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Abstract: Optical coherence tomography (OCT) is a rapidly evolving imaging technology that
combines a broadband and low-coherence light source with interferometry and signal processing
to produce high-resolution images of living tissues. However, the speckle noise introduced by the
low-coherence interferometry and the blur from device motions significantly degrade the quality of
OCT images. Convolutional neural networks (CNNs) are a potential solution to deal with these issues
and enhance OCT image quality. However, training such networks based on traditional supervised
learning methods is impractical due to the lack of clean ground truth images. Consequently, this
research proposes an unsupervised learning method for OCT image enhancement, termed one-step
enhancer (OSE). Specifically, OSE performs denoising and deblurring based on a single step process.
A generative adversarial network (GAN) is used for this. Encoders disentangle the raw images into a
content domain, blur domain and noise domain to extract features. Then, the generator can generate
clean images from the extracted features. To regularize the distribution range of retrieved blur
characteristics, KL divergence loss is employed. Meanwhile, noise patches are enforced to promote
more accurate disentanglement. These strategies considerably increase the effectiveness of GAN
training for OCT image enhancement when used jointly. Both quantitative and qualitative visual
findings demonstrate that the proposed method is effective for OCT image denoising and deblurring.
These results are significant not only to provide an enhanced visual experience for clinicians but also
to supply good quality data for OCT-guide operations. The enhanced images are needed, e.g., for the
development of robust, reliable and accurate autonomous OCT-guided surgical robotic systems.

Keywords: optical coherence tomography; image enhancement; generative adversarial network;
unsupervised learning

1. Introduction

Optical coherence tomography (OCT) is an imaging technology able to produce high-
resolution images of living tissues. Most OCT devices used in clinical studies have a
resolution of approximately 10 µm and a depth of penetration up to 2 mm in soft tissues [1].
However, OCT image quality is significantly degraded by speckle noise introduced by
the low-coherence interferometry used in the imaging process and by blur arising from
relative motions between the device and the tissue [2]. This has a strong impact on
subsequent analysis and makes clinical application challenging. Therefore, efficient OCT
image enhancement methods are urgently needed [3].

By improving the light source, hardware-based approaches reduce the noise of the
detector and scanner to some extent, but the speckle in the imaging system cannot be
eliminated. Software-based approaches such as non-local means or block-matching and 3D
filtering (BM3D) can provide good results, but need laborious efforts of parameter tuning
for different noise levels [4]. Block matching and 4D collaborative filtering (BM4D) expands
BM3D to three-dimensional picture volumes [5]. Sliding window, adaptive statistical-based
filters, and patch correlation–based filters are the three main classes of digital filters used to
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denoise images [6]. However, these methods have limitations that reduce their potential
for clinical applications, such as a long processing time and excessive smoothness [7].

Recently, convolutional neural networks (CNNs) have started to be considered as
a potential solution for such image enhancement tasks. For example, Kai Zhang et al.
proposed a feed-forward denoising convolutional neural network (DnCNN) able to handle
Gaussian denoising with unknown noise levels based on a residual learning strategy [8].
In addition, Rico-Jimenez et al. proposed a self-fusion network that was pre-trained to
fuse 3 frames to achieve near-real-time processing frame rates [9]. However, supervised
learning methods such as these are laborious in terms of training data acquisition, requiring
well-paired training images (images with noise and blur and corresponding clean images).
Furthermore, the use of standard CNNs may lead to loss of details due to averaging
processes [10]. These characteristics make standard CNNs impractical for OCT image
enhancement. To overcome these limitations, Chunhao Tian et al. proposed a generative
adversarial network (GAN) for the problem of restoring low-resolution OCT fundus images
to their high-resolution counterparts [11]. In addition, several other methods based on
GAN have been proposed for unpaired image enhancement, such as CycleGAN [12],
SNR-GAN [10], and SiameseGAN [13].

Another interesting unsupervised learning strategy for OCT image enhancement is
disentangled representation. This strategy divides each feature into narrowly specified
variables and encodes them as distinct dimensions. Recently, it has been used for image-
to-image translation, such as in BicycleGAN [14] and cross-cycleGAN [15]. In addition,
DRGAN implemented this unsupervised learning method for reducing speckle with dis-
entangled representation [16]. However, even though these GAN-based models provided
promising results for OCT image despeckling, the problem of blurriness of OCT images
still needs to be solved.

This paper presents a novel solution for simultaneous denoising and deblurring of
OCT images without requiring a well-paired training dataset. This is achieved with a deep
learning GAN architecture that exploits disentangled representation, as shown in Figure 1.
After training, the encoder for content and the generator for a clean image can enhance the
original image quality. More specifically, the proposed method learns to disentangle noise,
blur and content from raw OCT images and then uses this knowledge to generate enhanced
images. In order to accommodate for little content information, Kullback—Leibler (KL)
divergence [17] loss is used to regularize the distribution range of extracted blur attributes.
As shown in Figure 2, the content encoders learn to extract content features from unpaired
clean and raw images, while the blur and noise encoders capture blur and noise information
from low-quality raw images.

Figure 1. Workflow of proposed OSE image enhancement method: unpaired raw and clean OCT
images are used as the input of an unsupervised learning strategy based on disentangled represen-
tation and GAN. This process allows the one-step enhancer (OSE) to learn to extract content from
low-quality OCT images and generate clean images.
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Figure 2. Framework of proposed image enhancement method. X and Y are inputs, where subscripts
b, c, r, n, bn and cycle are blurred, clean, reconstructed, noisy, blurred and noisy, and cycled,
respectively. The encoder and generator’s superscripts c, b, n, and bn is content, blur, noise, and
blur-noise, respectively.

The next sections of this paper are organized as follows: in Section 2, we explain
related work, including GAN-based deblurring, GAN-based denoising, and disentangled
representation. In Section 3, we describe our proposed method, including the problem
formulation, definition of loss functions, method implementation and assessment method.
In Section 4, we present experiments and results. Finally, conclusions are presented in
Section 5.

2. Related Work
2.1. GAN-Based Speckle Removal

OCT images are known to suffer from speckle noise, which are artifacts produced
mostly by the coherent nature of the image formation process. Recently, various GAN-based
models have been developed to remove such noise from OCT images based on knowledge
extracted from unpaired training data. These include SNR-GAN [10], ARM-SRGAN [18],
nonlocal-GAN [19], and DRGAN [16].

SNR-GAN was proposed by Yan Guo et al. to establish an end-to-end structure-
aware noise reduction GAN that uses cycle GAN to translate data between noisy and
clean domains [20]. In order to preserve subtle features during denoising, they used
regional structural similarity index (SSIM) loss of image patches instead of the entire image.
This method enabled promising improvements in terms of signal-to-noise ratio (SNR),
contrast-to-noise ratio (CNR) and SSIM index with a processing speed of 0.3 s per image.

The ARM-SRGAN is a GAN-based method developed for fast and reliable generation
of super-resolution (SR) images without relying on a paired training dataset of low- and
super-resolution images [18].

The nonlocal-GAN method, unlike cycle-GAN based methods that include two gener-
ators and two discriminators, is based on only one generator and one discriminator [19].



Appl. Sci. 2022, 12, 10092 4 of 11

The discriminator can learn the features of noise in noisy OCT images and then direct the
denoising generator without reference images.

Finally, DRGAN was proposed by Yongqiang Huang et al. as an unsupervised de-
noising method that disentangles the noisy image into content and noise spaces by using
corresponding encoders. It then predicts the denoised OCT image based on the extracted
content features [16]. According to the published results, DRGAN outperforms the methods
mentioned above in noise reduction and detail preservation.

2.2. GAN-Based Deblurring

Boyu Lu et al. proposed a method for unsupervised deblurring via disentangled
representations with a single image [21]. To properly encode blur information into the
deblurring framework, the model disentangles the content and blur characteristics from
blurred images.

3. Proposed Method
3.1. Problem Formulation

Overall, the learning process for image enhancement based on unpaired data is re-
alized using disentanglement to decode the image features and GAN to generate clean
images. For implementing this, the proposed method consists of three parts: (1) encoders
for content (Ec) and features (Eb, En and Ebn for blur, noise and blur-noise); (2) generators
of blurred, noisy, blurred-noisy, and clean images (Gb, Gn, Gbn, Gc); and (3) discriminators
for blurred, noisy, blurred-noisy, and clean image discrimination (Db, Dn, Dbn, Dc).

An overview of the proposed architecture is shown in Figure 2. Given an input blur-
noise data X and unpaired clean data Y, the content encoder Ec extracts content information
from corresponding samples, and Eb, En estimate the feature information in X. Then Gb, Gn,
and Gbn take features and content information to generate corresponding images, and
Gc generates a clean image. Finally, the discriminators distinguish between the real and
generated images.

Since clean images should only contain content components, a well-trained content
encoder Ec should allow the generation of the desired enhanced images. This is achieved by
exploiting information from the blur and noise domains. For the blur domain, considering
the content information of Ec and the blur features of Eb, the generated blur images guide
the encoder Ec towards extracting content information from blurred images. Similarly,
generating and then distinguishing noisy images from clean ones guides Ec towards
extracting content from noisy images. In addition, we enforce the last layers of the encoders
for content, blur and noise to share weights, which contributes to guiding Ec towards
learning how to effectively extract content information from raw images.

Specifically, Ec encodes inputs X and Y as content features Fc
x and Fc

y , respectively.
The blur feature Fb

x and noise feature Fn
x are encoded from X by Eb and En. Then, as

shown in Equations (1) and (2), the reconstructed Yr is generated from Fc
y using Gc, and the

reconstructed Xr is generated from Fc
x , Fb

x , Fn
x using Gbn.

Yr = Gc(Fc
y) (1)

Xr = Gbn(Fc
x , Fb

x , Fn
x ) (2)

Generators are used to generate new images based on the features described above
according to Equations (3)–(7).

Xb = Gb(Fc
x , Fb

x ) (3)

Xc = Gc(Fc
x) (4)

Yb = Gb(Fc
y , Fb

x ) (5)

Yn = Gn(Fc
y , Fn

x ) (6)
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Ybn = Gb(Fc
y , Fb

x , Fn
x ) (7)

Disentanglement is then used to handle unpaired inputs and generate new images
from a corresponding domain. Features are obtained from generated images: Fc − Xc,
Fb −Yb, Fn −Yn, Fc −Ybn, Fb −Ybn, Fn −Ybn. Finally, cycled inputs are obtained as follows:

Xcycle = Gbn(Fc − Xc, Fb −Ybn, Fn −Ybn) (8)

Xcycle2 = Gbn(Fc − Xc, Fb −Yb, Fn −Yn) (9)

Ycycle = Gbn(Fc −Ybn) (10)

After training the model and addressing disentanglement, Ec can extract content
features from low-quality images, and then clean images can be obtained using Gc.

3.2. Loss Function

The overall loss function includes five subfunctions: domain adversarial loss (Ladv),
cycle consistency loss (Lcycle), reconstruction loss (Lrecon), noise patch loss (Lnoise) and KL
divergence loss (LKL). Their interconnections with the processing framework is illustrated
in Figure 3.

Figure 3. Diagramillustrating the inputs and outputs of loss functions. The inputs include X: original
images, Y: clean images, Z: real blurred/noisy images.

(1) Domain adversarial loss: Ladv pushes the discriminators to pick the best encoders
and generators to minimize the adversarial loss functions, which include content informa-
tion loss Lc

adv, blur feature loss Lb
adv, noise feature loss Ln

adv, and blur-noise feature loss Lbn
adv.

The domain adversarial loss is defined as:

Ladv = argmin
E,G

max
D

(Lc
adv + Lb

adv + Ln
adv + Lbn

adv) (11)

where E stands for the encoder, G for the generator, and D for the discriminator. The four
adversarial loss functions are defined below, where Zb and Zn are real blurred and noisy
images, and E is the expectation operator.

Lc
adv = E[log Dc(Y)] +E[1− log Dc(Xc)] (12)

Lb
adv = E[log Db(Zb)] +E[1− log Db(Yb)] (13)

Ln
adv = E[log Dn(Zn)] +E[1− log Dn(Yn)] (14)

Lbn
adv = E[log Dbn(X)] +E[1− log Dbn(Ybn)] (15)

(2) Cycle consistency loss: inspired by CycleGAN [20], cycle consistency loss is
introduced to guarantee that the enhanced image Xc represents a proper reconstruction
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of the raw sample image, and that Ybn can be translated back to the original clean image
domain. The cycle consistency loss further limits the space of the generated samples and
preserves the content of original images.

Lcycle =E[||X− Xcycle||1]
+E[||X− Xcycle2||1] +E[||Y−Ycycle||1]

(16)

where ||.||1 represents the l1-norm.
(3) Reconstruction loss: the reconstruction loss is applied to facilitate X = Xr and

Y = Yr. Consequently, Gc and Gbn can reconstruct the inputs to generate a clean counterpart
of X and a blur-noise counterpart of Y.

Lrecon = E[||X− Xr||1] +E[||Y−Yr||1] (17)

(4) Noise patch loss: to overcome the obstacle of multiple types of noise, we lever-
age noise patches from the background of raw images and use a discriminator Dpn to
distinguish between real noise and generated noise as follows:

LX
noise = E[log Dpn(N)] +E[log Dpn(X− Xb)] (18)

LY
noise = E[log Dpn(N)] +E[log Dpn(Y−Yb)] (19)

According to Equations (18) and (19), the noise patch loss is given by:

Lnoise = argmin
E,G

max
D

(LX
noise + LY

noise) (20)

(5) KL divergence loss: to guarantee that the blur encoder Eb(X) only encodes blur
components, Yb is generated from Ec(Y) and Eb(X) in Equation (5). This discourages Eb(X)
from encoding content information from X. Furthermore, KL divergence loss is used to
regularize the blur feature distribution Fb = Eb(X) to bring it closer to a normal distribution
p(F) ∼ N(0, 1). KL divergence is minimized to obtain the KL loss as described in [22]:

LKL =
1
2

N

∑
i=1

(µ2
i + σ2

i − log(σ2
i )− 1) (21)

where µ and σ are the mean and standard deviation of Fb, and N is its dimension. The KL
divergence loss can reduce the gap between the prior p(F) and the learned distributions.
This further suppresses any content information contained in Fb.

Considering the equations above, the overall loss function can be written as:

L =λadvLadv + λcycleLcycle + λreconLrecon

+ λnoiseLnoise + λKLLKL
(22)

where the subscripted λ are the coefficients of each corresponding loss function.

3.3. Implementation and Data

The proposed network architecture has a structure similar to DRGAN [16]. The content
encoder is composed of an input convolutional layer, a down sampler and four residual
blocks. The noise encoder consists of an input convolutional layer, a down sampler and an
adaptive average pooling layer with a 1 × 1 convolutional layer. The blur encoder has four
strided convolution layers and one fully connected layer. For the generator, the architectures
are symmetric to the content encoder, but vary for generating images of different domains.
We use skip-connections between Ec and Gc, with SPADE [23] and adaptive instance
normalization [24], to fuse features from different levels. Then, the discriminator applies a
series of convolutional and pooling layers to give a binary judgement.
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This model was implemented in PyTorch with a Ubuntu 20.04 operation system and
an NVIDIA Quadro RTX 8000 GPU. During training, the Adam optimizer was used, and
the learning rate was set to 0.0002 for 80 epochs. According to information in [16,21],
the hyper-parameters in our framework were experimentally set to the following values:
λadv = 1, λcycle = 10, λrecon = 10, λnoise = 1, and λKL = 0.01.

We acquired two datasets for this study. One consisted of 30 low-quality OCT images
and 30 clean OCT images from three different pork larynxes. The second dataset contained
the same number of images captured from two ex vivo rabbit eyes. These custom datasets
were captured using a commercial OCT device (TEL320C1, Thorlabs, Inc., Newton, NJ,
USA). The pixel size was 0.40× 2.47 µm (width × height), and the size of each image was
set to 10,000× 1024 pixels. Therefore, the FOV was 4.00× 2.53 mm.

The clean images in our datasets were obtained using the Speckle Averaging function
of the ThorImageOCT software (version 5.2), which uses 4 successive A-scans to compute
the mean and variance values used in the averaging process.

A test set was formed by randomly selecting 20 images with noise and blur and
20 corresponding clean images from each dataset. The remaining 40 images were randomly
combined into pairs to form a training set. Since tissue information is concentrated in the
middle part of the OCT images, all images were center-cropped to a pixel size of 900× 450
to improve training efficiency.

To obtain noise features for the noise loss function, a window with pixel size of
256× 256 was used to extract noisy patches from the background of low-quality images.
This window was applied to the images in the training set using a stride of 8 pixels. This
process extracted a total of 19,360 patches from low-quality images for the input X, and
19,360 patches from clean images for the input Y.

3.4. Experimental Method and Performance Metrics

An ablation study was performed to evaluate the performance of each component in
the proposed image enhancement method. This consisted in evaluating the performances
of each module separately: first, the denoise and the deblur modules were independently
assessed. Then, the performance of the proposed model, which combines both operations
into a single step operation, was evaluated. More specifically, we removed speckle and
blur from the original images separately, and then used the proposed model to perform a
one-step image enhancement.

In addition, to benchmark the performance of the proposed image enhancer, non-
learning (BM3D [25]), supervised learning (DnCNN [8]) and unsupervised learning (DR-
GAN [16]) methods were implemented. The BM3D software implements the traditional
OCT image enhancement method, while the DnCNN and DRGAN models were trained on
the same dataset used to train our new model.

Performance evaluation used the same test set described above. In addition, the
processing time of each method was evaluated both on CPU and GPU. Finally, a visual
assessment of the four image enhancement methods was performed using sample images
from the test set.

Two metrics were used for quantitative performance assessment: peak signal-to-noise
ratio (PSNR) and structure similarity index measure (SSIM). PSNR is commonly used
to measure the quality of reconstruction of lossy image compression codecs. It offers
an approximation to human perception of reconstruction quality based on differences
between the reconstructed and the reference image. SSIM, on the other hand, measures the
similarity between two images. The overall index of SSIM evaluates luminance, contrast
and structural differences.

PSNR = 10log10(
(max(Ig))2

1
MN ∑i ∑j(Ic(i, j)− Ig(i, j))2

) (23)
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where Ig and Ic are, respectively, the generated and the averaging clean images. M and N
are the size of the image.

SSIM =
(2µIg µIc + C1)(2σIg Ic + C2)

(µ2
Ig
+ µ2

Ic
+ C1)(σ

2
Ig
+ σ2

Ic
+ C2)

(24)

where µIg , µIc , σIg , σIc and σIg Ic are the local means, standard deviations and cross-covariance
of images Ig and Ic. The constants C1 and C2 are set according to the literature [26].

4. Experimental Results
4.1. Ablation Study Results

Visual results from the ablation study are presented in Figure 4, while the quantitative
results are shown in Table 1. A visual analysis of Figure 4 shows that the denoise module
is effective in removing noise from the original OCT image (raw image). The data in
Table 1 demonstrates improvements of 10.59 in PSNR and 0.24 in SSIM, which confirms this
module works properly. However, the problem of unclear tissue layers is not addressed.

Figure 4. Sample images from the ablation study performed using OCT images from a pork larynx to
evaluate the denoise module, the deblur module, and the proposed OSE method.

Table 1. Ablation study results.

Metrics (Mean ± std)

Method PSNR SSIM

Original images 8.94 ± 2.01 0.34 ± 0.14
Denoise module 19.53 ± 1.87 0.58 ± 0.20
Deblur module 17.55 ± 1.52 0.47 ± 0.12

OSE 26.71 ± 2.21 0.81 ± 0.16

The deblur module, on the other hand, removes blur and makes the layers more
visible. This can be observed in Figure 4 by comparing the result of the deblur module with
the raw image. In this case, the PSNR improved from 8.94 to 17.55, and the SSIM improved
from 0.34 to 0.47. However, noise is still present in the image, and this limits the image
enhancement performance.

The proposed method combining both modules provides better enhancement per-
formance than each single module applied separately. A visual inspection of the result
in Figure 4 shows that the proposed method was able to effectively enhance the original
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raw image. This is corroborated by the data in Table 1, which shows the proposed method
achieved top performances in terms of PSNR and SSIM.

4.2. Performance Comparison Results

Figure 5 provides a visual comparison of the image enhancement results achieved
with the proposed OSE and with the other state of the art methods: the 3-D block-matching
algorithm (BM3D), the supervised learning-based method DnCNN, and the unsupervised
learning-based method DRGAN. It can be observed that all methods achieved satisfactory
speckle reduction performance, but only OSE was effective in also removing the blurring
effects on the image details, as shown in the selected magnified areas.

Figure 5. Sample images from the image enhancement performance study comparing the proposed
OSE with the state of the art methods BM3D, DnCNN and DRGAN. The image areas marked in red are
magnified and shown as inset pictures to facilitate the visual assessment of the different algorithms.

The data in Table 2 summarizes the quantitative performance metrics obtained for
the four different enhancement methods. OSE improved PSNR from 8.94 to 26.71 and
SSIM from 0.34 to 0.81, outperforming all the other methods in terms of both denoising
and deblurring.

Table 3 shows the mean processing time of the methods assessed for 10,000× 1024
pixel images. Considering this data, we can see that although BM3D provides good image
enhancement results, it takes much more time than the other methods to process the OCT
images. In addition, we can note that DnCNN performed better than DRGAN but was
slower. Furthermore, as explained earlier, DnCNN is a supervised learning method that
requires a well-paired set of images for training. On the other hand, OSE provided top
image enhancement performance with the best processing speed when the computations
were performed on a GPU. It achieved a mean processing rate of 8.3 fps on the GPU.
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Table 2. Quantitative performance comparison with state-of-the-art methods for OCT image
enhancement.

Metrics (Mean ± std)

Method PSNR SSIM

Original images 8.94 ± 2.01 0.34 ± 0.14
BM3D 24.11 ± 1.04 0.71 ± 0.08

DnCNN 23.99 ± 2.70 0.78 ± 0.24
DRGAN 16.77 ± 1.04 0.61 ± 0.10

OSE 26.71 ± 2.21 0.81 ± 0.16

Table 3. Mean processing time for 10,000× 1024 pixel OCT images

Mean Processing Time (s)

Method CPU GPU

BM3D 45.69 -
DnCNN 11.14 0.17
DRGAN 3.77 0.14

OSE 3.86 0.12

5. Conclusions

This paper presented a novel deep learning model for one-step denoising and de-
blurring of OCT images. This one-step enhancer (OSE) is trained using an unsupervised
learning strategy, which allows learning from a mixed dataset of unpaired OCT images.
For this, the method uses disentangled representation and generative adversarial network
(GAN) to extract content, blur and noise features from raw OCT images, and then learns to
generate clean images. The proposed OSE was assessed through both an ablation study and
a comparative performance evaluation based on the quantitative metrics PSNR and SSIM.
The ablation study demonstrated that the method produced effective denoise and deblur
modules, which enabled high performance levels when used in a combined model. The
comparative analysis showed the proposed method outperformed state-of-the-art methods
for OCT image enhancement, indicating that our one-step enhancer is a valuable alternative
for speckle and blur reduction in OCT images.
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