the actual demand falls outside
of the forecasted bounds.

Although the terms ‘trust’, ‘trustworthiness’, and ‘reputation’ are widely used in
the literature, there remains debate about the definitions of all three [11,13,22,23,25–29].
Different studies have different definitions of these terms. In this study, we adopt the
following definitions for trust, trustworthiness, and reputation. We use ‘trust’ and ‘trust-
worthiness’ interchangeably. If a node needs to evaluate the trust score of another node,
the evaluating node is called the subject node, and the evaluated node is called the object
node [20]. ‘Trust’ or ‘trustworthiness’ of a node is the subjective probability assigned to an
object node by a subject node at time step t based on various factors (e.g., the object node’s
long-term reputation, the similarity of its measurements with the measurements generated
by other nodes received at the same time step etc.) that the measurement received from the
object node is accurate [27,30]. The trustworthiness of data provenance is the probability
assigned by a subject node to the provenance that the measurement received from the
data provenance is accurate. Data provenance refers to the metadata that captures the
complete history of a piece of data from origin to destination. The data provenance of
measurement consists of two basic components [31]. The first component is the route of the
measurement. A route refers to the path a measurement travels on a network. The route
includes every node that handles the measurement between its source and destination. The
second component of the data provenance is the list of actions performed by participating
nodes. The trustworthiness of a measurement value is the probability that the measurement
is accurate [11]. The reputation of an object node is the overall probability estimated from
the trust scores assigned to the object node by all subject nodes over time [26,30].

2.2. Challenges in Demand Forecasting

Demand forecasting is a mature area of research [32]. Nonetheless, for accurate
predictions of demand, many challenges remain to be addressed [32–34]. One of the major
challenges is the curse of dimensionality. In demand forecasting, the predictor variables
are lagged variables. The lagged variables are highly correlated. Consequently, even
a moderate number of predictor variables may trigger the curse of dimensionality, and
demand forecasting models often suffer from overfitting. Most of the existing CDFS do
not take special measures to protect themselves against the curse [9,17]. They train a single
network (e.g., LSTM) with a set of lagged aggregate demand time series values to forecast
the out-of-sample data.

Another major challenge in demand forecasting is the presence of non-stationarity in
demand time series [32–34]. In a non-stationary time series, the frequency content changes
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in time; all frequencies do not always exist. There are currently three main approaches
for dealing with time-varying frequency components [35]. The first approach is to apply
the differencing operator on-demand time series and remove these patterns from the time
series. However, the main difficulty of the differencing approach is that it requires exact
knowledge about the locations of all frequency components in the time series, which is by
no means easy to capture.

The second approach to deal with the time-varying frequency components is to enter a
large number of non-seasonal lagged variables in a neural network (e.g., LSTM) during the
training so that it automatically selects an optimal number of seasonal and non-seasonal
lagged variables and models time-varying frequency components. Most of the existing
resilient CDFS adopt this mechanism [9,17]. This approach leads to a large number of
lagged input variables in the model which might exacerbate the curse of dimensionality.

The third approach to deal with the time-varying frequency components is to use a
hybrid of wavelet transform and neural networks [35,36]. This approach has been drawing
increasingly more attention in recent years. This approach uses wavelet techniques to split
the original time series into multiple component time series. A neural network (e.g., LSTM)
is trained with the non-seasonal lagged variables generated from the component time series
to forecast the future values of the original demand curve. Currently, more comparative
studies are required to confirm the superiority of one approach over the other.

Perhaps the biggest challenge in developing a demand forecasting model is that the
older values of the demand time series are less useful than the newer ones as training data
and become obsolete quickly, since the distribution of demand time series keeps changing
with time [30]. Several studies suggest ensuring that the forecasting model adjusts rapidly
to the changing distribution. Based on these studies, the higher penalty should be assigned
to in-sample forecast errors on more recent demand observations during the training phase.
However, this approach poses many practical problems. The key problem is how to weigh
the values of demand time series appropriately in the presence of time-varying frequency
components. An inadequate weighting scheme may cause more harm than good, as it may
destroy the distribution of the original time series. Hence, the common practice is to keep
adapting the forecasting model to the new observations as the sensors gather them without
applying an arbitrary weighting scheme [9].

2.3. Overview of Existing Defense Strategies against Stealthy False Data Injection Attacks (FDIAs)

Existing defense systems to deal with stealthy false data injection attacks (FDIAs) can
be grouped into two broad categories: anomaly-based intrusion detection systems (AIDS)
and provenance-based trust management systems (TMS) [9,13,22,31,37,38].

The goal of AIDS is to detect malicious nodes and exclude their readings from the
aggregation of sensor measurements while estimating the most trustworthy aggregate
measurement at a given time step. When AIDS is used to deal with FDIA, the simple
average is usually used to aggregate the measurements of the normal sensors. Existing
AIDS can be broadly split into two categories: confidence interval-based AIDS [9,22,37] and
clustering-based AIDS [38]. Both types of AIDS are based on the hard clustering concept
that classifies a sensor node as either malicious (1) or normal (0). Confidence interval-based
AIDS divides the search space into only two clusters (one for each class: malicious and
normal). On the contrary, clustering-based AIDS allow multiple clusters for each class; this
type of AIDS performs better on search space with local patterns.

AIDS uses unsupervised hard clustering algorithms to perform clustering of the search
space to classify the sensor nodes as malicious and normal. Different search spaces have
been explored for detecting stealthy malicious nodes, including measurement space, fore-
casting residual space, Spatio-temporal correlation space, the skewness space of residuals
in the forecasting demand model, and reputation space [9,22,37,38]. The major limitation
of AIDS is that they use a set of arbitrary rules to cluster the search space and to label the
clusters as malicious and normal. Past studies suggest that AIDS suffer from low malicious
node detection accuracy and a high false positive rate (FPR) [9].
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The goal of TMS, in contrast to AIDS, is not to classify the sensor nodes as malicious
and normal [13,31]. Instead, they carry out unsupervised fuzzy clustering in the sensor
measurement space to assign a reputation score to each sensor to control its influence
on the sensor measurement aggregation process. During the aggregation process, TMS
assigns a trustworthiness score to each measurement at time step t based on the data
similarity and provenance similarity among measurements, and the trustworthiness of its
data provenance, which is usually set to the reputation score of the least reputed node in
the provenance. TMS then determines the most trustworthy measurement at time step t
using the weighted average method. Most of the existing TMS use linear models to update
the reputation scores of nodes based on the trustworthiness scores of their measurements
received at time step t. However, the linear models may not be able to accurately estimate
the reputation scores of nodes in the face of stealthy FDIA.

3. Proposed Resilient Demand Forecasting Systems

We name our proposed resilient demand forecasting system PRDFS (Proposed Re-
silient Demand Forecasting System). PRDFS consists of five modules: (1) Trust Management
System (TMS), (2) Demand Forecasting System (DFS), (3) Data Generator (DG), (4) Ethical
Hacking System (EHS), and (5) Signature-based Intrusion Detection System (SIDS). Codes
and pseudocodes of PRDFS are provided in Supplementary Materials. Figure 1 shows the
architecture of PRDFS. The modules are linked to each other via the input and output they
exchange. Figure 1 depicts the exchanges of inputs and outputs among the modules. The
internal workings of the modules are shown in the flowcharts of Figures 2–6. Table 1 shows
the definitions of the terms used in this section.

The first layer of PRDFS is only for graphical representation (Figure 1). Each node
of this layer represents a data provenance (DPV). In our simulation study, for simplic-
ity purposes, each DPV contains only one sensor node. The DPVs transmit streams of

measurements of demand
(−−−→

MV(t)
)

to the following two units: TMS and DG.

Figure 1. Architecture of PRDFS.
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Figure 2. Flowchart of TMS.

TMS: The flowchart for TMS is presented in Figure 2. TMS produces the following
three outputs, which the other modules use as inputs.
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Table 1. The Definitions of Terms used in Section 3.

Term Definition

N Total number of DPVs

t Current time step

DPVi Data provenance of the ith measurement

DPVj Data provenance of the jth measurement

nc The total number of nodes common to DPVi and DPVj

n1 The lenght of the longer DPV between DPVi and DPVj
−−−→
mvi(t) Time series of the ith DPV’s measurements containing both past and current measurements
−−−−−−→
mvi(t− 1) Time series of the ith DPV’s past measurements

mvi(t) The received measurement of the ith DPV at time step t

mvj(t) The received measurement of the jth DPV at time step t

DSi,j(t) The data similarity between mvi(t) and mvj(t) estimated using MAAPE

PSi,j(t) Provenance similarity between the DPVs of mvj(t) and mvi(t): PSi,j(t) = nc/n1

m̂vi(t) One step ahead forecast of the conditional mean of mvi(t)

εi(t) εi(t) = mvi(t)− m̂vi(t)

−−→
εi(t)

The residual series for the one step ahead forecasts of ith DPVs measurements containing both the past
and current residuals

−−−−−→
εi(t− 1)

The residual series for the one step ahead forecasts of ith DPVs measurements containing the past
residuals

σ2
i (t) The observed conditional variance of mvi(t): σ2

i (t) = ε2
i (t)

σ̂2
i (t) One step ahead forecast of σ2

i (t)

ENetM
i The ensemble of CNNs forecasting m̂vi(t)

ENetV
i The ensemble of CNNs forecasting σ̂2

i (t) based on
−−−−−→
ε2

i (t− 1)

εi(t) εi(t) = σ2
i (t)− σ̂2

i (t)

f
(

m̂vi(t),
√

σ̂2
i (t)

)
A gaussian distribution with mean m̂vi(t) and standard deviation

√
σ̂2

i (t)

SE A matrix containing the residual series for the one step ahead forecasts of all DPVs measurements

SK A matrix containing the time series of skewness of the series in SE
−−−−→
MV(t) The measurements of all DPVs at t :

−−→
MV(t) = [mv1(t), . . . , mvN(t)]

D(t) The most trustworthy aggregate demand measurement at time step t based on
−−−−→
MV(t)

−−→
D(t) The time series of aggregate demand
−−−→
trsi(t) Time series of the assessed trust scores of the ith DPV including its assessed trust score at time step t
−−−−−−→
trsi(t− 1) Time series of the assessed trust scores of the ith DPV, not including its assessed trust score at time step t

trsi(t) The assessed trust score of the ith DPV at time step t

t̂rsi(t) The forecasted trust score of the ith sensor at time step t

mi(t) The forecasted conditional mean of trsi(t) based on
−−−−−−→
trsi(t− 1)

δ2
i (t) The forecasted conditional variance of mi(t)

GRNNM
i The ith member of GRNN of the ensemble of GRNNs forecasting mi(t)

GRNNV
i The ith member of GRNN of the ensemble of GRNNs forecasting δ2

i (t)
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Table 1. Cont.

Term Definition

TS TS =
[−−−→
trs1(t), . . . ,

−−−−→
trsN(t)

]
D(t) The most trustworthy aggregate demand measurement at time step t
−−→
D(t) The time series of aggregate demand (based on

−−−−→
MV(t)) including D(t)

D(t + k) The k-step-ahead forecasted conditional mean aggregate demand based on
−−→
D(t)

V(t + k) The k-step-ahead forecasted value of the conditional variance of D(t + k)

L(t + k) L(t + k) = D(t + k)− 3
√

V(t + k)

U(t + k) U(t + k) = D(t + k) + 3
√

V(t + k)

Ensemblemean The ensemble of CNNs forecasting D(t + k)

Ensemblevar The ensemble of CNNs forecasting V(t + k)

gmvi(t) Measurement generated for the ith DPV at time step t by DG

−−−−−→
GMV(t)

−−−−−→
GMV(t) contains the measurements generated by DG for all sensors at t:
−−−−−→
GMV(t) = [gmv1(t), . . . , gmvN(t)]

Dg(t) The most trustworthy aggregate demand measurement at time step t based on
−−−−−→
GMV(t)

−−−→
Dg(t) The time series of aggregate demand (based on

−−−−−→
GMV(t)) including Dg(t)

̂Dg(t + k) The k-step-ahead forecasted conditional mean aggregate demand based on
−−−→
Dg(t)

−−−−−→
posq(t, I) The position of the qth particle at time step t and iteration I.

Dq(t) The most trustworthy aggregate demand measurement at time step t based on
−−−−−→
posq(t, I)

−−−→
Dq(t) The time series of aggregate demand (based on

−−−−−→
posq(t, I)) including Dq(t)

̂Dq(t + k) The k-step-ahead forecasted conditional mean aggregate demand based on
−−−−−→
Velq(t, I)

−−−−−→
Velq(t, I) is the velocity of the qth particle.

f itness(
−−−−−−→
posq(t, I) The fitness score of

−−−−−−→
posq(t, I)

−−−→
pbestq The personal best position of the qth particle

f itness
(−−−→

pbestq

)
The fitness score of

−−−→
pbestq

−−→
gbest The global best position of all the particles

f itness
(−−→

gbest
)

The fitness score of
−−→
gbest

ST ST is a matrix containing the time series of the states (malicious and normal) of each sensor at previous
time steps

−−−−−→
STq(t, I) A vector containing the state of each DPV in the qth particle at time step t and iteration I

−−−−−−−−−−−→
ST(t = 1, I = 1) A vector containing the state of each DPV at the beginning of a game

−→
ST A vector containing the state of each DPV in

−−→
gbest

Output 1: TMS derives the aggregate demand time series
(−−→

D(t)
)

of individual DPVs

by averaging the measurements. DFS uses
−−→
D(t) as inputs. If all DPVs were equally trust-

worthy, a simple average would be appropriate to aggregate the measurements of all DPVs.
However, since the measurements of all DPVs are not always equally trustworthy due to
adversarial attacks and mechanical issues, a weighted average is more appropriate than a
simple average for the derivation of aggregate demand (D(t)). TMS first determines the
trustworthiness weights of the measurements based on the data similarity, provenance sim-
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ilarity, past measurements, and the predicted trustworthiness of the corresponding DPVs at
a given time step using the ensembles of Convolutional Neural Networks (CNNs) [39] and
Generalized Regression Neural Networks (GRNNs) [40], and then performs the weighted

average. TMS sends the aggregate demand time series
(−−→

D(t)
)

to DFS.
Output 2: At the end of each time step, TMS assesses the trust scores [trs1(t),...,trsN(t)]

for all DPVs based on the distances between their measurements and the most trustworthy ag-

gregated measurement (D(t)) at that time step. TMS updates TS =
[−−−−−−→
trs1(t−1),...,

−−−−−−→
trsN(t−1)

]
by adding [trs1(t),...,trsN(t)] to TS. The updated TS is TS =

[−−−→
trs1(t),...,

−−−−→
trsN(t)

]
.

Output 3: At each time step, TMS produces the residuals [ε1(t),. . . ,εN(t)] of one-step
ahead forecasts of the measurements of all DPVs at that time step. TMS then updates

SE =
[−−−−→
ε1(t−1),. . . ,

−−−−−→
εN(t−1)

]
to SE =

[−−→
ε1(t),. . . ,

−−−→
εN(t)

]
by adding [ε1(t),. . . ,εN(t)] to SE.

DFS: The flowchart for DFS is provided in Figure 3. DFS performs k-step ahead

out-of-sample forecasting of demand based on
−−→
D(t) derived by TMS. It uses wavelet

decomposition [41] to split
−−→
D(t) into component series of various frequencies. It then uses

a pair of hierarchical ensembles of CNNs to estimate the distribution of demand forecasts
based on the values of the component time series at non-seasonal lags. The member CNNs
are trained sequentially such that the first member CNN is trained on the component

time series of
−−→
D(t) and each of the other member CNNs is trained on the component time

series of the residuals of the member CNN trained just before it. DFS keeps increasing
the number of member CNNs in the ensemble until the residual series of the last member
CNN becomes white noise. We call this ensemble of CNNs ‘Ensemblemean’. Ensemblemean

forecasts the conditional mean demand
(

D(t + k)
)

. DFS also trains another ensemble of
CNNs called ‘Ensemblevar’ in the same way it trained Ensemblemean. The only difference is
that the first member CNN of Ensemblevar is trained on the component time series of the
squared residuals of Ensemblemean and each of the remaining member CNNs is trained on
the component time series derived from the time series of the absolute values of residuals
obtained from the above member CNN. Ensemblevar forecasts the conditional variance
(V(t + k)) of

(
D(t + k)

)
. During forecasting, each ensemble member in Ensemblemean and

Ensemblevar forecasts values separately. The overall forecast
(

D(t + k)
)

of Ensemblemean

is the summation of the forecasts of its all members. The overall forecast (V(t + k)) of
Ensemblevar is the summation of the absolute values of the forecasts of all its member
CNNs. The point forecast (i.e., the most expected demand) of the DFS module at t+k is
D(t + k). The interval forecast of DFS at t+k:

The lower bound of the forecast distribution:

L(t + k) = D(t + k) − 3
√

V(t + k) (1)

The upper bound of the forecast distribution:

U(t + k) = D(t + k) + 3
√

V(t + k) (2)

DG: The flowchart for DG is provided in Figure 4. The DG learns the joint probability
distribution of the individual time series of each DPV and generates an infinite stream

of
(−−−−−→

GMV(t)
)

for each DPV. DG sends
−−−−−→
GMV(t) to EHS to facilitate the generation of

attack signatures.
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Figure 3. Flowchart for DFS.
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Figure 4. Flowchart for DG.

EHS: The flowchart for EHS is given in Figure 5. The task of EHS is to generate all
possible attack signatures for the training of SIDS. To do so, the EHS uses the Particle Swarm
Optimization (PSO) algorithm [42] with a game theoretic approach [43]. It plays repeated
games with the other modules of PRDFS. In these games, EHS plays as an attacker while
TMS and SIDS are teamed up to play as a defender of DFS. The attacker and defender play
under the following rules: (1) in each game, the attacker has a fixed number of malicious
nodes at the beginning. (2) If the defender detects a malicious node, it becomes a normal
node. From the next step onwards, the attacker cannot modify its measurements. (3) An
attacker cannot compromise a new or recovered node in the middle of the game. (4) EHS
works with complete knowledge of the PRDFS. (5) The attacker randomly chooses one of
the following two objectives to pursue in a game: (i) shift the demand trend upward, and
(ii) shift the demand trend downward.
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Figure 5. Flowchart for EHS.

To generate optimal attack signatures, the PSO (employed by EHS) follows the follow-
ing steps.

Step 1. Initialize the positions and velocities of ten particles. The position(−−−−−→
posq(t,I) = [gmv1(t). . . ,gmvN(t)]

)
of each particle (q) at time step t and iteration I is
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a vector containing the measurements of all DPVs at time step t, wherein the measurements of
normal DPVs are the same as the generated measurements by the DG and the measurements of

the malicious DPVs are randomly initialized. The velocity
(−−−−−→

Velq(t,I) = [Vel1(t),. . . ,VelN(t)]
)

of each particle (q) at time step t and iteration I is a vector that has the same length as
the position vector. Each element of the velocity vector contains the direction and speed
at which the measurement of the corresponding DPV is updated from the one iteration
to the next during the PSO search. In each particle, the velocities of normal DPVs are set

to zero and regarded as constant. In addition, each particle has a state vector
(−−−−→

STq(t,I)
)

containing the state of each DPV. Initially, the state vectors of all particles are the same.

Step 2. The fitness of each particle’s position
(

fitness
(−−−−−→

posq(t,I)
))

is determined using
the following method:

• Present
−−−−−→
GMV(t) to TMS. TMS estimates the most trustworthy aggregated measure-

ment of demand Dg(t) and sends it to DFS to forecast the k-step ahead demand
̂Dg(t + k).

• Present
−−−−−→
posq(t,I) to TMS. TMS estimates the most trustworthy aggregated measure-

ment of demand Dq(t) and sends it to DFS to forecast the k-step ahead demand
̂Dq(t + k). TMS also updates the time series of assessed trust scores (TS) of DPVs

by adding the assessed trust scores of DPVs (found in
−−−−−→
posq(t,I)) at time step t to TS,

as well as the time series of the residuals of one-step ahead forecasts of each DPV’s
measurements (SE) by adding the residuals of forecasting the measurements of DPVs
at time step t to SE. SIDS uses the updated TS and SE to predict the current states
(malicious and normal) of DPVs.

• If SIDS detects any malicious node correctly, set fitness
(−−−−−→

posq(t,I)
)

to zero and change

the state(s) of the detected malicious node(s) from malicious to normal in
(−−−−→

STq(t,I)
)

.

Else if ̂Dq(t + k)< ̂Dg(t + k) when the objective is shifting the demand upward or
̂Dq(t + k)> ̂Dg(t + k) when the objective is shifting the demand downward, set

fitness
(−−−−−→

posq(t,I)
)

to zero. Else estimate the fitness using the following formula:

fitness
(−−−−−→

posq(t,I)
)

= 100 × tan−1

(∣∣∣∣∣ D̂g(t)−D̂q(t)

D̂g(t)

∣∣∣∣∣
)

(3)

Step 3. Find the personal best position of each particle at the current Ith iteration from
the positions it has visited before and set the personal best position

(−−−→
pbestq

)
of the qth

particle to it. If it is the first iteration, set the
−−−→
pbestq to its current position. We denote

the fitness of
−−−→
pbestq by

(
fitness

(−−−→
pbestq

))
. Find the global best position of all particles(−−→

gbest
)

from the positions they have visited before. We denote the fitness of
−−→
gbest by(

fitness
(−−→

gbest
))

.
Step 4. Update the velocity of each malicious DPV in qth particle using the follow-

ing equation:

−−−−−−−→
Velq(t,I + 1) =

−−−−−→
Velq(t,I)+C1×rand(1,1)×

∣∣∣−−−→pbestq−
−−−−−→
posq(t,I)

∣∣∣+C2×rand(1,1)×
∣∣∣−−→gbest−

−−−−−→
posq(t,I)

∣∣∣ (4)

where rand(1,1) is a random number between (0,1). C1 and C2 are learning factors. We set
the learning factor to 2 (C1 = C2 = 2).

Step 5. Update each particle’s position using the following equation:

−−−−−−−−→
posq(t,I + 1) =

−−−−−→
posq(t,I)+

−−−−−−−→
Velq(t,I+1) (5)
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Repeat steps 2–5 until the stopping criterion is satisfied.
Step 6.

−−→
gbest contains the optimal measurements for the malicious sensors.

[−−→
gbest,

−→
ST
]

is an optimal attack signature, wherein
−→
ST is a vector containing the state of each DPV

in
−−→
gbest.

EHS generates attack signatures through repeated games and keeps updating the
attack signature database by adding new signatures.

SIDS: The flowchart for SIDS is provided in Figure 6. The task of SIDS is to classify
DPVs into one of the two groups: malicious (1) and normal (0). It uses an ensemble of
GRNNs to perform the classification task. Each member GRNN is trained to classify one
DPV as either normal or malicious. Target outputs vary between member GRNNs. During
training, each GRNN’s target outputs are the states (malicious state or normal state) of the
corresponding DPV at a given time step. However, the input vectors of all member GRNNs
are the same. During training, the raw input is

−−→
gbest. During testing, the raw input is the

vector of measurements transmitted by the DPVs. SIDS sends the raw input to TMS. TMS
updates TS and SE accordingly. SIDS estimates the time series of the skewness coefficients
of residuals at each time step by moving a sliding window over the residual series in SE.
This yields the matrix SK containing the skewness series of each DPV. The input vector
contains 100 consecutive most recent lagged variables from TS and SK.

Figure 6. Flowchart for SIDS.
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It is worth noting that when malicious DPVs are detected, they get converted to
normal DPVs at the very time step, so that from the next time on, they provide the actual
measurements. However, there are no ways to recover the actual measurements of the
recovered DPVs at time step t when they are first detected as having compromised. Hence,
SIDS cannot improve the performance of estimating the most trustworthy aggregate de-
mand (D(t)) at time step t. By detecting and recovering the malicious DPVs at time step
t, SIDS ensures the better performance of TMS in estimating the most trustworthy aggre-
gate demand at the later time steps. In PRDFS, TMS does not exclude the measurements
obtained from the malicious DPVs while estimating D(t). This is because there is a chance
of the detected malicious DPVs being in benign modes at time step t, that means they have
reported the actual measurements. Even if the detected malicious DPVs are in malicious
modes at time step t, the distance between the malicious measurements may not be far
away from the actual measurements if the attack is at the initial stage. Hence, to avoid
losing information from malicious DPVs by discarding their readings, TMS adjusts the
weights of the measurements to control their influence on the estimation of D(t). Thus, by

providing a trustworthy time series of historical aggregate demands
(−−→

D(t)
)

, TMS ensures

the performance of DFS in forecasting the k-step ahead values of
(−−→

D(t)
)

is least affected
by the attack.

4. Research Methodology

We compare PRDFS with a benchmark resilient demand forecasting system. No
existing resilient CDFS have all the features that have been demonstrated to be effective
for resilient demand forecasting systems. Hence, we implement a benchmark resilient
CDFS by combining the promising solutions proposed in previous studies that complement
each other and strengthen the performance of the resilient demand forecasting system. We
call this benchmark algorithm BRDFS. The remaining section is organized as follows: the
evaluation methodology for PRDFS and BRDFS is discussed in Section 4.1. The performance
metrics against which the performance of PRDFS and BRDFS is measured are discussed in
Section 4.2. A brief description of BRDFS is presented in Section 4.3. PRDFS and BRDFS
are evaluated on synthetic data in the presence of on-off colluding FDIA. The details of the
adversary model that generated stealthy FDIA attacks are presented in Section 4.4. The
synthetic data generation process is described in Section 4.5.

4.1. Evaluation Methodology for PRDFS and BRDFS

To compare PRDFS and BRDFS, we simulate two CPS. For simplicity purposes, each
CPS consists of two layers of nodes. The first layer contains 14 sensors that monitor
demand continuously. The second layer contains a base station. All sensor nodes are
directly connected to the base station. They transmit their measurements to the base station
at regular intervals. PRDFS resides in the base station of one CPS, and BRDFS resides in the
base station of the other CPS. PRDFS and BRDFS are implemented in MATLAB and their
performance is tested on High Performance Computing (HPC). PRDFS and BRDFS both
play multiple games with the adversary model under different percentages of malicious
nodes. The important rules of the games are stated below: (1) at the beginning of each game,
the attacker compromises a fixed number of malicious nodes. (2) If the defender detects
a malicious node, it becomes a normal node. From the next step onwards, the attacker
cannot modify its measurements. (3) An attacker cannot compromise a new or recovered
sensor node. (4) The duration of each game is 1000-time steps. (5) The adversary model
has partial knowledge. At the start of the game, the adversary model gets the most recent
500 measurements of all malicious sensors, whereas PRDF and BRDFS get the most recent
1000 measurements of all sensors. (6) At each time step, the data generator (described in
Section 4.5) generates the measurements of sensors at that time step. The adversary model
modifies the measurements of malicious sensors. All measurements are then transmitted to
the base station. PRDFS and BRDFS estimate the most trustworthy measurement based
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on the noisy sensor measurements, append the most trustworthy measurement to the
aggregate demand time series, retrain the forecasting models on the updated aggregate
demand time series, and forecast one-step ahead of demand using the updated forecasting
model, and classify each sensor node into one of the two types: malicious and normal. The
adversary model also adapts itself based on the new measurements of malicious sensors.

4.2. Performance Measures

PRDFS and BRDFS are compared in terms of two measures. The first performance
measure is the accuracy of detecting malicious nodes. The second performance measure
is the resilience of the demand forecasting system in the face of ongoing attacks. These
measures are described in detail in Sections 4.2.1 and 4.2.2.

4.2.1. Accuracy in Detecting Malicious Nodes

PRDFS and BRDFS are compared with respect to their ability to correctly classify
sensors as malicious (i.e., involved in stealthy FDIA attacks) or normal (i.e., not involved in
attacks). When the classification is compared with the true status, there are four possible
outcomes: true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
(details are available in Table 2).

Table 2. Performance Metric.

Predicted Label

Positive
(Malicious)

Negative
(Normal)

Actual Status Positive (Malicious) True Positive (TP) False Negative (FN)

Negative (Normal) False Positive (FP) True Negative (TN)

We use accuracy rate and false positive rate (FPR) as the performance criteria metric
based on the above performance metric shown in Table 2. The accuracy rate and FPR are
measured using the following formulae.

Accuracy rate =
TP + TN

TP + TN + FP + FN
(6)

FPR =
FP

FP + tN
(7)

4.2.2. The Resilience of the Demand Forecasting System in the Face of Ongoing Attack

The resilience of PRDFS and BRDFS are measured using the following metric for
resilience [44]:

R = Pn/P (8)

where Pn and P present the out-of-sample one step ahead demand forecasting accuracy
with and without attacks, respectively. The predictive accuracy is measured in both point
estimates and confidence intervals. In the single point estimate, the predicted output is the
most expected value of demand. We use the mean arctangent absolute percentage error
(MAAPE) to measure the accuracy of single point forecasts [45]. In the MAAPE approach,
the accuracy is defined as follows:

Accuracy = 100 −MAAPE × 100 (9)

MAAPE=
1
N

N

∑
t = 1

(AAPEt) for t = 1,. . . ,N (10)

AAPEt = tan−1
(∣∣∣∣At − Ft

At

∣∣∣∣) (11)
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where At and Ft denote the actual and forecasted values at data point t, respectively. N is
the number of data points.

In the interval estimate, the predicted outputs are the upper and lower bounds of
forecasts. In this approach, if the actual demand lies between the forecasted upper and
lower bounds, the forecast is correct. Interval estimates are made for the 99.7% confidence
level. The 99.7% limits lie three standard deviations below and three above the mean.

4.3. Description of the Benchmark Algorithm (BRDFS)

BRDFS consists of three modules: a demand forecasting system (DFS), a trust manage-
ment system (TMS), and a malicious node detection system. The details of these systems
are given below.

4.3.1. Demand Forecasting System (DFS) of BRDFS

Most of the existing resilient demand forecasting systems use a single Long-Term
Short-Term Memory (LSTM) for forecasting the point estimate of the demand [9,17]. For
comparison purposes, the DFS of BRDFS consists of two LSTMs for forecasting the interval
estimate of the demand. LSTM1 is trained to forecast the conditional mean of demand and
LSTM2 is trained to forecast the conditional variance of demand. LSTM1 is trained on the
original aggregate demand time series and LSTM2 is trained on the squared residuals of
LSTM1. Most of the existing resilient demand forecasting systems do not perform differ-
encing or wavelet decomposition on the demand time series to deal with non-stationarity.
Hence, BRDFS does not apply these measures as well.

4.3.2. Trust Management System (TMS) of BRDFS

BRDFS uses a popular TMS proposed in [31] to estimate the most trustworthy mea-
surement at time step t based on the measurements from all available sensors. This TMS is
implemented as follows. Normalize all measurements at time step t using the min-max
normalization. Find the Euclidean distance between each pair of measurements. Estimate
the similarity

(
DSi,j

)
between the measurements

(
mvi(t) and mvj(t)

)
of sensors i and j

using the following equation:

DSi,j = 1 − Euclidean distance between mvi(t) and mvj(t) (12)

Estimate the provenance similarity
(
PSi,j

)
between mvi(t) and mvj(t) which is the

ratio of the total number of common nodes in both provenances to the total number of
nodes in the provenance with the longer length. Adjust DSi,j to PSi,j using the following
pseudocode:

if DSi,j ≥ 0.6 then DSi,j = DSi,j +
(
1 − PSi,j

)
else DSi,j = DSi,j − PSi,j end

Since in our simulation, we assume that all sensor nodes are directly linked to the
based station, PSi,j is always zero. Find the average similarity DSj of each measurement(
mvj(t)

)
to all other measurements.

DSj =
∑n−1

i = 1D̂Si,j

n−1
(13)

where n represents the total number of measurements.
Find the measurement mvj(t) with the highest DSj as the mean represents the total

number of measurements (M) measurement (i.e., the most trustworthy measurement).
Estimate the standard deviation (σ) of M. Generate a Gaussian function f(M,σ) with

M and σ. Assign an intermediate trust score
^
sd(t) to each measurement at time step t
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using f(M,σ). Estimate the final score sd(t) of each measurement using the following
linear model.

sd(t) = cdsn(t − 1) + (1 − cd)
^
sd(t) (14)

where sn(t−1) is current reputation score of the sensor node made the measurement. cd is
a constant to be specified by the user. We set cd to 0.5.

Set sd(t) as the intermediate reputation score
(

^
sn(t)

)
of the corresponding sensor.

Estimate the final reputation score
(
Sn(t)

)
of the sensor node at the end of time step t using

the following equation and we set the value of cd to 0.5.

sn(t) = cdsn(t − 1) + (1−cd)
^
sn(t) (15)

4.3.3. Malicious Node Detection System of BRDFS

BRDFS uses a skewness detector proposed in [37] and a correlation detector CAD
proposed in [38] to detect the compromised nodes. If a node is found compromised by the
skewness detector and/or CAD, the node is considered as compromised. The details of the
above anomaly detectors are given below.

Skewness Detector

This skewness detector is proposed in [37]. The idea is, if a sensor is involved in a
collusion attack, the distribution of forecasting residuals of the measurements from the
sensor (that usually tend to be normal) should be skewed to the left or right.

The training phase of the skewness detector includes the following steps. Step 1: Fit a
forecasting model to the time series of the sensor’s readings. Step 2: Find the residuals of the
forecasting model. Step 3: Estimate the rolling skewness coefficients of the residual series
using the rolling window of N time steps. We set N to 30. This gives a series of skewness
coefficients. Step 4: Estimate the unconditional mean (m) and standard deviation (s) of the
skewness series. Then compute the acceptable range (−δ = m − 3s, and + δ = m + 3s) for
the skewness of the forecasting error distribution.

During the stealthy attack distribution, the following steps are followed. Step 1: Take
the new sequence (r0) of forecasting residuals over the last N time steps. Step 2: Generate a
sequence (rrand) of normal random number with µ and σ2 estimated in the training phase.
The length of rrand is 0.05N. Step 3: Replace a small proportion of entries in r0 with rrand
and generate a new sequence rtest for testing. Step 4: Compute the skewness coefficient
(SC) of rtest. If SC falls outside the acceptable range (−δ,+δ), raise the alarm that the sensor
is participating in the collusion attack.

Correlation Detector ‘CAD’

The correlation detector, called CAD, is proposed in [38] to detect compromised nodes.
CAD includes two sub-schemes: temporal collusion detection scheme and spatial collusion
detection scheme. If both sub-schemes find a node anomalous, the node is regarded
as compromised.

Temporal collusion detection sub-scheme performs the following steps to detect the
anomalous nodes. Step 1: Estimate the correlation between each node’s measurements
at time step t and at time step t + 1. Step 2: Estimate a predefined confidence interval
for temporal correlations based on the bootstrap distribution. If at a given time window,
the temporal correlation falls outside the confidence interval, the node is considered a
malicious node.

The spatial collusion detection sub-scheme performs the following steps. Step 1:
Compute the Pearson’s correlation coefficient between the measurements of each pair of
sensors over time window t (a time window consists of multiple time steps). This gives a
correlation matrix which is called the correlation map. Each vector of the matrix contains
the pairwise correlation coefficients between the measurements of one particular sensor (i)
and that of every other sensor over time window t—this vector is the location of sensor i in
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the location map at time window t. Step 2: Estimate the global centroid which is the vector
in the matrix that has the smallest distance from all vectors in the matrix. Step 3: Perform
k-means clustering to partition the vectors into k clusters. Step 4: If a vector’s distance
from the global centroid is greater than 0.5, and if the vector’s distance from the centroid
of its closest cluster is greater than 0.3, the sensor represented by the vector is classified
as compromised.

4.4. Adversary Model

Let there be N total number of sensors in a complete sensor network. The attacker can
only compromise k out of N sensors. Step 1, randomly choose k sensors to be compromised:
generate a random number for each sensor. Sort the sensors based on the corresponding
random numbers in ascending order. Select the first k sensors for compromising. Step 2,
record each compromised sensor’s untampered readings over the next 500-time steps. Build
and train a pair of convolutional neural networks (CNN) for each compromised sensor. The
first CNN predicts the conditional mean of the individual time series at time step t—the
inputs of this network are the past values of the time series, and the desired outputs are
one-step-ahead values of the time series. The second network predicts the conditional
variance of the conditional mean at time step t—the inputs of this network are the past
squared residuals of the first CNN, and the desired outputs are one-step-ahead squared
residuals from the first CNN. Step 3, to estimate the modified readings for the compromised
sensors, construct a 95% confidence interval for the reading of each compromised sensor

(l) at time step t based on the corresponding conditional mean
(

^
ml(t)

)
and conditional

variance
(

^
v

2

l (t)
)

forecast. Step 4, Generate k random numbers in the range [0,1], one

for each compromised sensor. If the random number is less than 0.5, the corresponding
compromised sensor (l) uses the following formula to calculate its tampered measurement
(mvl) at time step t:

mvl =
^
ml(t) +

^
ϑl(t) × r (16)

where r is the normal random number with mean 0 and standard deviation 1.
Otherwise, it reports the upper or lower bound of the 99.7% confidence interval as the

reading of the compromised sensor at time step t to shift the trend upward or downwards,
respectively. Step 5, if the defender fails to identify the lth compromised sensor at time step
t, retrain the corresponding CNN pair with the reported measurement at time step t. Step
6, repeat steps 3–5 to estimate the readings for the compromised sensors at each time step.

4.5. Data Generator

We build a data generator that produces data for an infinite time, so that we can
evaluate the performance of the proposed forecasting system. In non-stationary time series,
various local frequencies exist at different resolution levels. We use wavelets to generate
synthetic non-stationary time series. The mother wavelet and the resolution levels (n) along
with the values of approximation coefficients at the highest level and detail coefficients
at each level must be specified to generate a time series. We complete the following steps
to generate a time series for each sensor. Step 1: Choose a wavelet and a set of scales (or
level of resolution) (say 1 to n) where the most valuable frequencies will be assigned. We
use Daubechies mother wavelet of order 2 (db2). The number of resolution levels (n) is
chosen to be three. Step 2: We define a separate sinusoidal function for the generation of
the approximation coefficients at level 3 and the detail coefficients at each resolution level.
The higher the resolution level, the smaller the number of coefficients, due to subsampling.
To generate a signal of length 10,000 with ‘db2’ as mother wavelet and three levels of
resolution, we need to specify 1252 level-3 approximation coefficients, 1252 level-3 detail
coefficients, 2502 level-2 detail coefficients, and 5001 level-1 detail coefficients.

wj,t = A sin(B(t + C)) + D + σr (17)
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where wj,t is the (approximation or detail) coefficient at scale j and time point
t. A = amplitude; C = phase shift; D = vertical shift; B = 2πf; t=time step;
σ = standard deviation; r = Gaussian noise. The values of function parameters (A,f,C,D,σ)
are arbitrarily assigned.

Step 3: Reconstruct the signal based on the selected mother wavelet and resolution
level using the MATLAB function ‘waverec’. We perform augmented Dickey-Fuller tests
on the time series and its first and second order derivatives to check whether the time
series is stationary or not. The test confirms that the time series and its derivatives are
non-stationary. Step 4: At each time step, estimate the mean (µ) of all measurements of
demand obtained from 14 sensors to get the aggregate demand time series.

5. Results and Discussion

The performances of PRDFS and BRDFS were comparatively tested on 11 games with
an adversary model. Each game was conducted with different percentages of malicious
nodes. The duration of each game was 1000-time steps. The simulation results provide
interesting insight into the comparative efficacy of PRDFS and BRDFS.

5.1. The Comparative Performance of PRDFS and BRDFS in Terms of Demand Forecasting
Resilience to Stealth Attacks
Major Findings

• PRDFS exhibits an almost perfect mean resilience value of ~0.99 over the time frame
of the game (i.e., 1000-time steps) regardless of the percentage of the nodes compro-
mised by the adversary (Figure 7). This is mainly because it detects and recovers
all compromised nodes at the very early stages of games (within first 30-time steps)
(Figure 10).

• During the first 40-time steps of games while the attack is still occurring or just ended,
the mean demand forecasting resilience of PRDFS slightly decreases but it never
goes below 0.8 (its resilience ranges from 0.82 to 1), regardless of the percentage of
the malicious nodes (Figure 7). In contrast, the mean demand forecasting resilience
sharply decreases in BRDFS over the simulation period (i.e., 1000 time-steps) as the
percentage of malicious nodes increases (Figure 7).

• In PRDFS, the interval demand forecast accuracy demonstrates greater resilience
than the point demand forecast accuracy, while the opposite trend is observed in
BRDFS (Figure 7). In BRDFS, the interval demand forecast accuracy has weaker
resilience compared to the point demand forecast accuracy and the trend becomes more
pronounced as the percentage of malicious nodes increases. This is mainly because
BRDFS fails to detect most malicious nodes (Figure 11). All colluding malicious nodes
report similar measurements and thereby artificially reduce the uncertainty around
the mean estimate, which results in low interval demand forecast accuracy and yields
a very high FPR in detecting malicious nodes.
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Figure 7. A comparison of resilience between PRDFS and BRDFS under different percentages of
malicious nodes. Figure 7 shows the mean resilience of PRDFS and BRDFS in demand forecast
accuracy under different percentages of malicious nodes. The X-axis represents the percentages of
malicious nodes, and the Y-axis represents the mean resilience. The mean resilience of a system under
a given percentage of malicious nodes is the ratio of mean (point or interval) demand forecasting
accuracy under attacks with the given percentage of malicious nodes to the mean (point or interval)
demand forecasting accuracy under no attack. The red and blue lines plot the mean resilience
of PRDFS in respect to point demand forecast accuracy and interval demand forecast accuracy,
respectively, over 1000-time steps under different percentages of malicious nodes. The pink and green
lines plot the mean resilience of PRDFS in terms of point demand forecast accuracy and interval
demand forecast accuracy, respectively, over the first 40-time steps under different percentages of
malicious nodes. The orange and black line plots the mean resilience of BRDFS in terms of point
demand forecast accuracy and interval demand forecast accuracy, respectively, over 1000-time steps
under different percentages of malicious nodes. The figure shows that PRDFS demonstrates near
perfect mean resilience over 1000-time steps in both point and interval forecasting accuracy for all
percentages of malicious nodes. However, the mean resilience of PRDFS over the first 40-time steps
shows the signs of weakening with the increase in malicious nodes. In BRDFS, the mean resilience
over 1000-time steps falls sharply as the percentage of malicious nodes increases. PRDFS is observed
to have higher resilience in the interval demand forecasting accuracy than in the point forecasting
accuracy. The opposite trend is seen in BRDFS.

We attribute the high resilience of PRDFS in the face of an attack to the combined
effect of the strong performances from its modules: SIDS, TMS, and DFS. Sections 5.2–5.4
discuss the comparative performances of the individual subsystems.

5.2. The Comparative Performance of PRDFS and BRDFS in Detecting Malicious Nodes
5.2.1. Major Findings:

• PRDFS maintains a high malicious node detection accuracy of around 95% (ranging
from 97% to 89%) while still maintaining a low FPR, ranging from 3–9%, with the
increasing percentage of malicious nodes (Figures 8 and 9). In contrast, the accuracy of
BRDFS sharply falls with the rising FPR as the percentage of malicious nodes increases
(Figures 8 and 9).

• PRDFS successfully detects all malicious nodes within the first 30-time steps regardless
of the percentage of the malicious nodes, whereas BRDFS fails to detect any malicious
node after 15-time steps (Figure 10). It appears that BRDFS has a shorter time window
for detecting malicious nodes than PRDFS.
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• BRDFS manages to correctly detect malicious nodes when the percentage of malicious
nodes is low (Figures 10 and 11). BRDFS fails to detect any malicious node when the
percentage of malicious nodes is 30% or over (Figure 11).

Figure 8. A comparison of accuracy between PRDFS and BRDFS for classifying normal and malicious
nodes. Figure 8 depicts the node classification accuracy of PDRFS and BRDFS under the varying
percentage of malicious sensor nodes. The X-axis represents the percentages of sensor nodes that are
malicious in the simulation trial. The Y-axis represents the mean accuracy of classifying the sensor
nodes into one of the two classes (malicious and normal) over the 1000-time steps. The classification
is done at each time step. The blue line shows the classification accuracy of PRDFS under different
percentages of malicious nodes, whereas the orange line shows the mean classification accuracy
of BRDFS under different percentages of malicious nodes. PRDFS achieves high malicious node
detection accuracy. The accuracy of PRDFS is almost always over 90%. The orange line shows a
dramatic fall in the accuracy of BRDFS as the number of malicious nodes increases. Its accuracy
varies from over 90% to 0%.

Figure 9. A comparison of False Positive Rates (FPR) for PRDFS and BRDFS for detecting malicious
nodes. Figure 9 shows the false positive rates (FPR) for PRDFS and BRDFS when detecting malicious
nodes. The X-axis represents the percentages of sensor nodes that were malicious in the simulation
trial. The Y-axis represents the false positive rates (FPR). The blue line shows the FPR of PRDFS under
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different percentages of malicious nodes whereas the orange line shows the FPR of BRDFS under
different percentages of malicious nodes. The FPR in PRDFS never exceeds 9%. The FPR of BRDFS
rises sharply with the percentage of malicious nodes. The FPR of BRDFS varies from less than 10% to
around 75%.

Figure 10. The distribution of detected malicious nodes by PRDFS and BRDFS over time. (a) PRDFS
and (b) BRDFS showing the distributions of the number of malicious nodes detected by PRDFS
and BRDFS, respectively, in contrast to total number of malicious nodes in the system in different
time windows in all games. The length of each time window is equal to five-time steps. The X-axis
represents the time window, and the Y-axis represents the number of malicious nodes. In one game,
the total number of nodes is 14. Ten games out of all 11 games contain malicious nodes. The total
number of nodes in ten games together is 140, among which 77 nodes are malicious. Nodes are
compromised at the beginning of the game. If a malicious node is detected, it is converted to benign
nodes. If an algorithm detects a higher number of malicious nodes early in the games, there will be a
lower total number of malicious nodes later. We add up malicious nodes detected in all games at each
time window to get the total number of malicious nodes at the given time window. The orange part
of each stacked bar represents the total number of malicious nodes undetected at the beginning of
each time window, whereas the blue part represents the total number of malicious nodes detected in
that time window. PRDFS detects the largest number of malicious nodes at the fourth time window.
BRDFS appears to have a shorter time window for detecting malicious nodes than PRDFS. BRDFS
have not detected any malicious nodes after the third time window.

Figure 11. Number of malicious nodes detected vs. number of malicious nodes undetected by PRDFS
and BRDFS. (a) PRDFS, and (b) BRDFS. Each bar in the subplots ‘(a) PRDFS’ and ‘(b) BRDFS’ shows
the number of malicious nodes detected and the number of malicious nodes undetected by PRDFSand
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BRDFS, respectively, under a given percentage of malicious nodes. In both subplots, the X-axis
represents the percentage of nodes compromised, whereas the Y-axis represents the number of nodes.
The blue part of the bar indicates the number of detected malicious nodes. The orange part of the
bar indicates the number of undetected malicious nodes. In subplot ‘(a)PRDF’, there is no orange
part in any bar. This is because PRDFS has detected all the malicious nodes under all percentages of
malicious nodes. In subplot ‘(b)BRDFS’, on the contrary, all bars are completely orange, except for
the first two bars. A completely orange bar indicates that no malicious node is detected by BRDFS
under the given percentage of malicious nodes. BRDFS identifies all malicious nodes when the
percentage of malicious nodes is 10%. It can detect most of the malicious nodes under attacks with
20% malicious nodes.

5.2.2. Further Observations

We attribute the above observations to the following characteristics of PRDFS and
BRDFS:

• PRDFS uses a supervised intrusion detection system (SIDS) for detecting malicious nodes.

â SIDS learns from the input and output data sets that are contamination-free
since they are generated through the game theoretic approach. It employs a
supervised learning algorithm (GRNN) to distinguish between malicious and
normal nodes.

â It can detect malicious nodes even when all nodes are malicious because it
compares the present behaviors of the nodes in respect to dynamic spatio-
temporal patterns of trustworthiness and the skewness of residual distribution
with previous correct behaviors.

• BRDFS uses an unsupervised anomaly-based intrusion detection system (AIDS) for
detecting malicious nodes.

â AIDS learn from unlabeled real data that are contaminated with many undetected
malicious nodes. Hence, its learning is not very effective.

â AIDS learn under the assumption that statistically rare or atypical behaviors are ab-
normal and are possible signs of maliciousness, whereas typical or common behaviors
are normal. Hence, AIDS can only detect malicious nodes when the percentage of
malicious nodes is low, and the malicious nodes are operating for a short period of
time where it is not possible to inject a significant number of malicious instances in
the data set. However, stealthy malicious nodes are highly difficult to detect at very
early stage.

â The skewness detector and the temporal collusion detection scheme of CAD uses
confidence interval-based anomaly detection. If a node’s behavioral traits fall outside
the confidence interval, the node is detected as malicious. However, such a strategy is
ineffective against collusion attacks. In collusion attacks, the adversary takes control
of multiple sensors and changes the readings of these sensors to the desired upward
or downward direction in such a way that the malicious nodes always lie within the
confidence intervals of correlation coefficients and skewness coefficients. One of the
major challenges in time series forecasting is that the distribution of the time series
changes over time. Hence, the forecasting model needs to be adapted to the most
recent data—the adversaries take advantage of this situation. Returning the upper or
lower extreme of the acceptable range as the readings of the compromised sensors,
they can gradually move the forecasting model in the wrong direction without getting
caught. Since the forecasting model is evolving towards the false data, over time, the
non-compromised sensors are marked as compromised one after another and will
lose all influence over the model’s evolution, thereby accelerating the compromise
rate of the entire forecasting system.

â The spatial collusion detector of the CAD in BRDFS uses unsupervised clustering to
separate malicious nodes. These clustering algorithms are based on arbitrary rules.
Thus, it is natural that its accuracy is not as good as PRDFS.
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5.3. The Comparative Performance of PRDFS and BRDFS in Estimating the Most Trustworthy

Measurement of the Current Aggregate Demand
(−−→

D(t)
)

5.3.1. Major Findings

• The demand forecast resilience is directly correlated to the accuracy in estimating

current aggregate demand
(−−→

D(t)
)

that acts as the input signal while forecasting the
demand time series (Figures 7 and 12).

• Since PRDFS detects and recovers all compromised nodes at the very early stages
of games (within first 30-time steps) (Figure 10), the mean accuracy of estimating(−−→

D(t)
)

in PRDFS is almost constant to around 98% over the time frame of the game
(i.e., 1000-time steps) regardless of the percentage of the nodes compromised by the
adversary (Figure 12).

• During the first 40-time steps of games, while the attack is still occurring or just ended,

the mean
(−−→

D(t)
)

estimation accuracy in PRDFS decreases from around 98% to 83% as

the percentage of malicious nodes increases. In contrast, the mean
(−−→

D(t)
)

estimation
accuracy in BRDFS falls sharply over the simulation period (i.e., 1000 time-steps) as
the percentage of malicious nodes increases.

Figure 12. A comparison of accuracy between PRDFS and BRDFS for estimating current aggregate
demand. Figure 12 depicts the prediction accuracy of current aggregate demands in PDRFS and BRDFS
under the varying percentage of malicious sensor nodes. The accuracy is estimated based on the
difference between the most trustworthy measurement of the current aggregate demand predicted
by the TMS and the actual current aggregate demand (which is the simple average of the actual
current measurements of the sensors). The X-axis represents the percentages of sensor nodes that were
malicious in the simulation trial. The Y-axis represents the accuracy. The accuracy is estimated based
on MAAPE. The green and blue lines plot the mean accuracy of PRDFS in respect to the mean current
aggregate demand over 1000-time steps and over the first 40-time steps, respectively, under different
percentages of malicious nodes. The red line plots the mean accuracy of BRDFS in terms of the mean
current aggregate demand over 1000-time steps under different percentages of malicious nodes. The
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green line is almost flat to X-axis, indicating that the mean accuracy of mean current aggregate
demand over 1000-time steps predicted by (the TMS of) PRDFS is not sensitive to the percentage
of malicious nodes in the system. The blue line drops gradually as the percentage of almost flat to
X-axis, indicating that the mean accuracy of mean current aggregate demand over 1000-time steps
predicted by (the TMS of) PRDFS is not sensitive to the percentage of malicious nodes in the system.
The blue line drops gradually as the percentage of malicious nodes increases, indicating that the mean
accuracy of mean current aggregate demand over the first 40-time steps predicted by PRDFS is mildly
sensitive to the percentage of malicious nodes in the system. The red line falls at an accelerated rate
indicating that the mean accuracy of mean current aggregate demand over 1000-time steps predicted
by BRDFS is highly sensitive to the percentage of malicious nodes in the system.

5.3.2. Further Observations

The following strategy differences between the TMS of PRDFS and that of BRDFS may

explain their striking differences in
(−−→

D(t)
)

estimation accuracy in the face of an attack:

• The TMS of PRDFS considers the following three factors in determining the trustwor-
thiness of a sensor node at a time distant t: (1) the trustworthiness of the node, (2) the
similarity of the sensor’s reading with the other sensors’ readings at the same time
step, and (3) the similarity of the sensor’s measurement at time step t with its past
measurements, but in contrast, the TMS of BRDFS uses only the first two factors.

• The TMS of BRDFS updates the reputation score of a node at the end of a time step t
after determining the most trustworthy measurement at that time step. In the presence
of on-off attacks, the normal behavior of a node at the last few time steps does not
guarantee normal behavior from the node at the next time step. For this reason, the
TMS of PRDFS predicts the trust score of a node at the beginning of a time step t (before
determining the most trustworthy measurement at that time step) using GRNN, which
is a powerful pattern recognition algorithm capable of learning local patterns.

• In BRDFS, the reputation score of a node at time step t is a linear function of its
long-term reputation and its intermediate reputation score computed at time step
t. In contrast, the TMS of PRDFS uses a powerful fuzzy clustering-based non-linear
algorithm (GRNN) to predict the trust score of a node at time step t based on its past
trustworthiness scores.

• The TMS of BRDFS sets the reputation score of a node at time step t to the estimated
expected (i.e., mean) reputation score of the node at time step t. In stealthy on-off
attacks, where at each time step the malicious nodes randomly choose whether to
act maliciously or not, the variance of their reputation is an important indicator of
their conditions. Hence, the point estimate of the expected reputation score is not very
reliable. To overcome this problem, the TMS of PRDFS sets the trust score of a node to
the lower bound of the predicted distribution of the plausible trust scores of the node
at time step t

5.4. The Comparative Performance of PRDFS and BRDFS in Terms of Demand Forecasting when
No Attack Is Underway
5.4.1. Major Findings

• PRDFS outperforms BRDFS in terms of demand forecasting accuracy by 15% or more
(Figure 13).
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Figure 13. Comparison of demand forecasting performance between PRDFS and BRDFS when no
attack is present. Figure 13 shows the demand forecasting accuracy of PRDFS and BRDFS when no
attack takes place. The Y-axis of the figure represents the accuracy. The first two bars from the left are
for PRDFS and the second two bars are for BRDFS. Blue bars represent the point forecasting accuracy,
whereas the orange bars represent the interval forecasting accuracy. The figure shows that PRDFS
outperforms BRDFS in both point and interval forecasting accuracy.

5.4.2. Possible Explanations

We attribute the finding to the robustness of PRDFS against non-stationarity and
high dimensionality. To deal with the non-stationarity in the demand time series, the DFS
of PRDFS applies wavelet multiresolution analysis on the raw demand time series and
decomposes the original input time series into multiple component time series with a
simpler structure. Each component time series contains the information content of the
original demand time series at a particular level or scale. Our study suggests that the
wavelet analysis eliminates the requirement of selecting optimal seasonal lagged predictor
variables (i.e., non-consecutive lagged variables) from the component time series for the
demand forecasting model, which are highly difficult to identify. In the process, it also
reduces the dimensionality of the feature space.

• The curse of dimensionality hits particularly hard on time series forecasting models
of high or even moderate dimensional input data, since they use lagged variables
as predictor variables and the lagged variables are highly correlated with each other.
Hence, to reduce the dimensionality further, the DFS of PRDFS uses a hierarchical
ensemble model where each member CNN is trained with only a small number of
non-seasonal lagged variables. Ensemble members are trained sequentially. The first
ensemble member is trained on the original demand time series. Each of the remaining
ensemble members is trained on the residual series of the previous trained ensemble
member. Additionally, the DFS of PRDFS uses CNNs as ensemble members. Our
study suggests that CNN is more robust to the high dimensionality compared to other
existing learning algorithms.

• The DFS of BRDFS does not have any such effective strategy to deal with non-
stationarity and high dimensionality. It just uses a single LSTM regression network to
forecast the demand.

6. Conclusions

In this paper, we propose a novel resilient cyber-physical demand forecasting system
(CDFS) called PRDFS that is resilient to false data injection attacks (FDIAs) since it can
distinguish a natural change in the dynamics of demand over time, and a change due to the
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adversary’s attack. To achieve this capability, it uses a signature-based intrusion detection
system (SIDS) of malicious nodes and normal nodes. SIDS is trained on labeled training
data set using a supervised learning algorithm (GRNN). To automatically generate the
training dataset for SIDS with all possible attack paths (defined in the spaces of assessed
node trustworthiness and the skewness of residuals of forecasting models for individual
sensor time series), an ethical hacking system (EHS) is run. EHS plays repeated attacker-
defender games with the defense system (SIDS and TMS) of PRDFS. The training data of
SIDS are continuously automatically generated by these games. This is the main novelty
of PRDFS.

PRDFS uses a trust management system (TMS) to determine the most trustworthy
measurement at time step t from noisy sensor measurements for the aggregate demand
time series. It considers the following information while determining the most trustworthy
measurement at time step t: spatial data similarity, temporal data similarity, and the
minimum expected trustworthiness of the corresponding sensor node at time step t. TMS
employs GRNNs to predict the minimum expected trust score of each sensor based on the
past trustworthiness scores of its measurements.

The demand forecasting system (DFS) of PRDFS uses the lagged values of aggregate
demand time series to make out-of-sample forecasts. Our study suggests that among
all existing approaches for dealing with the non-stationarity problem, the wavelet mul-
tiresolution decomposition approach is the most effective. Our DFS decomposes the time
series into multiple component time series using wavelet transform. To avoid the curse
of dimensionality, the proposed DFS uses a hierarchical ensemble of convolutional neural
networks (CNNs) where each ensemble member is trained with a relatively small number
of non-seasonal lag values of the component time series. Each ensemble member is trained
sequentially. The first ensemble member is trained on the component time series derived
from the original demand time series. Each of the remaining members is trained on the
component time series derived from the residual series of the previous ensemble member.
The number of ensemble members depends on how many members are required to make
the final residual series of the ensemble a white noise series. This is another novelty of the
proposed PRDFS.

For comparison purposes, we implement a hybrid resilient demand forecasting system
that incorporates the best modules of existing demand forecasting systems. We call this
resilient demand forecasting system BRDFS. We compare the performance of PRDFS and
BRDFS against stealthy FDIAs. The data streams of all sensors are generated synthetically.
Both were tested in 11 simulation setups with different percentages of malicious nodes.
The performance of our algorithm is highly encouraging. It detects all malicious nodes
within the first 30-time steps and it has low false positive rates (FPRs), never exceeding 9%
regardless of the percentage of malicious nodes. Its demand forecasting accuracy never
drops below 80% in the face of attacks.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app121910093/s1, The following supporting information is attached
in the zip folder: (1) the source code of the proposed algorithm ‘PRDFS’; (2) the datasets used in this
study; and (3) ReadMe: explains how to run the source code, and includes a brief overview of the
datasets used in the study; (4) the pseudocode of PRDFS
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