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I am pleased to introduce the Special Issue on “Advances in Secure AI: Technology
and Applications”. Artificial intelligence (AI) has grown as a key technology that enables
numerous applications that facilitate our daily lives. However, this growth has set forth
concerns about the safety, security, and reliability of the technology to be used for applica-
tions where the malfunctioning of AI can damage human beings or critical infrastructure.
Since the findings of adversarial examples in deep neural networks [1], researchers have
found many more ways to find adversarial examples (for example, FGSM [2], DeepFool [3],
SBA [4], CW [5], and UAP [6], to name a few) and new types of vulnerabilities of deep
neural networks such as model stealing [7,8] and data poisoning/backdoor attacks [9,10].
Additionally, it has been discovered that adversarial examples can work in physical en-
vironments [11]; for instance, making computer vision systems in autonomous vehicles
recognize traffic signs incorrectly [12]. Secure AI is now studied in various fields of com-
puter science beyond the AI community. For example, model stealing can also be done
by side-channel attacks [13] and, therefore, would require considerations in secure com-
puting based on multi-party computation [14] and hardware enclaves (e.g., Intel’s SGX
and ARM’s TrustZone). Additionally, when distributed learning is preferred due to the
cost and security issues of maintaining big data centers, the security of AI may have to
be considered in the presence of federated learning [15] or homomorphic encryption [16],
probably hardening data privacy via differential privacy [17]. Despite the recent discov-
eries, it is still not very well understood why certain weaknesses of AI models exist and
how to strengthen them against specific exploits entirely. Moreover, as more AI models
become available, testing them for vulnerabilities will be essential for trusting and using
AI in mission-critical systems, where techniques like XAI (explainable AI) [18] could be
applied to inspect logical or statistical issues in AI models.
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