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Abstract: In this article, we introduce bipolar neutrosophic (BN) aggregation operators (AOs) as
a revolutionary notion in aggregation operators (AOs) by applying Einstein operations to bipolar
neutrosophic aggregation operators (AOs), with its application related to a real-life problem. The
neutrosophic set is able to drawout the incomplete, inconsistent and indeterminate information
pretty efficiently. Initially, we present essential definitions along with operations correlated to
the neutrosophic set (NS) and its generalization, the bipolar neutrosophic set (BNS). The Einstein
aggregation operators are our primary targets, such asthe BN Einstein weighted average (BNEWA),
BN Einstein ordered weighted average (BNEOWA), BN Einstein hybrid average (BNEHA), BN
Einstein weighted geometric (BNEWG), BN Einstein ordered weighted geometric (BNEOWG) and
BN Einstein hybrid geometric (BNEHG), as well as their required properties. The most important
benefit of using the suggested approaches is that they provide decision-makers with complete sight
of the issue. These techniques, when compared to other methods, provide complete, progressive and
precise findings. Lastly, by means of diverse types of newly introduced aggregation operators and a
numerical illustration by an example, we suggest an innovative method to be used for multi-criteria
community decision-making (DM). This illustrates the utility and applicability of this new strategy
when facing real-world problems.

Keywords: aggregation operator; decision-making; BNEWA; BNEOWA; BNEHA; BNEWG;
BNEOWG; BNEHG

1. Introduction

In the modern age of managerial decision-making (DM), knowledge frequently re-
mains incomplete, undetermined and incompatible. L. A. Zadeh was the first to propose the
fuzzy set theory [1], which deals with uncertainty and has applications in a wide range of
modern fields of present and future society. Yet, fuzzy set has a problem in that it can simply
convey the value of membership butnot non-membership. To address this, Atanassov [2]
developed the intuitionistic fuzzy set (IFS), as well as associated theory, in order to sum-
marizethe concept of fuzzy set.A pair of membership values is used to represent each IFS
element, truth-membership =(χ) and a non-membership value (falsity-membership) f (χ),
as well as satisfy the condition =(χ), f (χ) ∈ [0, 1] with 0 ≤ =(χ) + f (χ) ≤ 1. IFS can only
handle incomplete data, meaningindeterminate data are not an option.

Florentin Smarandache [3] developed the novel concept of NS, which adds an indeter-
minacy membership value I(χ) to IFS. NS has a strong ability to deal with knowledge that
is imperfect, uncertain and contradicting.
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When =(χ) + I(χ) + f (χ) < 1, the information acquired is indeterminate.
When =(χ) + I(χ) + f (χ) > 1, this represents inconsistency in an NS.
Wang and others devised the single-valued neutrosophic set (SVNS) to deal with real-

world situations [4], with the conditions =(χ), I(χ), f (χ) ∈ [0, 1] and 0 ≤ =(χ) + I(χ) +
f (χ) ≤ 3. Ye [5] proposed a method for comparing SVNS, and defined the correlation
coefficient.Wang et al. formulated an interval-valued neutrosophic set [6] and broadened
the values of truth, indeterminacy and false memberships, which are all between 0 and 1.

For researchers, aggregation operators (AOs) are extremely important.Since its intro-
duction, several scientists [7–14] have contributed significantly to the theory development
of IFS. Xu et al. [15] introduced the concept of distinct IF aggregation operators based on
IFS (AOs).Wang et al. and Zhao et al. [16,17] created Einstein aggregation operators (AOs).
The Einstein t-norm typically gives the same smooth approximations as the product and
sum of algebra.

The algebraic t-norm (product ⊗) and t-conorm (sum ⊕), respectively, are as below:

T(a, b) = a⊗ b = ab
T∗(a, b) = a⊕ b = a + b− ab

The Einstein operations t-norm (product ⊗) and t-conorm (sum ⊕), respectively, are
as below:

T(a, b) = a⊗ b = ab
1+(1−a)(1−b)

T∗(a, b) = a⊕ b = a+b
1+ab

The bipolar fuzzy set (BFS) [18–20] has emerged as a new technique to deal with
vagueness in DM situations.The bipolar fuzzy set’s membership degree varies between
−1 and 1. Positive as well as negative membership degrees are available in BFS. BFSs are
incredibly beneficial for several fields of study, as well as DM [21,22]. Gul [23] defined
bipolar averaging and geometric aggregations operators (AOs). The bipolar neutrosophic
set was created by Irfan and others [24,25] by using fundamental operations and a com-
parison mechanism [26,27]. Jamil and others created aggregation operators (AOs) based
on BN values and applied them to DM problems. Heronian mean aggregation operators
were developed by Fan and others [28]. Abdullah et al. introduced the idea of a bipolar
soft set and its application to decision-making [29]. Jafar and other developed a bipolar
neutrosophic soft set and applied itto decision-making [30]. Ali et al. introduced complex
fuzzy set and its properties [31]. Broumi et al. introduced bipolar complex fuzzy set and
its aggregation operators [32]. Jamil and others applieda multi-criteria decision-making
approach to the bipolar neutrosophic set [33].

Regardless of the available information, there isa lot of literature related to the subject.
The following features of the bipolar neutrosophic set inspired the present research team
to perform a systematic and in-depth inquiry into decision analysis. Our findings are
given below:

SVNSs deal with ambiguous details easily. This set combines the generalization of
prior sets such as the classical set, the FS set and the IFS set.BFSs are highly effective for
dealing withunpredictable, unexpected real-world circumstances because these can handle
both positive as well as negative membership values.

The current study’s main and most important goals were as follows:

• To suggest different bipolar neutrosophic Einstein AOs as well as desired properties
to study;

• Based on BNN, establish a multi-criteria DM approach in the direction of real life
problem-solving;

• Give a numerical description of amulti-criteria DM example.

The remainder of the paper is organized at follows. The second segment presents a
basic definition as well as its associated properties.The BNEWA and BNEWG aggregation
operators are introduced in the Section 3.These innovative AOs are applied to multi-criteria
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decision-making in Section 4, and a numerical example is also presented.Finally, we offer
comparative research, as well as some concluding thoughts, in Section 5.

2. Preliminaries

In this section, we provide fundamental definitions related to neutrosophic set the-
ory. We define different fuzzy sets, BNS, scorefunctions, accuracyfunctions, and certainty
functions, as well as the Einstein operations.

Definition 1 [3]. Consider R to represent a fixed set. Then, the neutrosophic set N is defined as:

N = { ( χ, =(χ), I(χ), f (χ) ) | χ ∈ R}

Now, the mapping for membership functions of truth, indeterminacy and falsity are = : N → Q ,
I : N → Q and f : N → Q, respectively; here, Q = ]0−, 1+[ and 0− ≤ =(χ) + I(χ) + f (χ) ≤
3+.

Definition 2 [4]. Consider P to represent a fixed set; the single-valued neutrosophic set (SVNS) of
A is stated as:

ANS = {(χ,=(χ), I(χ), f (χ))|χ ∈ P}

Now, here, the mapping for membership functions of truth, indeterminacy and falsity are
= : ANS → L , I : ANS → L and f : ANS → L , respectively; here, L = [0, 1] and there is the
condition 0 ≤ =(χ) + I(χ) + f (χ) ≤ 3.

Some fundamental operations related to single-valued neutrosophic sets (SVNS) are listed below:

ANS =
{(

χ,=ANS(χ), IANS(χ), fANS(χ)
)∣∣χ ∈ P

}
, BNS =

{(
χ,=BNS(χ), IBNS(χ), fBNS(χ)

)∣∣χ ∈ P
}

,

The subset ANS ⊆ BNS is represented as

=ANS(χ) ≤ =BNS(χ), IANS(χ) ≥ IBNS(χ), fANS(χ) ≥ fBNS(χ).

ANS = BNSis represented as

=ANS(χ) = =BNS(χ), IANS(χ) = IBNS(χ), fANS(χ) = fBNS(χ).

The complementA′NSis

A′NS =
{(

χ, fANS(χ), 1− IANS(χ),=ANS(χ)
)∣∣χ ∈ P

}
ANS ∩ BNSis represented as

ANS ∩ BNS =
{(

χ, min
{
=ANS(χ),=BNS(χ)

}
, max

{
IANS(χ), IBNS(χ)

}
, max

{
fANS(χ), fBNS(χ)

})∣∣χ ∈ P
}

The union is defined by

ANS ∪ BNS =
{(

χ, max
{
=ANS(χ),=BNS(χ)

}
, min

{
IANS(χ), IBNS(χ)

}
, min

{
fANS(χ), fBNS(χ)

})∣∣χ ∈ P
}

Definition 3 [5]. Consider two single-valued neutrosophic numbers (SVNNs) u1 = (=1, I1, f1)
and u2 = (=2, I2, f2) . The following are the distinct basic operations for SVNNs:

u1 + u2 = (=1 +=2 −=1=2, I1 I2, f1 f2);
u1 · u2 = (=1 +=2, I1 + I2 − I1 I2, f1 + f2 − f1 f2);

λ(u1) =
(

1− (1−=1)
λ, (I1)

λ, ( f1)
λ
)

;

(u1)
λ =

(
(=1)

λ, 1− (1− I1)
λ, 1− (1− f1)

λ
)

;
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where λ > 0.

Definition 4 [5]. Let u1 = (=1, I1, f1) be a single-valued neutrosophic number (SVNN). Then,
the score function s(u1) is defined below:

s(u1) =
(=1 + 1− I1 + 1− f1)

3
;

Definition 5 [5]. The accuracy function for an SVNN u1 = (=1, I1, f1) is denoted by (u1) ,
defined below:

(u1) = (=1 − f1);

Definition 6 [5]. The certainty function for an SVNN u1 = (=1, I1, f1) is denoted by c(u1) ,
defined below:

c(u1) = =1

Definition 7 [5]. Consider two SVNNs u1 = (=1, I1, f1) and u2 = (=2, I2, f2). The following is
the relationship between them:

i. In condition s(u1) > s(u2), then u1 is greater than u2 , denoted by u1 > u2;

ii. In condition s(u1) = s(u2) and a (u1) > a (u2) , then u1 is greater than u2 , denoted by
u1 > u2;

iii. In condition s(u1) = s(u2) , a (u1) = a (u2) and c(u1) > c(u2), in that case, u1 is superior
to u2 , denoted by u1 > u2;

iv. In condition s(u1) = s(u2) , a (u1) = a (u2) and c(u1) = c(u2), in that case, u1 is equal to
u2 , denoted by u1 = u2;

Definition 8 [21]. Consider P as a universal set. Then, the bipolar fuzzy set (BFS) is stated below:

F =
{〈

χ,=+
F (χ), f−F (χ)

〉∣∣χ ∈ P
}

where =+
F
(χ) : F → L+ represents a positive membership function and the negative membership

function is f−
F
(χ) : F → K−, where L+ = [0, 1] and K− = [−1, 0].

Definition 9 [25]. Suppose A is a bipolar neutrosophic set contained by universal set P, stated as:

A =
{(

χ, =+(χ), I+(χ), f+(χ), =−(χ), I−(χ), f−(χ)
)∣∣χ ∈ P

}
Let =+(χ), I+(χ), f+(χ) = BN+ as well as =−(χ), I−(χ), f−(χ) = BN−.
Here, =+(χ), I+(χ), f+(χ) are positive membership functions representingtrue, indetermi-

nate and false for χ ∈ P , and =−(χ), I−(χ), f−(χ) represent true, indeterminate and false for
negative membership functions. Now, when mapping BN+ : A→ L+ and BN− : A→ L−, here,
L+ = [0, 1] and L− = [−1, 0]. This applies with the condition 0 ≤ =+(χ) + I+(χ) + f+(χ) +
=−(χ) + I−(χ) + f−(χ) ≤ 6.

Example 1. Let P = {ch I1, χ2, χ3}, then

A =


(ch I1, 0.1, 0.5, 0.3,−0.4,−0.5,−0.6),
(χ2, 0.2, 0.7, 0.4,−0.3,−0.6,−0.2),
(χ3, 0.4, 0.6, 0.7,−0.2,−0.3,−0.1)


is a subset of universal set P that is BNS.
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Some fundamental operations [12] used for BNSs are stated below:
Let A1 =

{(
χ,=+

1 (χ), I+1 (χ), f+1 (χ),=−1 (χ), I−1 (χ), f−1 (χ)
)∣∣χ ∈ P

}
and A2 = {(χ,

=+
2 (χ), I+2 (χ), f+2 (χ),=−2 (χ), I−2 (χ), f−2 (χ)

)∣∣χ ∈ P
}

be two BNSs.

i. Then,A1 ⊆ A2 if and only if

=+
1 (χ) ≤ =

+
2 (χ), I+1 (χ) ≤ I+2 (χ), f+1 (χ) ≥ f+2 (χ),

and
=−1 (χ) ≥ =

−
2 (χ), I−1 (χ) ≥ I−2 (χ), f−1 (χ) ≤ f−2 (χ)

ii. A1 = A2 if and only if

=+
1 (χ) = =

+
2 (χ), I+1 (χ) = I+2 (χ), f+1 (χ) = f+2 (χ),

and

=−1 (χ) = =
−
2 (χ), I−1 (χ) = I−2 (χ), f−1 (χ) = f−2 (χ)

iii. The union is defined as below:

(A1 ∪ A2) =

{(
max

(
=+

1 (χ),=+
2 (χ)

)
,

I+1 (χ) + I+2 (χ)

2
, min

(
f+1 (χ), f+2 (χ)

)
, min

(
=−1 (χ),=−2 (χ)

)
,

I−1 (χ) + I−2 (χ)

2
, max

(
f−1 (χ), f−2 (χ)

))}
,

iv. The intersection is defined as:

(A1 ∩ A2) =

{(
min

(
=+

1 (χ),=+
2 (χ)

)
,

I+1 (χ) + I+2 (χ)

2
, max

(
f+1 (χ), f+2 (χ)

)
, max

(
=−1 (χ),=−2 (χ)

)
,

I−1 (χ) + I−2 (χ)

2
, min

(
f−1 (χ), f−2 (χ)

))}
,

v. Let A = {(χ,=+(χ), I+(χ), f+(χ),=−(χ), I−(χ), f−(χ))|χ ∈ P} be BNSs.

Then, the complement A′ is defined as:

=+
A′(χ) =

{
1+
}
−=+

A(χ), I+A′(χ) =
{

1+
}
− I+A (χ), f+A′(χ) =

{
1+
}
− f+A (χ),

and

=−A′(χ) =
{

1−
}
−=−A(χ), I−A′(χ) =

{
1−
}
− I−A (χ), f−A′(χ) =

{
1−
}
− f−A (χ),

Definition 10 [25]. Consider two bipolar neutrosophic numbers (BNNs) u1 =
(
=+

1 , I+1 , f+1 ,=−1 , I−1 , f−1
)

and u2 =
(
=+

2 , I+2 , f+2 ,=−2 , I−2 , f−2
)
. The following are the basic operations between two BNNs:

i.u1 + u2 =
(
=+

1 +=+
2 −=

+
1 =

+
2 , I+1 I+2 , f+1 f+2 ,−=−1 =

−
2 ,−

(
−I−1 − I−2 − I−1 I−2

)
,−
(
− f−1 − f−2 − f−1 f−2

))
;

ii.u1 · u2 =
(
=+

1 =
+
2 , I+1 + I+2 − I+1 I+2 , f+1 + f+2 − f+1 f+2 ,−

(
−=−1 −=

−
2 −=

−
1 =
−
2
)
,−I−1 I−2 ,− f−1 f−2

)
;

iii.λ(u1) =
(

1−
(
1−=+

1
)λ,
(
I+1
)λ,
(

f+1
)λ,−

(
−=−1

)λ,−
(
−I−1

)λ,−
(

1−
(
1−

(
− f−1

))λ
))

;

iv.(u1)
λ =

((
=+

1
)λ, 1−

(
1− I+1

)λ, 1−
(
1− f+1

)λ,−
(

1−
(
1−

(
−=−1

))λ
)

,−
(
−I−1

)λ,−
(
− f−1

)λ
)

;

where λ > 0.

Definition 11 [25]. The score function for a bipolar neutrosophic number u = (=+, I+, f+,=−, I−, f−)
denoted by S(u) is:

S(u) =
1
6
(
=+ + 1− I+ + 1− f+ + 1 +=− − I− − f−

)
Definition 12 [25]. The accuracy function defined for a BNNu = (=+ , I+ , f+ ,=−, I−, f−) is a(u),
as below:
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a(u) = =+ − f+ +=− − f−

Definition 13 [25]. Consider u = (=+, I+, f+,=−, I−, f−) to represent the neutrosophic number.
Then, thecertainty function is:

c(u) = =+ − f −

Definition 14 [25]. Consider u1 =
(
=+

1 , I+1 , f+1 ,=−1 , I−1 , f−1
)

and u2 =
(
=+

2 , I+2 , f+2 ,=−2 , I−2 , f−2
)

to represent two BNNs. Then, acomparison method among BNNs is:

i. In condition S(u1) � S(u2) then u1 is greater than u2 , denoted by u1 � u2

ii. In condition S(u1) = S(u2) and a(u1) � a(u2) then u1 is greater than u2 , denoted by
u1 � u2;

iii. In condition S(u1) = S(u2), a(u1) = a(u2) and c(u1) � c(u2) in that case, u1 is superior
to u2, denote by u1 � u2;

iv. In condition S(u1) = S(u2), a(u1) = a(u2) and c(u1) = c(u2) in that case, u1 is equal to
u2 , denoted by u1 = u2.

Definition 15. Consider u = (=+, I+, f+,=−, I−, f−), u1 =
(
=+

1 , I+1 , f+1 ,=−1 , I−1 , f−1
)

and
u2 =

(
=+

2 , I+2 , f+2 ,=−2 , I−2 , f−2
)

to be BNNs, and λ � 0 any real value. Then, the fundamental
Einstein operations of BNNs are:

u1 ⊕ u2 =

(
=+1 +=+2

1+=+1 =
+
2

, I+1 I+2
1+(1−I+1 )(1−I+2 )

, f+1 f+2
1+(1− f+1 )(1− f+2 )

, −=−1 =
−
2

1+(1+=−1 )(1+=−2 )
,
−(−I−1 −I−2 )

1+I−1 I−2
,
−(− f−1 − f−2 )

1+ f−1 f−2

)
u1 ⊗ u2 =

(
=+1 =

+
2

1+(1−=+1 )(1−=+2 )
, I+1 +I+2

1+I+1 I+2
, f+1 + f+2

1+ f+1 f+2
,
−(−=−1 −=

−
2 )

1+=−1 =
−
2

, −I−1 I−2
1+(1+I−1 )(1+I−2 )

, − f−1 f−2
1+(1+ f−1 )(1+ f−2 )

)
λ(u) =

(
(1+=+)

λ−(1−=+)
λ

(1+=+)λ+(1−=+)λ ,
2(I+)

λ

(2−I+)λ+(I+)λ ,
2( f+)

λ

(2− f+)λ+( f+)λ ,
−2|=−|λ

(2+=−)λ+|=− |λ
,

−2|I−|λ
(2+I−)λ+|I− |λ

,
−
(
(1+| f−|)λ−(1+ f−)

λ
)

(1+| f− |)λ+(1+ f−)λ

)

(u)λ =

(
2(=+)

λ

(2−=+)λ+(=+)λ , (
1+I+)

λ−(1−I+)
λ

(1+I+)λ+(1−I+)λ , (
1+ f+)

λ−(1− f+)
λ

(1+ f+)λ+(1− f+)λ ,
−
(
(1+|=−|)λ−(1+=−)

λ
)

(1+|=− |)λ+(1+=−)λ ,
−2|I−|λ

(2+I−)λ+|I− |λ
,

−2| f−|λ
(2+ f−)λ+| f− |λ

)

3. Bipolar Neutrosophic Einstein Average AOs

Here, we suggest a number of fundamental properties for bipolar Einsteinaverage
AOs in the current section of the article, such as BNEWA, BNEOWA and BNEHA.

3.1. Bipolar NeutrosophicEinstein Weighted-Average Aggregation Operators

Consider ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)

to represent a family of BNNs. Here,
l ∈ {1, 2, 3, . . . , n}

Definition 16. The (BNEWA) aggregation operator is defined as follows:

BNEWAν(u1, u2, . . . , un) =
n
⊕

l=1
(νlul) = ν1u1 ⊕ ν2u2 ⊕ . . .⊕ νnun (1)

where ν = (ν1, ν2, . . . , νn)
T represents weighted vectors of ul , that is, νl > 0 and

n
∑

l=1
νl = 1.

Theorem1. The (BNEWA) operator gives in return a (BNV) by

BNEWAν(u1, u2, . . . , un) =(
1−2
1+2

, 2ζ1
ζ2+ζ1

, 2 f1
f2+ f1

, −23
4+3

,− ζ3−ζ4
ζ3+ζ4

,− f3− f4
f3+ f4

) (2)
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where

1 =
n
∏
l=1

(
1 +=+

l
)νl , 2 =

n
∏
l=1

(
1−=+

l
)νl , 3 =

n
∏
l=1

∣∣=−l ∣∣νl , 4 =
n
∏

l=1

(
2 +=−l

)νl ,

ζ1 =
n
∏
l=1

(
I+l
)νl , ζ2 =

n
∏
l=1

(
2− I+l

)νl , ζ3 =
n
∏
l=1

(
1 +

∣∣I−l ∣∣)νl , ζ4 =
n
∏
l=1

(
1 + I−l

)νl ,

f1 =
n
∏
l=1

(
f+l
)νl , f2 =

n
∏
l=1

(
2− f+l

)νl , f3 =
n
∏
l=1

(
1 +

∣∣ f−l ∣∣)νl , f4 =
n
∏
l=1

(
1 + f−l

)νl .

where ν = (ν1, ν2, . . . , νn )T is the weighted vector of ul ,such that νl > 0 and
n
∑

l=1
νl = 1.

Proof. Now, by mathematical induction:
For n = 2,

ν1u1 =


(1+=+1 )

ν1−(1−=+1 )
ν1

(1+=+1 )
ν1+(1−=+

1 )
ν1 ,

2(I+1 )
ν1

(2−I+1 )
ν1+(I+1 )

ν1 ,
2( f+1 )

ν1

(2− f+1 )
ν1+( f+1 )

ν1 ,

−2|=−1 |
ν1

(2+=−1 )
ν1+|=−1 |

ν1 ,
−2|I−1 |

ν1

(2+I−1 )
ν1+|I−1 |

ν1 ,
−
(
(1+| f−1 |)

ν1−(1+ f−1 )
ν1
)

(1+| f−1 |)
ν1+(1+ f−1 )

ν1


and

ν2u2 =


(1+=+2 )

ν2−(1−=+
2 )

ν2

(1+=+2 )
ν2+(1−=+

2 )
ν2 ,

2(I+2 )
ν2

(2−I+2 )
ν2+(I+2 )

ν2 ,
2( f+2 )

ν2

(2− f+2 )
ν2+( f+2 )

ν2 ,

−2|=−2 |
ν2

(2+=−2 )
ν2+|=−2 |

ν2 ,
−2|I−2 |

ν2

(2+I−2 )
ν2+|I−2 |

ν2 ,
−
(
(1+| f−2 |)

ν2−(1+ f−2 )
ν2
)

(1+| f−2 |)
ν2+(1+ f−2 )

ν2


and for

ν1u1 =

 (1+=+1 )−(1−=+1 )
(1+=+1 )+(1−=+1 )

,
2(I+1 )

(2−I+1 )+(I+1 )
,

2( f+1 )
(2− f+1 )+( f+1 )

,

−2|=−1 |
(2+=−1 )+|=−1 |

,− (1+|I−1 |)−(1+I−1 )
(1+|I−1 |)+(1+I−1 )

,− (1+| f−1 |)−(1+ f−1 )
(1+| f−1 |)+(1+ f−1 )

, (3)

thus satisfying n = 1.

We put n = r into Equation (3)

BNEWAν(u1, u2, . . . , ur) =

r
∏

l=1
(1+=+l )

νl−
r

∏
l=1
(1−=+

l )
νl

r
∏

l=1
(1+=+l )

νl+
r

∏
l=1
(1−=+

l )
νl

,
2

r
∏

l=1
(I+l )

νl

r
∏

l=1
(2−I+l )

νl+
r

∏
l=1
(I+l )

νl
,

2
r

∏
l=1

( f+l )
νl

r
∏

l=1
(2− f+l )

νl+
r

∏
l=1
( f+l )

νl
,

−2
r

∏
l=1
|=−l |

νl

r
∏

l=1
(2+=−l )

νl+
r

∏
l=1
|=−l |

νl
,

−2
r

∏
l=1
|I−l |

νl

r
∏

l=1
(2+I−l )

νl+
r

∏
l=1
|I−l |

νl
,−

k
∏

l=1
(1+| f−l |)

νl−
r

∏
l=1

(1+ f−l )
νl

r
∏

l=1
(1+| f−l |)

νl+
r

∏
l=1
(1+ f−l )

νl


,

Assume it is also satisfied for n = r.
Now, for n = r + 1,



Appl. Sci. 2022, 12, 10045 8 of 19

BNEWAν(u1, u2, . . . , ur) =

r
∏

l=1
(1+=+l )

νl −
r

∏
l=1
(1−=+l )

νl

r
∏

l=1
(1+=+l )

νl+
r

∏
l=1
(1−=+

l )
νl

,
2

r
∏

l=1
( I+l )

νl

r
∏

l=1
(2−I+l )

νl+
r

∏
l=1
(I+l )

νl
,

2
r

∏
l=1
( f+l )

νl

r
∏

l=1
(2− f+l )

νl+
r

∏
l=1
( f+l )

νl
,

−2
r

∏
l=1
|=−l |

νl

r
∏

l=1
(2+=−l )

νl+
r

∏
l=1
|=−l |

νl
,

−2
r

∏
l=1
|I−l |

νl

r
∏

l=1
(2+I−l )

νl+
r

∏
l=1
|I−l |

νl
,−

r
∏

l=1
(1+| f−l |)

νl−
r

∏
l=1
(1+ f−l )

νl

r
∏

l=1
(1+| f−l |)

νl+
r

∏
l=1
(1+ f−l )

νl



⊕


(1+=+r+1)

νr+1−
(

1−=+
r+1

)νr+1

(1+=+r+1)
νr+1+(1−=+r+1)

νr+1 ,
2(I+r+1)

νr+1

(2−I+r+1)
νr+1 +(I+r+1)

νr+1 ,
2( f+r+1)

νr+1

(2− f+r+1)
νr+1+( f+r+1)

νr+1 ,

−2|=−r+1|
νr+1

(2+=−r+1)
νr+1+|=−r+1|

νr+1 ,
−2|I−r+1|

νr+1

(2+I−r+1)
νr+1+|I−r+1|

νr+1 ,−
(

1+
∣∣∣ f−r+1

∣∣∣)νr+1−(1+ f−r+1)
νr+1

(1+| f−r+1|)
νr+1+(1+ f−r+1)

νr+1



=



r+1
∏

l=1
(1+=+l )

νl−
r+1
∏

l=1
(1−=+l )

νl

r+1
∏

l=1
(1+=+l )

νl+
r+1
∏

l=1
(1−=+

l )
νl

,
2

r+1
∏

l=1
(I+l )

νl

r+1
∏

l=1
(2−I+l )

νl+
r+1
∏

l=1
(I+l )

νl
,

2
r+1
∏

l=1
( f+l )

νl

r+1
∏

l=1
(2− f+l )

νl+
r+1
∏

l=1
( f+l )

νl
,

−2
r+1
∏

l=1
|=−l |

νl

r+1
∏

l=1
(2+=−l )

νl+
r+1
∏

l=1
|=−l |

νl
,−

r+1
∏

l=1
(1+|I−l |)

νl−
r+1
∏

l=1
(1+I−l )

νl

r+1
∏

l=1
(1+|I−l |)

νl+
r+1
∏

l=1
(1+I−l )

νl
,−

r+1
∏

l=1
(1+| f−l |)

νl−
r+1
∏

l=1
(1+ f−l )

νl

r+1
∏

l=1
(1+| f−l |)

νl+
r+1
∏

l=1
(1+ f−l )

νl


Hence, Equation (3) is satisfied for all values of n = r + 1.
Hence, the theorem is proven.�

Theorem 2. (Idempotency) Let ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)
, where l ∈ {1, 2, . . . , n− 1, n}

represents a collection of equal BNNs, that is, ul = u . Then

BNEWAν(u1, u2, . . . , un) = u

Proof. Since
BNEWAν(u1, u2, . . . , un)

=
n
⊕

l=1
(νlul) =

n
⊕

l=1
(νl)u = (u)

n
∑

l=1
νl = u

the proof is complete.�

Theorem 3. (Bounded) Suppose thatu+ = max
l

ul and u− = min
l

ulrepresent the minimum and

maximum BNN, respectively

u− ≤ BNEWAν(u1, u2, . . . , un) ≤ u+

Proof. Let
BNEWAν(u1, u2, . . . , un) = u

(
=+, I+, f+,=−, I−, f−

)
Then,

s(u−) ≤ s(BNEWA operator)
s(u−) ≤ s(BNEWA operator)
s(u+) ≥ s(BNEWA operator)

Combining both equations, we have

u− ≤ BNEWAν(u1, u2, . . . , un) ≤ u+

Thus, the proof is complete.�
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Theorem 4. (Monotonicity) Suppose ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)

and

u′ l =
(
=′+l , I′+l , f ′+l ,=′−l , I′−l , f ′−l

)
, where l ∈ {1, 2, . . . , n− 1, n} represents BNNs. If

ul ≤ u′ l , then

BNEWAν(u1, u2, . . . , un) ≤ BNEWAν

(
u′1, u′2, . . . , u′n

)
Proof. Assume that

BNEWAν(u1, u2, . . . , un) =
n
⊕

l=1
(νlul)

and
BNEWAν

(
u′1, u′2, . . . , u′n

)
=

n
⊕

l=1

(
νlu′ l

)
Since ul ≤ u′ l ,then

n
⊕

l=1
(νlul) ≤

n
⊕

l=1

(
νlu′ l

)
Thus, the proof is complete.�

3.2. BN Einstein OrderedWeighted Average Aggregation Operators

Definition 17. The (BNEOWA)BN Einstein ordered weighted-average AOis stated as:

BNEOWAν(u1, u2, . . . , un) =
n
⊕

l=1

(
νluρ(l)

)
= ν1uρ(1) ⊕ ν2uρ(2) ⊕ ν3u^

σ (3)
⊕ . . .⊕ νnuρ(n), (4)

where (ρ(1), ρ(2), ρ(3), . . . , ρ(n)) represents a permutation with uρ(l−1) ≥ uρ(l), ∀ l ∈ Z, Z =

{1, 2, . . . , n− 1, n} and ν = (ν1, ν2, . . . , νn)
T representing associated weighting vectors for ul

with νl > 0,
n

∑
l=1

νl = 1.

Theorem 5. The (BNEOWA) operator gives, in return, a BNV, by

BNEOWAν(u1, u2, . . . , un) =(
∂1−∂2
∂1+∂2

, 2ζ∂1
ζ∂2+ζ∂1

, 2 f∂1
f∂2+ f∂1

, −2∂3
∂4+∂3

,− ζ∂3−ζ∂4
ζ∂3+ζ∂4

,− f∂3− f∂4
f∂3+ f∂4

) (5)

where,

∂1 =
n
∏
l=1

(
1 +=+

ρ(l)

)νl
, ∂2 =

n
∏
l=1

(
1−=+

ρ(l)

)νl
, ∂3 =

n
∏
l=1

∣∣∣=−ρ(l)∣∣∣νl
, ∂4 =

n
∏

l=1

(
2 +=−

ρ(l)

)νl
,

ζ∂1 =
n
∏
l=1

(
I+
ρ(l)

)νl
, ζ∂2 =

n
∏
l=1

(
2− I+

ρ(l)

)νl
, ζ∂3 =

n
∏
l=1

(
1 +

∣∣∣I−ρ(l)∣∣∣)νl
, ζ∂4 =

n
∏
l=1

(
1 + I−

ρ(l)

)νl
,

f∂1 =
n
∏
l=1

(
f+
ρ(l)

)νl
, f∂2 =

n
∏
l=1

(
2− f+

ρ(l)

)νl
, f∂3 =

n
∏
l=1

(
1 +

∣∣∣ f−ρ(l)∣∣∣)νl
, f∂4 =

n
∏
l=1

(
1 + f−

ρ(l)

)νl
.

where (ρ(1), ρ(2), . . . , ρ(n)) represents a permutation with uρ(l−1) ≥ uρ(l), ∀ l ∈ Z, Z =

{1, 2, . . . , n− 1, n} and ν = (ν1, ν2, . . . , νn)
T representing associated weighting vectors for ul

with νl > 0 and
n
∑

l=1
νl = 1.

Proof. The proof follows from Theorem 1.�
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Theorem 6. (Commutativity) Let ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)
, as well as

u′ l =
(
=′+l , I′+l , f ′+l ,=′−l , I′−l , f ′−l

)
, where l ∈ Z represents two BNNs.

BNEOWAv(u1, u2, . . . , un) = BNEOWAv

(
u′1, u′2, . . . , u′n

)
where (u1, u2, . . . , un) is any permutation of (u′1, u′2, . . . , u′n).

Proof. Assume that

BNEOWAν(u1, u2, . . . , un) =
n
⊕

l=1

(
νluρ(l)

)
and

BNEOWAν

(
u′1, u′2, . . . , u′n

)
=

n
⊕

l=1

(
νlu′ρ(l)

)
Since (u1, u2, . . . , un) is any permutation of (u′1, u′2, . . . , u′n), then

n
⊕

l=1

(
νluρ(l)

)
=

n
⊕

l=1

(
νlu′ρ(l)

)
The proof is complete.�

Theorem 7. (Idempotency) Let ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)
, where l ∈ Z.

Z = {1, 2, . . . , n− 1, n} is a collection of all equal BNNs, i.e., ul = u:

BNEOWAν(u1, u2, u3, . . . , un) = u

Proof. The prooffollows from Theorem 2.�

Theorem 8. (Bounded) Consider u− = min
l

ul , u+ = max
l

ul to represent the minimum and

maximum BNN, respectively

u− ≤ BNEOWAν(u1, u2, . . . , un) ≤ u+

Proof. The proof follows from Theorem 3.�

Theorem 9. (Monotonicity) Let ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)
, and

u′ l =
(
=′+l , I′+l , f ′+l ,=′−l , I′−l , f ′−l

)
, where l ∈ Z represents BNNs. If ul ≤ u′ l ,

BNEOWAv(u1, u2, . . . , un) ≤ BNEOWAv

(
u′1, u′2, . . . , u′n

)
Proof. The proof follows from Theorem 4.�

3.3. BN Einstein Hybrid Average Aggregation Operators

Definition 18. The (BNEHA) BN Einstein hybrid average AO is stated as:

BNEHAw,ν(u1, u2, . . . , un) =
n
⊕

l=1

(
νl

.
uρ(l)

)
= ν1

.
uρ(1) ⊕ ν2

.
uρ(2) ⊕ ν3

.
uρ(3) ⊕ . . .⊕ νn

.
uρ(n), (6)

where w = (w1, w2, w3, . . . , wn−1, wn) is a weighting vector of ul , such that wl ∈ [0, 1],
n
∑

l=1
wl = 1

and
.
uρ(l) are the l-th biggest component of the BN argument

.
ul
( .
ul = (nνl)ul , l = 1, 2, . . . , n

)
, and
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ν = (ν1, ν2, . . . , νn) is the weighting vector of BN argument ul ,along with νl ∈ [0, 1],
n
∑

l=1
νl = 1.

Here, n represents a balancing coefficient.

Note that BNEHA reduces to BNEWA if w =
(

1
n , 1

n , . . . , 1
n

)T
or the BNEOWA operator

if ν =
(

1
n , 1

n , . . . , 1
n

)
.

Theorem 10. The (BNEHA) operator precedesa BN number with

BNEHAw,ν(u1, u2, . . . , un) =(
•1−•2
•1+•2

, 2
•
ζ1

•
ζ2+

•
ζ1

, 2
•
f 1

•
f 2+

•
f 1

, −2•3
•4+•3

,−
•
ζ3−

•
ζ4

•
ζ3+

•
ζ4

,−
•
f 3−

•
f 4

•
f 3+

•
f 4

)
(7)

where,

•
1 =

n
∏
l=1

(
1 +

.
=
+

ρ(l)

)νl

, •2 =
n
∏
l=1

(
1−

.
=
+

ρ(l)

)νl

, •3 =
n
∏
l=1

∣∣∣∣ .
=
−
ρ(l)

∣∣∣∣νl

, •4 =
n
∏

l=1

(
2 +

.
=
−
ρ(l)

)νl

,

•
ζ1 =

n
∏
l=1

( .
I
+

ρ(l)

)νl
,
•
ζ2 =

n
∏
l=1

(
2−

.
I
+

ρ(l)

)νl
,
•
ζ3 =

n
∏
l=1

(
1 +

∣∣∣ .
I
−
ρ(l)

∣∣∣)νl
,
•
ζ4 =

n
∏
l=1

(
1 +

.
I
−
ρ(l)

)νl
,

•
f 1 =

n
∏
l=1

(
.
f
+

ρ(l)

)νl

,
•
f 2 =

n
∏
l=1

(
2−

.
f
+

ρ(l)

)νl

,
•
f 3 =

n
∏
l=1

(
1 +

∣∣∣∣ .
f
−
ρ(l)

∣∣∣∣)νl

,
•
f 4 =

n
∏
l=1

(
1 +

.
f
−
ρ(l)

)νl

.

where w = (w1, w2, w3, . . . , wn−1, wn) is a weighting vector for ul , by means of wl ∈ [0, 1],
n
∑

l=1
wl = 1, and

.
uρ(l) is the l-th biggest component of BN argument

.
ul
( .
ul = (nνl)ul , l = 1, 2, . . . , n

)
.

Moreover, ν = (ν1, ν2, . . . , νn) is the weighting vector of BN argument ul ,with νl ∈ [0, 1],
n
∑

l=1
νl = 1.

Proof. The theorem is straightforward.�

4. Bipolar Neutrosophic Einstein Geometric AOs

In the current section, we extend our study to bipolar neutrosophic Einstein geometric
AOs, such as BNEWG, BNEOWG and BNHA, as well as their required properties.

4.1. Bipolar Neutrosophic EinsteinWeighted Geometric AO

Let ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)
(l = 1, 2, . . . , n) represent a family of bipolar neutro-

sophic values.

Definition 19. The (BNEWG) bipolar neutrosophic Einstein weighted geometric operator is
defined as:

BNEWGν(u1, u2, u3, . . . , un) =
n
⊗

l=1
(νlul) = ν1u1 ⊗ ν2u2 ⊗ . . .⊗ νnun (8)

where ν = (ν1, ν2, ν3, . . . , νn)
T is a weighting vector of ul , with νl > 0 and

n
∑

l=1
νl = 1.

Theorem 11. The (BNEWG) operators return a BN value with

BNEWGν(u1, u2, u3, . . . , un) =(
21̃

2̃+1̃
,

ζ1̃−ζ2̃
ζ1̃+ζ2̃

,
f1̃− f2̃
f1̃+ f2̃

,− 3̃−4̃

3̃+4̃
,
−2ζ3̃
ζ4̃+ζ3̃

,
−2 f3̃
f4̃+ f3̃

) (9)
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where

1̃ =
n
∏
l=1

(
=+

l
)νl , 2̃ =

n
∏
l=1

(
2−=+

l
)νl , 3̃ =

n
∏
l=1

(
1 +

∣∣=−l ∣∣)νl , 4̃ =
n
∏
l=1

(
1 +=−l

)νl ,

ζ1̃ =
n
∏
l=1

(
1 + I+l

)νl , ζ2̃ =
n
∏
l=1

(
1− I+l

)νl , ζ3̃ =
n
∏
l=1

∣∣I−l ∣∣νl , ζ4̃ =
n
∏
l=1

(
2 + I−l

)νl ,

f1̃ =
n
∏
l=1

(
1 + f+l

)νl , f2̃ =
n
∏
l=1

(
1− f+l

)νl
, f3̃ =

n
∏
l=1

∣∣ f−l ∣∣νl , f4̃ =
n
∏
l=1

(
2 + f−l

)νl .

where ν = (ν1, ν2, ν3, . . . , νn)
T is a weighting vector of ul , with νl > 0 as well as

n
∑

l=1
νl = 1.

Proof. The proof follows from Theorem 1.�

Theorem 12. (Idempotency) Let ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)
(l = 1, 2, 3, . . . , n) be a set of

equal BNVs, that is, ul = u

BNEWGν(u1, u2, u3, . . . , un) = u

Proof. Since
BNEWGν(u1, u2, . . . , un)

=
n
⊗

l=1
(νlul) =

n
⊗

l=1
(νl)u = (u)

n
∑

l=1
νl = u

The proof is complete.�

Theorem 13. (Bounded) Suppose that u− = min
l

ul , u+ = max
l

ul , then

u− ≤ BNEWGν(u1, u2, . . . , un) ≤ u+

Proof. Let
BNEWGν(u1, u2, . . . , un) = u

(
=+, I+, f+,=−, I−, f−

)
Then

s
(
u−
)
≤ s(BNEWG operator) s

(
u+
)
≥ s(BNEWG operator)

Combining both equations, we have

u− ≤ BNEWGν(u1, u2, . . . , un) ≤ u+

Thus, the proof is complete.�

Theorem 14. (Monotonicity) Let ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)
(l = 1, 2, . . . , n) and u′ l =(

=′+l , I′+l , f ′+l ,=′−l , I′−l , f ′−l
)
(l = 1, 2, . . . , n) be a collection of BNVs. If ul ≤ u′ l , then

BNEWGν(u1, u2, . . . , un) ≤ BNEWGν

(
u′1, u′2, . . . , u′n

)
Proof. Assume that

BNEWGν(u1, u2, . . . , un) =
n
⊗

l=1
(νlul)

and
BNEWGν

(
u′1, u′2, . . . , u′n

)
=

n
⊗

l=1

(
νlu′ l

)
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Since ul ≤ u′ l , then
n
⊗

l=1
(νlul) ≤

n
⊗

l=1

(
νlu′ l

)
Thus, the proof is complete.�

4.2. BN Einstein OrderedWeighted Geometric Aggregation Operators

Definition 20. The (BNEOWG) BN Einstein ordered weighted geometric AO is stated as:

BNEOWGν(u1, u2, . . . , un−1, un) =
n
⊗

l=1

(
νluσ(l)

)
= ν1uσ(1) ⊗ ν2uσ(2) ⊗ ν3uσ(3) ⊗ . . .⊗ νluσ(l), (10)

where (σ(1), . . . , σ(n− 1), σ(n)) represents permutation (1, 2, 3, . . . , n− 1, n), that is, uσ(l−1) ≥
uσ(l) and (j = 2, . . . , n− 1, n), and ν = (ν1, ν2, ν3, . . . , νn)

T is a weighting vector of ul , with

νl > 0 and
n
∑

l=1
νl = 1.

Theorem 15. The (BNEOWG) operators return a BN value with

BNEOWGν(u1, u2, . . . , un) =(
2

∂1̃

∂2̃+∂1̃
,

ζ
∂1̃−ζ∂2̃

ζ
∂1̃+ζ∂2̃

,
f
∂1̃− f∂2̃

f
∂1̃+ f∂2̃

,− ∂3̃−∂4̃

∂3̃+∂4̃
,
−2ζ∂3̃

ζ
∂4̃+ζ∂3̃

,
−2 f∂3̃

f
∂4̃+ f∂3̃

) (11)

where,

∂1̃ =
n
∏
j=1

(
=+

σ(j)

)ωj
, ∂2̃ =

n
∏
j=1

(
2−=+

σ(j)

)ωj
, ∂3̃ =

n
∏
j=1

(
1 +

∣∣∣=−σ(j)

∣∣∣)ωj
, ∂4̃ =

n
∏
j=1

(
1 +=−

σ(j)

)ωj
,

ζ∂1̃ =
n
∏
j=1

(
1 + I+

σ(j)

)ωj
, ζ∂2̃ =

n
∏
j=1

(
1− I+

σ(j)

)ωj
, ζ∂3̃ =

n
∏
j=1

∣∣∣I−σ(j)

∣∣∣ωj
, ζ∂4̃ =

n
∏
j=1

(
2 + I−

σ(j)

)ωj
,

f∂1̃ =
n
∏
j=1

(
1 + f+

σ(j)

)ωj
, f∂2̃ =

n
∏
j=1

(
1− f+

σ(j)

)ωj
, f∂3̃ =

n
∏
j=1

∣∣∣ f−σ(j)

∣∣∣ωj
, f∂4̃ =

n
∏
j=1

(
2 + f−

σ(j)

)ωj
.

where (σ(1), σ(2), σ(3), . . . , σ(n)) represents a permutation of (1, 2, . . . , n) with uσ(l−1) ≥ uσ(l)

and (l = 2, 3, . . . , n), and ν = (ν1, ν2, ν3, . . . , νn)
T is a weighting vector of ul , with νl > 0 and

n
∑

l=1
νl = 1.

Proof. The theorem is simple to understand.�

Theorem 16. (Commutativity) Let ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)
, as well as

u′ l =
(
=′+l , I′+l , f ′+l ,=′−l , I′−l , f ′−l

)
, where l ∈ Z represents two BNNs.

BNEOWGv(u1, u2, . . . , un) = BNEOWGv

(
u′1, u′2, . . . , u′n

)
where (u1, u2, . . . , un) is any permutation of (u′1, u′2, . . . , u′n).

Proof. Assume that

BNEOWGν(u1, u2, . . . , un) =
n
⊗

l=1

(
νluρ(l)

)
and

BNEOWGν

(
u′1, u′2, . . . , u′n

)
=

n
⊗

l=1

(
νlu′ρ(l)

)
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Since (u1, u2, . . . , un) is any permutation of (u′1, u′2, . . . , u′n), then

n
⊗

l=1

(
νluρ(l)

)
=

n
⊗

l=1

(
νlu′ρ(l)

)
The proof is complete.�

Theorem 17. (Idempotency) Let ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)
(l = 1, 2, . . . , n)represent a set

of all equal BNVs, that is, ul = u

BNEOWGν(u1, u2, u3, . . . , un−1, un) = u

Theorem 18. (Bounded) Consider u− = min
l

ul , u+ = max
l

ul ; then,

u− ≤ BNEOWGν(u1, u2, . . . , un) ≤ u+

Theorem 19. (Monotonicity) Let ul =
(
=+

l , I+l , f+l ,=−l , I−l , f−l
)
(l = 1, 2, . . . , n) and u′ l =(

=′+l , I′+l , f ′+l ,=′−l , I′−l , f ′−l
)
(l = 1, 2, . . . , n) be a collection of two BNVs. If ul ≤ u′ l ,

BNEOWGν(u1, u2, u3, . . . , un) ≤ BNEOWGν

(
u′1, u′2, u′3, . . . , u′n

)
4.3. BN Einstein HybridGeometric Aggregation Operators

Definition 21. The BN Einstein hybrid geometric (BNEHG) aggregation operator is stated
as follows:

BNEHGw,ν(u1, u2, u3, . . . , un−1, un) =
n
⊗

l=1

(
νl

.
uσ(l)

)
= ν1

.
uσ(1) ⊗ ν2

.
uσ(2) ⊗ ν3

.
uσ(3) ⊗ . . .⊗ νl

.
uσ(l), (12)

where w = (w1, w2, w3, . . . , wn−1, wn) is a weighting vector of ul , such thatwl ∈ [0, 1],
n
∑

l=1
wl = 1

and
.
uρ(l) represent the l-th biggest component of the BN argument

.
ul
( .
ul = (nνl)ul , l = 1, 2, . . . , n

)
,

and ν = (ν1, ν2, . . . , νn) is the weighting vector of BN arguments ul ,along with νl ∈ [0, 1],
n
∑

l=1
νl = 1.

Note that BNEHG reduces to BNEWG if w =
(

1
n , 1

n , . . . , 1
n

)T
or the BNEOWG operator

if ν =
(

1
n , 1

n , . . . , 1
n

)
.

Theorem 20. The (BNEHG) operator gives in return a BNV with

BNEHGw,ν(u1, u2, u3, . . . , un) =(
2.

1̃
.
2̃+

.
1̃
,

.
ζ 1̃−

.
ζ 2̃.

ζ 1̃+
.
ζ 2̃

,
.
f 1̃−

.
f 2̃.

f 1̃+
.
f 2̃

,−
.
3̃−.

4̃
.
3̃+

.
4̃
,
−2

.
ζ 3̃.

ζ 4̃+
.
ζ 3̃

,
−2

.
f 3̃.

f 4̃+
.
f 3̃

)
(13)

where

.
1̃ =

n
∏
j=1

(
.
=
+

σ(j)

)ωj

, .
2̃ =

n
∏
j=1

(
2−

.
=
+

σ(j)

)ωj

, .
3̃ =

n
∏
j=1

(
1 +

∣∣∣∣ .
=
−
σ(j)

∣∣∣∣)ωj

, .
4̃ =

n
∏
j=1

(
1 +

.
=
−
σ(j)

)ωj

,

.
ζ 1̃ =

n
∏
j=1

(
1 +

.
I
+

σ(j)

)ωj
,

.
ζ 2̃ =

n
∏
j=1

(
1−

.
I
+

σ(j)

)ωj
,

.
ζ 3̃ =

n
∏
j=1

∣∣∣ .
I
−
σ(j)

∣∣∣ωj
,

.
ζ 4̃ =

n
∏
j=1

(
2 +

.
I
−
σ(j)

)ωj
,

.
f 1̃ =

n
∏
j=1

(
1 +

.
f
+

σ(j)

)ωj

,
.
f 2̃ =

n
∏
j=1

(
1−

.
f
+

σ(j)

)ωj

,
.
f 3̃ =

n
∏
j=1

∣∣∣∣ .
f
−
σ(j)

∣∣∣∣ωj

,
.
f 4̃ =

n
∏
j=1

(
2 +

.
f
−
σ(j)

)ωj

.
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where w = (w1, w2, w3, . . . , wn−1, wn) is a weighting vector of ul , such that wl ∈ [0, 1],
n
∑

l=1
wl = 1

and
.
uρ(l) represent the l-th biggest component of the BN argument

.
ul
( .
ul = (nνl)ul , l = 1, 2, . . . , n

)
, and ν = (ν1, ν2, . . . , νn) is the weighting vector of BN arguments ul ,along with νl ∈ [0, 1],

n
∑

l=1
νl = 1. Here, n represents a balancing coefficient.

Proof. The theorem is straightforward.�

5. Multi-Criteria Group DM Problem Based on BN Einstein Aggregation Operators

This section includes a multi-criteria application based on BN Einstein aggregation
operators (AOs), along with crisp numbers serving as attributes’ weights and BN numbers
serving as attributes’ values.

5.1. Algorithm

Consider G = {G1, G2, . . . , Gm} to represent a collection of finite m alternatives, L =
{L1, L2, L3, . . . , Ln} to represent a collection of finite n attributes and D = {D1, D2, D3, . . . , Dk}
to be a finite number of k decision-makers. Suppose ν = (ν1, ν2, . . . , νn)

T is the weighted

vector for decision-makers Ds(s = 1, 2, 3, . . . , k− 1, k), with νl ∈ [0, 1] and
n
∑

l=1
νl = 1. Sup-

pose w = (w1, w2, w3, . . . , wn)
T is the weighted vector representing the set of attributes

L = {L1, L2, L3, . . . , Ln}, with wl ∈ [0, 1] and
n
∑

l=1
wl = 1. The decision-maker assesses

an option based on a set of criteria, the values of which are defined by BNVs. Let

u(s)
_
i
_
j
=

[(
=+

_
i
_
j

, I+_
i
_
j

, f+_
i
_
j

,=−_
i
_
j

, I−_
i
_
j
, f−_

i
_
j

)]
m×n

be the decision matrices provided by an

expert decision-maker, and u(s)
_
i
_
j

be a BNN for L_
i

attribute associated with alternatives. We

have =+
_
i
_
j
, I+_

i
_
j
, f+_

i
_
j
,=−_

i
_
j
, I−_

i
_
j

and f−_
i
_
j
∈ [0, 1] with condition 0 ≤ =+

_
i
_
j
+ I+_

i
_
j
+ f+_

i
_
j
+

=−_
i
_
j
+ I−_

i
_
j
+ f−_

i
_
j
≤ 6, where

_
i = 1, 2, 3, . . . , m− 1, m and

_
j = 1, 2, 3, . . . , n. (Figure 1)
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Step 1: Matrix construction (Table 1Table 2Table 3) for decision-making

Ds =

[
u(s)
_
i
_
j

]
m×n

(s = 1, 2, 3, . . . , k− 1, k).

Table 1. BN decision matrix by decision-maker D1.

L1 L2 L3 L4

G1 (0.2,0.6,0.5,−0.3,−0.9,−0.6) (0.4,0.6,0.7,−0.5,−0.4,−0.3) (0.8,0.3,0.5,−0.6,−0.1,−0.9) (0.5,0.4,0.6,−0.8,−0.5,−0.4)

G2 (0.5,0.7,0.3,−0.8,−0.5,−0.7) (0.3,0.4,0.6,−0.8,−0.7,−0.6) (0.4,0.6,0.9,−0.5,−0.4,−0.5) (0.3,0.8,0.9,−0.1,−0.4−0.3)

G3 (0.5,0.7,0.8,−0.4,−0.7,−0.4) (0.3,0.7,0.7,−0.5,−0.3,−0.2) (0.5,0.3,0.4,−0.6,−0.7,−0.9) (0.4,0.6,0.5,−0.3,−0.5,−0.8)

G4 (0.8,0.5,0.4,−0.7,−0.6,−0.5) (0.2,0.4,0.5,−0.8,−0.6,−0.3) (0.3,0.7,0.4,−0.5,−0.7,−0.5) (0.9,0.4,0.6,−0.5,−0.4,−0.7)

Table 2. BN decision matrix by decision-maker D2.

L1 L2 L3 L4

G1 (0.4,0.6,0.5,−0.7,−0.4,−0.8) (0.5,0.4,0.6,−0.8,−0.5,−0.7) (0.4,0.6,0.5,−0.4,−0.8,−0.5) (0.5,0.6,0.3,−0.4,−0.6,−0.8)

G2 (0.4,0.7,0.5,−0.6,−0.3,−0.9) (0.4,0.7,0.8,−0.3,−0.5,−0.4) (0.2,0.5,0.7,−0.6,−0.5,−0.4) (0.8,0.4,0.2,−0.8,−0.1,−0.4)

G3 (0.6,0.3,0.6,−0.3,−0.7,−0.8) (0.6,0.4,0.6,−0.7,−0.5,−0.8) (0.6,0.3,0.2,−0.1,−0.4,−0.7) (0.5,0.6,0.7,−0.3,−0.5,−0.6)

G4 (0.2,0.3,0.4,−0.7,−0.6,−0.8) (0.8,0.5,0.4,−0.7,−0.4,−0.6) (0.8,0.4,0.5,−0.7,−0.5,−0.1) (0.6,0.5,0.8,−0.7,−0.6,−0.4)

Table 3. BN decision matrix by decision-maker D3.

L1 L2 L3 L4

G1 (0.5,0.6,0.4,−0.7,−0.4,−0.3) (0.2,0.5,0.6,−0.4,−0.7,−05) (0.5,0.7,0.2,−0.9,−0.5,−0.3) (0.5,0.6,0.3,−0.7,−0.5,−0.2)

G2 (0.9,0.2,0.4,−0.5,−0.4,−0.8) (0.5,0.1,0.2,−0.9,−0.6,−0.4) (0.1,0.4,0.8,−0.6,−0.5,−0.3) (0.6,0.5,0.3,−0.9,−0.3,−0.5)

G3 (0.4,0.5,0.6,−0.1,−0.6,−0.5) (0.3,0.4,0.8,−0.5,−0.4,−0.3) (0.4,0.6,0.3,−0.4,−0.5,−0.3) (0.5,0.4,0.9,−0.5,−0.4,−0.7)

G4 (0.1,0.4,0.5,−0.4,−0.8,−0.7) (0.4,0.3,0.6,−0.2,−0.7,−0.5) (0.7,0.5,0.6,−0.4,−0.3−0.9) (0.1,0.5,0.7,−0.5,−0.8,−0.3)

Step 2: Computing BNEWAν

(
r_

i 1
, r_

i 2
, . . . , r_

i n

)
(Table 4) for every

_
i = 1, 2, 3, . . . , m.

r_
i
=

(
=+

_
i
, I+_

i
, f +_

i
,=−_

i
, I−_

i
, f−_

i

)
=

BNEWAν

(
r_

i 1
, r_

i 2
, . . . , r_

i n

)
=

n
⊕

l=1
(νlril) =(

1−2
1+2

, 2ζ1
ζ2+ζ1

, 2 f1
f2+ f1

, −23
4+3

,− ζ3−ζ4
ζ3+ζ4

,− f3− f4
f3+ f4

)
Table 4. A collective BN decision matrix R.

L1 L2

G1 (0.4234,0.6000,0.4581,−0.6501,−0.4842,−0.6306) (0.3783,0.4568,0.6096,−0.5917,−0.5810,−0.5943)

G2 (0.6940,0.4453,0.4360,−0.5766,−0.3620,−0.8517) (0.4219,0.3288,0.4750,−0.5426,−0.5640,−0.4224)

G3 (0.5161,0.4057,0.6187,−0.2024,−0.6627,−0.6704) (0.4632,0.4251,0.6870,−0.5952,−0.4423,−0.6001)

G4 (0.2462,0.3555,0.4381,−0.5675,−0.6938,−0.7403) (0.6286,0.4014,0.4839,−0.4527,−0.5567,−0.5351)

L3 L4

G1 (0.4940,0.6011,0.3536,−0.5954,−0.6522,−0.4973) (0.5000,0.5776,0.3233,−0.5453,−0.5520,−0.5868)

G2 (0.1818,0.4670,0.7589,−0.5895,−0.4905,−0.3718) (0.6950,0.4726,0.2807,−0.7190,−0.2130,−0.4321)

G3 (0.5161,0.4021,0.2533,−0.2160,−0.4764,−0.6073) (0.4905,0.5135,0.7552,−0.3708,−0.4614,−0.6659)

G4 (0.7293,0.4649,0.5274,−0.5482,−0.4504,−0.6005) (0.4884,0.4893,0.7387,−0.5952,−0.6796,−0.3989)
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Step 3: Computing the scores values S
(

r_
i

)
.

Step 4: Various software systems are ranked for BNEWAν

(
u_

i 1
, u_

i 2
, . . . , u_

i n

)
in

accordance with their scores.
Step 5: Picking the best option.

5.2. Illustrative Example

We believe that a medicine business company should hire a professional manager.
For this reason, the organization formsa working group with three decision-makers in
weighting vectors ν = (0.1, 0.5, 0.4)T . When choosing the most knowledgeable man-
agement approach, there are various factors to evaluate, but in this situation, the com-
mittee just analyses the four criteriamentioned below, along with associated weighted
vector ν = (0.1, 0.4, 0.2, 0.3)T . Four managers Gj(j = 1, 2, 3, 4) will advance to the next round
of the procedure after passing the first screening exam.

L1: Salary;
L2: Experience;
L3: Working skill;
L4: Dealing with public.
Step 1. Matrices construction for decisions.
Step 2: Compute BNEWAν

(
r_

i 1
, r_

i 2
, . . . , r_

i n

)
r_

i
=

(
=+

_
i
, I+_

i
, f+_

i
,=−_

i
, I−_

i
, f−_

i

)
=

BNEWAν

(
r_

i 1
, r_

i 2
, . . . , r_

i n

)
=

n
⊕

l=1
(νlril) =(

1−2
1+2

, 2ζ1
ζ2+ζ1

, 2 f1
f2+ f1

, −23
4+3

,− ζ3−ζ4
ζ3+ζ4

,− f3− f4
f3+ f4

)
Step 3: Now, compute the scoring function of

r1 = (0.3029, 0.5336, 0.4445,−0.5839,−0.4416,−0.4277),
r2 = (0.2934, 0.4068, 0.4501,−0.6059,−0.3806,−0.3667),
r3 = (0.3556, 0.4435, 0.5882,−0.3867,−0.3570,−0.4616),
r4 = (0.4670, 0.4341, 0.5578,−0.5236,−0.4085,−0.4405),

S
(

r_
i

)
= 1

6 (=+ + 1− I+ + 1− f+ + 1 +=− − I− − f−),
S(r1) = .4350, S(r2) = 0.4296, S(r3) = .4593, S(r4) = 0.4668

Step 4: We have arrived at a conclusion by calculating the scores:

G4 � G3 � G1 � G2

Step 5: The best option is G4.

6. Comparison

Different researchers have used a wide range of DM approaches so far. Chen et al. [28]
used FSs, Atanassov [2] used IFSs, Zavadskas et al. [21] used NSs, Dubois et al. [34] used
BFSsand Irfan et al. [25] used BNSs, among other study approaches.We employed Einstein
operators to apply bipolarity to neutrosophic sets in this paper.

The aggregation operators in this study were broader and more versatile, representing
an advantage of our proposed method, which led us to determine that G4 was the best
manager for the job.

7. Conclusions

The goal of this research was to look at different BN aggregation operators developed
with the help of Einstein t-norms/t-conorms for multi-criteria community DM using BNVs
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as the criteria. The Einstein t-norm typically gives the same smooth approximations as the
product and sum of an algebraic t-norm. Motivated by Einstein operations, we suggested
bipolar neutrosophic Einstein aggregation operators for decision-making problems. To
begin with, we looked at BN Einstein aggregation operators and the properties that they
must have. Along with their attributes, these AOs were (BNEWA),(BNEOWA), (BNEHWA),
(BNEWG), (BNEOWG)and (BNEHWG). Finally, we showed how to make multi-criteria
decisions using such a framework. A descriptive case of manager selection was studied.
The outcomes of the present paper show that the proposed approaches are accurate and
practical when put into practice. We plan to extend the proposed approach to other domains
and employ it in future research projects, such as pattern identification and risk analysis.
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