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Abstract: In order to effectively improve the power quality and utilize railway regenerative braking
energy in high-speed railway traction power supply system, this paper adopts the Modular Multilevel
Converter type Railway Power Conditioner (MMC-RPC) with distributed super-capacitor (SC) energy
storage (ES) scheme. Firstly, the single-phase MMC mathematical model is established, and the power
compensation characteristics of MMC-RPC are derived. Secondly, the Virtual Synchronous Generator
(VSG) control strategy is adopted to provide inertial support. Compared with the double closed loop
(DCL) control, it has better anti-disturbance and dynamic performance. Then, based on the VSG
control, a two-stage circulating current suppression strategy is proposed, in which Quasi-Proportional
Complex Integral (QPCI) control is used to suppress the bridge arm circulating current, and integrated
Proportional Integral-Quasi Proportional Resonant (PI-QPR) control is an improvement of the VSG
control to further suppress the circulating current inside the VSG. Furthermore, the virtual DC
motor (VDCM) strategy was proposed to control the charge and discharge of the distributed SC
connected to MMC-RPC to recycle railway braking energy. Finally, simulation results of the VSG
small signal model and the MMC-RPC simulation model on the Matlab/Simulink platform verify the
effectiveness, stability of VDCM and improved VSG controls in the MMC-RPC.

Keywords: railway power conditioner; modular multilevel converter; virtual synchronous generator;
virtual DC motor; traction power supply system

1. Introduction

At present, the operating mileage and the number of Electric Multiple Units (EMUs) of
high-speed railways in China account for around 2/3 of the world’s total [1], ranking first
in the world. However, power quality issues of negative sequence and voltage fluctuation
are becoming more serious caused by the increase in traffic volume, single-phase connected
traction transformers, mixed operation of locomotives and so on [2]. In addition, the
access of a large number of locomotive power electronic converter devices has caused
new problems. Due to converters lacking inertia and damping compared to traditional
generators and motors, it is easy to cause low-frequency oscillation phenomena; converters
are also high-frequency harmonic sources, causing high-frequency resonance problems.
These problems have brought challenges to the safe and stable operation of the high-speed
railway, and it is necessary to continue the research on the power quality management of
the traction power supply system [3–5].

At present, traditional power quality management devices are divided into two cat-
egories: the upgrading and optimization of the traction power supply system itself and
the supplementation of power quality management devices. The former is expensive and
difficult to solve the power quality problems of existing lines, while the latter is difficult
to take into account comprehensively all functions of suppressing harmonics, improv-
ing power factor and inertia, and eliminating negative sequence components [2]. In the
1980s, Japanese scholars proposed Railway Power Conditioner (RPC), which could solve
power quality problems comprehensively [6]. However, the traditional RPC devices were
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connected back-to-back by two-level voltage source converters, which would generate
a large number of harmonics. In addition, the voltage withstands capacity of switching
devices is limited [7,8]; it needs to introduce step-down transformers [9] and filter device,
which is too expensive, bulky and inefficient [2]. Therefore, this paper adopts MMC type
RPC (modular multilevel converter, MMC-RPC). While solving the harmonic, negative
sequence and reactive power problems, it has better quality, efficiency and reliability by
increasing the number of voltage levels of each module and the number of modules in
series to improve the total voltage level. For such a reason, MMC-RPC can be directly
connected to the traction network without using the step-down transformers. Compared
with traditional RPC, MMC-RPC has smaller harmonic components due to Carrier Phase
Shift (CPS) modulation. And the switching frequency of each sub-module is low, which
reduces the switching loss [10]. Furthermore, the modular structure of the MMC-RPC not
only expands the capacity of the converter, but also reduces the difficulty of maintenance.

To improve the control effect of the RPC, scholars have carried out much research
on the topology and control strategy of the RPC. One study [11] presented a current
compensation (CP) method to balance the active power, compensate the reactive power
and suppress harmonics by calculating the active current, reactive current, and harmonic
current references. However, it is only applicable to the traditional RPC and traction power
supply systems using V/v transformers. The authors of [12] proposed a closed-loop voltage
equalization control strategy based on CPS modulation for three-leg MMC-RPC, which uses
the capacitor voltage balance control between sub-modules and the interphase capacitor
voltage average control to obtain the average correction of capacitor voltage. However, it
is still affected by the sudden change of power to lose control and stability. The authors
of [13,14] adopted CP and energy balance control for the MMC-RPC system. However, it is
difficult to maintain the stability of the system frequency when the traction load changes
dynamically due to the lack of inertia support. The authors of [15,16] adopted a direct
power control without a phase-locked loop, which improves the dynamic performance of
the system. However, it still cannot provide inertial support for the traction power supply
system, and due to the heavy load and dynamics of the traction load, its anti-disturbance
performance is also limited due to the lack of damping support.

In recent years, the research on Energy Storage (ES) based on MMC topology is
becoming mature. However, most ES units are combined with three-phase MMC. ES units
are distributed connection schemes; that is, they are connected parallel to the DC link of the
MMC submodule directly or through DC/DC converters [17,18]. DC/DC converters are
either isolated or non-isolated. In this paper, a distributed ES scheme is adopted, in which
super-capacitors (SCs) are used as ES units, and they are connected in parallel to the DC
side of the sub-module in one bridge-leg of the MMC through the non-isolated DC/DC
converter [19]. Since the SC charges and discharges rapidly, it is more suitable to be used as
an intermittent power buffer rather than a continuous power supply [20]. Therefore, it is
necessary to use DC/DC converter to improve the voltage level of the ES unit. At the same
time, the DC/DC converter can decouple the SC from the DC link support capacitor of the
submodule and reduce the DC filtering demand.

The research focus of this paper is to achieve the comprehensive management of power
quality, realize the energy conservation of traction power supply systems through multi-
functional power electronic equipment, and improve the stability and anti-interference
ability of the system through new controls. Therefore, this paper applies an ES-type
MMC-RPC system to realize the management of power quality and energy utilization, and
proposes new controls for the MMC-RPC system to improve the system stability. Firstly,
this paper established the mathematical model of the MMC-RPC and analyzed its dynamic
characteristics. A two-stage circulation suppression is adopted to suppress the double
frequency circulating current component of the MMC-RPC, ensuring the stability of the
MMC-RPC. A VSG control is adopted to provide the support of inertia and damping, and
a small signal model is established to verify the stability of the system. Furthermore, for
the SC-type ES system, a virtual DC motor (VDCM) control for the bidirectional DC/DC
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converter is adopted to enhance the stability of the system [21,22]. The joint VSG-VDCM
control can provide better steady-state and dynamic performance compared to other
controls [23]. Finally, the effectiveness of the controls of the MMC-RPC is verified by the
simulation on the Matlab/Simulink platform.

2. Principle of MMC-RPC

The ES type MMC-RPC and its application in the traction power supply system are
shown in Figure 1. The topology is mainly composed of back-to-back modular multilevel
converters (MMCs) and SC-type ES units. In the traction power supply system, the 220 kV
three-phase voltage is transformed to the value of 2 × 27.5 kV through the traction trans-
former. And the MMC-RPC system is directly connected to the traction power supply arm.
Through the MMC-RPC system, energy integration and power quality management of two
arms are realized. Finally, SCs are connected in parallel with the DC link support capacitor
of the submodule to utilize regenerative braking energy through the DC/DC converter.
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Figure 1. Topology of MMC-RPC.

Figure 1 also shows the single-phase MMC (SM) topology structure on the inverter
side of the MMC-RPC system, and the MMC submodule structure is shown in the lower
right corner. The SM structure is composed of left and right bridge legs, and each bridge
leg is composed of submodules, bridge-leg inductance and resistance. The bridge-leg
inductance has three functions: (1) Suppress the charging current on the bridge leg when
the converter is started. (2) During the normal operation of the converter, the circulating
current in the bridge leg is suppressed. (3) When the DC-link short-circuit fault occurs in
the converter, the short-circuit current is suppressed.

The topological structure of MMC-RPC can be obtained from Figure 1; it is defined that
the left and right power supply arms are α and β phases, respectively. Since the structure
of each phase and each bridge leg of MMC-RPC are the same, a and b are defined as the
left and right bridge legs in one phase, and p and n represent the upper and lower parts of
one bridge leg, respectively, where:

usk (k = α, β) is the AC voltage of each phase;
isk is the AC current of two power supply arms;
ukjp and ukjn (j = a or b) are the voltages of the upper and lower bridge legs of

each phase;
ikjp and ikjn are the currents of the upper and lower bridge legs of each phase;
ukj (j = a or b) is the ground reference voltage of the AC port of the bridge leg;
R0 and L0 are the equivalent resistance and inductance of the bridge leg in

Figure 1, respectively;
RS and LS are the equivalent resistance and inductance at the AC side;
idc and udc are the DC-link current and voltage, respectively.
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According to Figure 1, Kirchhoff’s voltage law is used to analyze the AC side and DC
side circuits of the MMC-RPC, and the port equations on the AC side and DC side of the
MMC-RPC are [15]:

uj = uka − ukb = usk − 2Rsis − 2Ls
disk
dt

, (1){
0.5udc = ukjp + LS

dikjp
dt + RSikjp + uj

0.5udc = ukjn + LS
dikjn

dt + RSikjn − uj
, (2)

By solving Equation (2), the voltage on the AC side and DC side of the MMC-RPC can
be obtained [15]: uj= 0.5

(
ukjn − ukjp

)
+0.5LS

d(ikjn−ikjp)
dt +0.5RS

(
ikjn − ikjp

)
udc =

(
ukjn + ukjp

)
+ LS

d(ikjn+ikjp)
dt +0.5RS

(
ikjn − ikjp

) , (3)

According to Kirchhoff’s theorem, we have:{
ikap= −idc/2−iS, ikan= −idc/2+iS
ikbp= −idc/2+iS, ikbn= −idc/2−iS

, (4)

According to Equations (2)–(4), the relationship between bridge leg current and voltage
can be obtained: iap = ibn, ian = ibp, uap = ubn, and uan = ubp.

Since the output of the MMC-RPC is a single intersection flow and has only a single
degree of freedom, it cannot separate the instantaneous active power and reactive power
through Park transformation such as the three-phase MMC. Therefore, with the help of
SOGI, this study constructs a virtual component orthogonal to the actual quantity, to delay
the phase of the single-phase component by 90 degrees. The transfer function of SOGI
is [10]:

G(s) =
ωs

ω2 + s2 , (5)

After constructing the orthogonal virtual component, equations of AC quantities in
dq coordinate system can be obtained in (6), and the active and reactive power of single
phase system can be extracted in (7) [10]:{

ujd = uskd − 2Rsisd − 2Ls
diskd

dt

ujq = uskq − 2Rsisq − 2Ls
diskq

dt

, (6)

[
p
q

]
=

1
2

[
ud uq
uq −ud

][
id
iq

]
, (7)

Through the above single-phase instantaneous power calculation method, the active
power PL, PR, reactive power QL, QR of the load fundamental wave on the left and
right power supply arms can be obtained, realizing active power balance, reactive power
compensation and harmonic power suppression.

Figure 2 shows the power compensation diagram under heavy load on the left arm
and light load on the right arm of the traction network. UA, UB and UC are the three-phase
voltages of the power grid. PLref, PRref, QLref and QRref are the active power and reactive
power compensation reference quantities of the traction power supply arms. In order to
achieve active power balance, MMC-RPC needs to transfer 0.5|PL − PR| power from the
right power supply arm to the left arm with the heavy load, to obtain the expected power
PL

′ = PR
′ for two power supply arms. Secondly, considering the relationship between

the primary and secondary sides of the traction transformer in Figure 2, the left and
right power supply arms compensate PL

′tan30◦ + QL and PR
′tan30◦ − QR reactive power,

respectively, to realize the three-phase current balance on the primary side of the V/v
traction transformer, and eliminate the negative sequence current. Finally, according to
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the distorted current existing in the system in the actual simulation, the power reference
components PLH, PRH, QLH and QRH of harmonic suppression are superimposed to obtain
the references:

PRref =
PR − PL

2
− PRH, (8)

PLref =
PL − PR

2
− PLH, (9)

QRref = −QR + P′
R tan

π

6
− QRH, (10)

QLref = QL + P′
L tan

π

6
− QLH, (11)
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3. VSG Control
3.1. VSG Model

In order to realize the VSG control of MMC-RPC on the inverter side, it is necessary
to simulate the output power characteristics, inertia and damping characteristics of the
synchronous generator. The second-order mathematical model of synchronous genera-
tor includes both rotor mechanical equation and stator electrical equation, covering the
basic characteristics of synchronous generator. The simplified model of the synchronous
generator is shown in Figure 3. By taking the rotor motion equation of the synchronous
generator as the mechanical model of the VSG and the stator electrical equation as the
electromagnetic model of the VSG, the excitation controller calculates the internal potential.
The VSG regulates the frequency and voltage according to the active and reactive power,
respectively [24,25].
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The mathematical model of VSG is [26]:
J dω

dt = Tm − Te − D∆ω

Tm = Pm
ω

Te = P
ω

dθ
dt = ω0

, (12)

where:

1. J is the inertia parameter;
2. D is the damping coefficient;
3. Tm and Te are the mechanical and electromagnetic torques, respectively;
4. Pm, P are the mechanical and electromagnetic power, respectively;
5. ω, and ω0 are the angular velocity and rated angular velocity, respectively;
6. θ is the output angle.

The electrical equation of the VSG is [26]:{
ud = Ed − Rsid + ωLsiq
uq = Eq − Rsiq − ωLsid

, (13)

where:

1. ud, uq, id, iq, Ed, and Eq are the d-axis and q-axis components of VSG terminal voltage,
stator current and three-phase internal potential, respectively;

2. RS, and LS are the VSG stator resistance and inductance, respectively.

With the help of the relationship between torque ω and power P, the prime mover
of the synchronous generator is simulated, and the VSG prime mover is adjusted as
follows [26]:

Tm =
Pref − kf(ω − ω0)

ω
, (14)

where:

1. Pref is the reference value of active power;
2. kf is the frequency modulation coefficient.

In the synchronous generator, the excitation regulation system realizes reactive power
and voltage regulation, VSG excitation controller is [27]:

Ed = E0 +
(

kP + kI
s

)
(Qref − Q)−

ku(Uref − Um)
, (15)

where

1. E0 is the internal potential without load;
2. kP, and kI are the reactive power proportional integral regulation parameters;
3. Qref is the reference value of reactive power;
4. Q is the reactive power;
5. ku is the voltage regulation coefficient;
6. Uref, and Um are the rated terminal voltage and terminal voltage, respectively.

3.2. Design of VSG Controller

According to the VSG model in Section 3.1, the operating characteristics of the syn-
chronous generator can be applied in the MMC power loop control, as shown in Figure 4:



Appl. Sci. 2022, 12, 10009 7 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 21 
 

 

( )ref f 0

m =
P k

T
− − 


, (14) 

where: 

1. Pref is the reference value of active power, 

2. kf is the frequency modulation coefficient, 

In the synchronous generator, the excitation regulation system realizes reactive 

power and voltage regulation, VSG excitation controller is [27]: 

( )

( )

d 0 P ref

u ref m

s
Ik

E E k Q Q

k U U

 
= + + − − 

 

         −

, (15) 

where 

1. E0 is the internal potential without load; 

2. kP, and kI are the reactive power proportional integral regulation parameters; 

3. Qref is the reference value of reactive power; 

4. Q is the reactive power; 

5. ku is the voltage regulation coefficient; 

6. Uref, and Um are the rated terminal voltage and terminal voltage, respectively. 

3.2. Design of VSG Controller 

According to the VSG model in Section 3.1, the operating characteristics of the syn-

chronous generator can be applied in the MMC power loop control, as shown in Figure 4: 

 

Figure 4. Control chart of virtual synchronous generator. 

It can be seen from Figure 4, when there is a deviation between the output power and 

the expected power of the MMC-RPC, the power regulation can be realized by appropri-

ately adjusting the torque increment. In this process, the kinetic energy stored by the rotor 

of the virtual synchronous generator makes the frequency of the system change slowly 

after being disturbed, and the support of inertia and damping makes the system more 

stable. 

The excitation controller can adjust the reactive output of the generator according to 

the change of the generator terminal voltage; it can maintain the stability of the generator 

terminal voltage by controlling the excitation current and changing the induced electro-

motive force. When the voltage amplitude of the traction network changes, the reactive 

power compensation of the MMC-RPC system is realized by adjusting the excitation of its 







0 T

eT

dT

0



g



0E



Rotor Motion



Torque Governor

ωL

ωL
Excitation Control

Electrical 

Equation

Pref

T0

Tm

D

1/Js 1/sk

Q

P

Qref

U
Uref

E
kPI

kU

ud

uq
Eqref

R

R

iqref

idref
kPI

kPI

Figure 4. Control chart of virtual synchronous generator.

It can be seen from Figure 4, when there is a deviation between the output power and
the expected power of the MMC-RPC, the power regulation can be realized by appropriately
adjusting the torque increment. In this process, the kinetic energy stored by the rotor of
the virtual synchronous generator makes the frequency of the system change slowly after
being disturbed, and the support of inertia and damping makes the system more stable.

The excitation controller can adjust the reactive output of the generator according to
the change of the generator terminal voltage; it can maintain the stability of the generator
terminal voltage by controlling the excitation current and changing the induced electromo-
tive force. When the voltage amplitude of the traction network changes, the reactive power
compensation of the MMC-RPC system is realized by adjusting the excitation of its virtual
synchronous motor; that is, changing the bridge arm voltage firstly, and then changing the
output reactive power.

As shown in Figure 5, the output electrical angle and potential of VSG are obtained
through torque adjustment, rotor motion equation and excitation controller. Finally, the
d-axis and q-axis components of VSG output current are used as the inputs of the stator
electrical equation to obtain the expected value of current output. Then, through the dq axis
current decoupling control, the voltage of each bridge leg of the MMC-RPC is constructed
to obtain the start sequence of each submodule. Since the αβ axis component obtained by
the controller through dq-αβ inverse transformation is a virtual quantity, it can be ignored.
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3.3. Two-Stage Circulating Current Suppression Strategy

In the MMC-RPC system, the capacitor voltage balance control of the submodule can
maintain the balance of capacitor voltage. However, the frequent charging and discharging
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of capacitors still make the voltage fluctuate, which leads to the instantaneous energy im-
balance between the bridge arms and the double frequency circulation. And the circulating
current will flow into the DC component, causing voltage and current fluctuations and re-
ducing the reliability of the MMC [28,29]. Therefore, Quasi Proportional Complex Integral
control (quasi-PCI, QPCI) and improved VSG stator electrical equation are established to
suppress the circulating current in the system.

For the circulating current in the bridge legs of the MMC-RPC, QPCI controllers are
used on both sides of the MMC to suppress it. QPCI has a better response speed than
the Quasi Proportional Resonance control (quasi-PR, QPR), and it can maintain a higher
accuracy in the case of frequency fluctuations.

The circulation current of bridge legs in MMC-RPC is [28]:

icir =
(

ikjp + ikjn

)
/2 − Idc/2, (16)

The transfer function of the QPCI controller is shown in Equation (17), and its control
block diagram is shown in Figure 6 [26]:

GQPCI(s) = KP +
KIωC

s − jω0 + ωC
, (17)
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Figure 6. The control structure of circulating current suppressing.

As shown in Figure 7, when there is a large double frequency circulation at the
bridge leg, the double frequency component between the bridge legs is quickly and fully
suppressed after the circulation suppression control is put into operation. Among them,
when QPR is put into operation at 0.65 s, circulation suppression is achieved at 0.75 s, while
QPCI suppresses circulation at about 0.7 s. The adjustment time under QPCI is shorter.

Figure 7. Simulation waveforms of double frequency circulating current suppressing effect.

The output current is feedback to the input of the stator electrical equation module for
the traditional VSG. When the load is unbalanced, the input current and the expected output
value may have a double frequency AC component, aggravating the voltage imbalance.
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In this paper, a PI and QPR compound control strategy is applied to the stator electrical
equation module of the VSG, to realize the accurate tracking of the DC component and the
zero-error tracking of the AC component of double frequency.

The improved VSG control strategy is shown in Figure 8:
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Figure 8. Improved stator electrical equation.

Figure 9 shows the suppression effect of the double frequency circulating current
component in the QPR link of the stator electrical equation; it can be seen from the figure
that the improved composite PI-QPR control can realize fast and effective suppression
of the double frequency circulating current component compared with the unimproved
VSG control.
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3.4. Small Signal Analysis of VSG

VSG control has a good effect on improving the low inertia for power electronic
converters. In order to observe the im-pact of control parameters on stability, small-signal
modeling and analysis of the VSG control under small disturbance are carried out.

Figure 10 shows the VSG small signal analysis model, in which ∆Pm is the input, and
∆P is the output.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 21 
 

 

 

Figure 9. Circulating current suppressing effect under PI-QPR. 

3.4. Small Signal Analysis of VSG 

VSG control has a good effect on improving the low inertia for power electronic con-

verters. In order to observe the im-pact of control parameters on stability, small-signal 

modeling and analysis of the VSG control under small disturbance are carried out. 

Figure 10 shows the VSG small signal analysis model, in which ΔPm is the input, and 

ΔP is the output. 

 

Figure 10. VSG small signal analysis model. 

The small signal disturbance of VSG variables near the steady-state value is substi-

tuted into the VSG mathematical model, the steady-state quantity and the disturbance 

above the second order are omitted, and then the Laplace transform is carried out to ob-

tain the following equations: 

0

ˆ ˆ ˆ

ˆ

ˆ ˆ

ˆˆ

m

PI

e

J s p p D

E k q

δ /s

p T

  





  = − −


 = −


=
 =

, (18) 

When the active power of VSG acts alone, the transfer function of VSG small signal 

analysis model can be obtained by combining with Equation (18): 

( )

( ) ( )

m

s

2
s n n

s

s s

P
G

P

EU

EU J L D L   


= =



      
+ +

, (19) 

According to Equation (19) and its constraint equation, the Bode diagram of the ac-

tive power transfer function is drawn. As shown in Figure 11: 

 

n1/ ( )1/ Js

fk

1/s K

D  −g n

 mP P

Figure 10. VSG small signal analysis model.

The small signal disturbance of VSG variables near the steady-state value is substituted
into the VSG mathematical model, the steady-state quantity and the disturbance above
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the second order are omitted, and then the Laplace transform is carried out to obtain the
following equations: 

Jωs∆ω = p̂m − p̂ − Dω̂
∆E = −kPIq̂
ˆffi = ω̂/s
p̂ = T̂eω0

, (18)

When the active power of VSG acts alone, the transfer function of VSG small signal
analysis model can be obtained by combining with Equation (18):

G(s) = ∆P
∆Pm

=
EUs

EUs+J(ωL)ωns2+D(ωL)ωns
, (19)

According to Equation (19) and its constraint equation, the Bode diagram of the active
power transfer function is drawn. As shown in Figure 11:
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It can be seen that with the increase in the J parameter, margins of both magnitude-
frequency and phase-frequency diagrams are becoming larger, showing better stability.
However, if the inertia J is too large, the dynamic performance of the system will be
degraded and the adjustment speed will be slowed down, which is not conducive to
system stability.

According to Section 3.2, an improved stator electrical equation is proposed in this
study. The voltage outer loop adopts PI-QPR compound control, in which the PI controller is
used to realize the error-free tracking of the DC component in the d-axis and q-axis voltage
components, and the output current command is the DC component. QPR controller
is used to realize the zero-error tracking of the double frequency AC component, and
the output current command is the AC component. Since the dq axis component of the
inductance current and the dq axis output current command by the voltage outer loop are
the same in the steady state, the voltage loop output current command can be directly used
as the current input of the stator electrical equation. Taking d axis as an example, udref is
the reference voltage of the d axis, idref is the reference value of inductance current at the
inverter side, ud is the output voltage of the d axis, id is the output current of d axis, and
iL_D is the feedback value of inductance current, as shown in Figure 12 [26].
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In Figure 12, the transfer function of PI control is [26]:

GI(s) = KP +
KI

s
, (20)

where:
KP, KI are the proportional integral regulation parameters.
The transfer function of QPR controller is:
where [26]:

GQPR(s) = KP +
2KRωcs

s2 + 2ωcs + ω2
o

, (21)

where:

1. ωc is the cut-off frequency of QPR;
2. ωo is the resonant frequency.

As shown in Figure 12, the open-loop transfer function under separate PI control
is [26]:

G(s) =
KGI(s)GV(s)

LCs2 + KGI(s)Cs + 1
, (22)

Combined with the above equation, the open-loop transfer function after adding QPR
control is:

G(s) =
KGI(s)[GV(s) + GPR(s)]

LCs2 + KGI(s)Cs + 1
, (23)

According to Equation (23), the Bode diagram of the open-loop transfer function
corresponding to the PI controller and the PI and QPR composite controller can be drawn.

As shown in Figure 13, under PI control, the dq axis output component of VSG is
DC component. And the open-loop amplitude characteristic has infinite gain, which can
realize the error-free control of dc component in dq axis. However, it cannot realize the
error-free control of the double frequency circulating current component. With the QPR
regulator, when the voltage component in the dq axis has double frequency fluctuation, the
open-loop amplitude characteristic has infinite gain, which can realize the error-free control
of the double frequency component in VSG. Therefore, the double frequency circulation is
suppressed inside the VSG.
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4. ES Type MMC-RPC

In order to utilize of regenerative braking energy in the high-speed railway system
and improve the economy and stability of the system. ES type MMC-RPC has been applied,
where SC units are distributed connected with submodules of the MMC-RPC, and they are
controlled by the VDCM control.

As shown in Figure 14, the SC-type ES units are connected in parallel to the DC-link
capacitors of the submodules through DC/DC converters. The power flow among the DC
links of the submodules. In the process of locomotive braking, the ES units absorb the
regenerative braking energy, reducing its impact on the traction power supply system. Dur-
ing traction condition, SCs are discharged, thereby reducing the power supply requirement
of the system.
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Figure 14. MMC-RPC scheme based on distributed super capacitor energy storage.

The mechanical equation of the DC motor is [22]:{
J dω

dt = Tm − Te − D∆ω
P
ω = T

, (24)

where

1. J is the moment of inertia of VDCM;
2. Tm and Te are the mechanical torque and electromagnetic torque of VDCM, respectively;
3. D is the damping coefficient.

The electrodynamic force balance equation of the armature circuit is:{
La

dIa
dt = E − Ra Ia − U

E = CTΦω
, (25)

where

1. Φ is the torque coefficient of the DC motor;
2. CT is the magnetic flux of each pole of the DC motor;
3. ω is the angular speed of the DC motor.

The control method of the energy storage system is shown in Figure 15:
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By adjusting the input and output of the DC/DC converter, VDCM makes the con-
verter have the characteristics of DC motor. The VDCM control block diagram is shown in
Figure 15. First, take the expected power P as the mechanical power Pm and the output
power as the electromagnetic power Pe. In the VDCM link, the inertia and damping charac-
teristics of the DC motor are simulated according to the mechanical rotation Equation (24)
and the armature loop electromotive force balance Equation (25). The duty cycle of the
armature current Ia is obtained through the current inner loop, and finally the control signal
of the switch is obtained through PWM modulation.

5. Simulation Analysis

In this paper, an ES-type MMC-RPC system based on improved VSG and VDCM
controls are built on Matlab/Simulink platform to verify the reliability and effectiveness of
this power management scheme.

5.1. Verification of Management Effect

On the simulation platform, traction loads are respectively 15 MW on the left arm and
1 MW on the right arm of the traction network, MMC-RPC is put into operation in 0.6 s to
verify the power quality management effect of the MMC-RPC system.

Figures 16 and 17 show the power quality management ability of the MMC-RPC
system in the traction power supply system under improved VSG control; it can be seen
from Figure 17 that the three-phase current on the power grid side is unbalanced. After
the MMC-RPC system transfers active power and compensates for reactive power, the
current amplitude at the primary side of the traction substation gradually stabilizes at 80 A;
At 0.75 s, the current changes with the load power and returns to the original value. The
unbalance degree of the three-phase current is 0, and the current is gradually balanced.
And the parameters of traction network are shown in Table 1.
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Table 1. Traction network parameters.

Traction Network Parameters Parameter Values

Rated voltage of power supply arm 27.5 kV
Rated frequency of power supply arm 50 Hz
Line impedance per unit length [30] 0.215 + j0.516 Ω/km
Locomotive load power (heavy load) 15 MW
Locomotive load power (light load) 1 MW

Figure 17 shows the current of the traction power supply arm. Due to the unbalance
of locomotive load, the current unbalance on both sides is large. The peak current of the
left power supply arm is 900 A, and the peak current of the right power supply arm is 50 A.
After MMC-RPC is put into operation, the load current of the left and right power supply
arms is balanced, and the amplitude is stable at 500 A. The current balance on both sides is
realized, and the negative sequence current is eliminated.

Figure 18 shows the active and reactive power compensated by MMC-RPC under
improved VSG control. After being put into use in 0.6 s, MMC-RPC realizes power trans-
mission stably and quickly, and reaches the expected power in 0.65 s; it can be seen from
the figure that the power fluctuation of the system is very small.
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Figure 19 shows the harmonic THD value of the MMC-RPC output current; it can be
seen from the figure that the current has a very small harmonic content. Compared with
traditional RPC, MMC-RPC reduces the cost without additional filters.
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According to Figures 16–19, ES type MMC-RPC achieves a good power quality man-
agement effect, and has small harmonic components.
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5.2. Verification of the MMC-RPC Based on Energy Storage under Improved VSG

It is assumed that there is a 10 MW traction load on the left power supply arm of
the traction network, which suddenly changes to 20 MW at 0.5 s. The adaptive VSG-DFC
control and the traditional direct power control are respectively adopted on the inverter
side of the MMC-RPC.

As shown in Figure 20, when the traction load changes suddenly by 5 MW, the
MMC-RPC system under the traditional DCL control lacks damping and inertia support.
The output frequency will fluctuate to a certain extent. When the load changes suddenly at
0.6 s, the frequency will fluctuate up to 0.75 Hz, and the fluctuation time will last for 0.08 s.
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Partial diagram of output frequencies by setting: (a) MMC-RPC is put into operation, (b) sudden
load change.

As shown in Figure 21, when the traction load changes by 15 MW, the frequency will
fluctuate by up to 2.23 Hz, and the fluctuation time will last for 0.1 s. The simulation shows
that the frequency instability is serious under the fluctuation of locomotive load, which
affects the power supply reliability of the traction power supply system.
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Partial diagram of output frequencies by setting: (a) MMC-RPC is put into operation, (b) sudden
load change.

Under the improved VSG control, the output frequency will not be affected by the
sudden change of traction load. At the same time, when MMC-RPC is put into operation,
the output frequency fluctuation under DCL control reaches 14 Hz, while the fluctuation
under improved VSG control is smaller, and it can stabilize faster, the adjustment time is
reduced by 20%.

As shown in Figure 22, due to the sudden change of locomotive load, the output
current amplitude increases from 270 A to 1030 A in 0.6 s. The current is stable at 0.61 s,
and the harmonic content is low in the process of current fluctuation.
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As shown in Figure 23, the improved VSG control can maintain a stable basic voltage
waveform while ensuring stable power transmission. At 0.6 s, the locomotive load changes
abruptly, and the voltage ripple of the capacitor of the submodule rises from 30 V to 50 V.
In the process of a sudden change of load, the capacitor voltage recovers more slowly than
the output current in Figure 22. However, under the capacitor voltage balance control, the
maximum voltage oscillation is lower than 70 V, and the capacitor voltage of the MMC-RPC
sub module is stable at 5.5 kV at 0.75 s. Finally, the voltage fluctuation is maintained within
1.5% of the rated voltage with load change.
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As shown in Figure 24, after adding ES units, the capacitance-voltage fluctuation of
the sub module can still be maintained within 1.5%. The stability of DC side of MMC-RPC
based on ES is confirmed.
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As shown in Figure 25, after adding ES units, the capacitor voltage of the sub module
can be stabilized near the expected value, and the voltage fluctuation is within 1.5%. The
effect of voltage equalizing and voltage stabilizing control is good.
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As shown in Figure 26, in order to utilize regenerative braking energy, energy absorp-
tion is carried out through SCs. SCs under VDCM control reach the desired power in 0.06 s,
which confirms the rapidity and stability of the control.
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According to Figures 20–26, ES-type MMC-RPC can maintain stable voltage, current
and power during normal operation or sudden changes in locomotive loads. The simulation
waveform verifies the stability of the topology and improves VSG control.

6. Conclusions

This paper proposes an ES type MMC-RPC, aiming at managing the power quality and
regenerating braking energy for the V/v traction power supply system of the high-speed
railway. This paper analyzes the mathematical model and control strategy of MMC-RPC,
and proposes an improved VSG control strategy with two-stage circulating current sup-
pression measures. Small signal analysis and simulation on Matlab/Simulink platform
are carried out. The simulation results show that MMC-RPC can achieve good power
quality management and energy utilization. Compared with DCL control, the VSG control
proposed in this paper improves the stability of system frequency; compared with the
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traditional circulation suppression strategy, two-stage circulation suppression can better
suppress the circulation of single-phase MMC. The research significance of this study also
lies in the ES control of VDCM, keeping modular capacitor voltage stable while maintaining
the capacitor voltage balance. Under the dynamic change of traction load, the stability and
dynamics of ES type MMC-RPC can still be maintained.

However, this paper does not consider all application scenarios such as installing the
equipment of MMC-RPC into the section posts of the traction power supply system other
than the traction substations. We look forward to performing further research in the future,
and the following conclusions are obtained:

(1) Quasi proportional complex integral (QPCI) control in the two-stage circulation
suppression measures is used to suppress the circulation of the MMC bridge leg. The
composite PI-QPR control is an improvement of the VSG strategy and suppresses the
circulation inside VSG. The two-stage circulation suppression ensures the stable and
effective operation of MMC-RPC based on VSG control.

(2) An energy storage-based MMC-RPC controlled by virtual motor is established. Com-
pared with the traditional DCL power control, MMC-RPC under the improved VSG
control, can improve the system stability and response speed of frequency and power
in the case of a sudden change of traction load. When MMC is put into opera-
tion, it can achieve frequency stability faster. Through small signal analysis, the
influence of damping parameters on the system is studied, and the stability of VSG
control is verified. Under the improved VSG control, MMC-RPC system can better
realize the comprehensive management of the power quality of the traction power
supply system.

(3) A distributed SC type ES scheme is proposed. And a VDCM control is adopted to
realize the recovery and utilization of regenerative braking energy, to improve the
economy of the railway system.

In the subsequent research, the application of hybrid energy storage in the MMC-RPC
system will be further verified, and the corresponding experimental verification will be
carried out.
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