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Abstract: With the increase of smart farming in the agricultural sector, farmers have better control
over the entire production cycle, notably in terms of pest monitoring. In fact, pest monitoring has
gained significant importance, since the excessive use of pesticides can lead to great damage to crops,
substantial environmental impact, and unnecessary costs both in material and manpower. Despite the
potential of new technologies, pest monitoring is still done in a traditional way, leading to excessive
costs, lack of precision, and excessive use of human labour. In this paper, we present an Internet
of Things (IoT) network combined with intelligent Computer Vision (CV) techniques to improve
pest monitoring. First, we propose to use low-cost cameras at the edge that capture images of pest
traps and send them to the cloud. Second, we use deep neural models, notably R-CNN and YOLO
models, to detect the Whitefly (WF) pest in yellow sticky traps. Finally, the predicted number of WF
is analysed over time and results are accessible to farmers through a mobile app that allows them to
visualise the pest in each specific field. The contribution is to make pest monitoring autonomous,
cheaper, data-driven, and precise. Results demonstrate that, by combining IoT, CV technology, and
deep models, it is possible to enhance pest monitoring.

Keywords: computer vision; pest monitoring; Internet of Things; smart farming; deep learning

1. Introduction

The Internet of Things (IoT) describes a network composed of several interconnected
devices to obtain, transmit, and store data. The use of smart farming has grown expo-
nentially with the use of IoT to produce better and cheaper food for a growing world
population. In smart farming, data can be used, among other things, to make more efficient
use of space, minimise waste, and monitor pests [1]. When data is in the form of images,
the IoT can be used together with Computer Vision (CV), which is a field of research that
enables machines to process, analyse, and obtain insights from images or videos. In this
case, the IoT network obtains, transmits, and stores images, and the CV models process
those images to obtain information or insights [2–4].

Smart farming uses IoT for several purposes, e.g., in irrigation systems to minimise
water consumption or in animal feeding to optimise feeding [1]. Computer Vision (CV) is
also used with different purposes, e.g., in crop monitoring to obtain insights about the best
time to harvest or in animal counting [5,6].

Despite the potential of combining IoT and CV, these technologies are still not very
commonly used in traditional pest monitoring, which is a visual task and one of the biggest
challenges for farmers [7]. In traditional pest monitoring, technicians have to go to the field
for the sake of identifying and counting the pests in traps. If the number of pests exceeds a
threshold, then they need to use pesticides or biological monitoring. This may not be very
precise, as technicians use extrapolation to know the number of pests, i.e., the pests in a
small area are counted and used as a sample. It is also expensive, because it requires many
hours of specialised work to count the pests and it can also lead to the overuse of pesticides
if the visit to the field occurs too late, allowing the pests to propagate [8].
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In this article. we present a system that was developed by combining IoT and CV to
make an intelligent pest monitoring network. This network contributes to make the pest
monitoring:

• Autonomous: almost does not need human intervention;
• Cheaper: reduces the need for technicians to identify and count the pests;
• Data-driven: allows to know the daily pest evolution using images and not only when

the technicians make pest detection and counts;
• Precise: replaces the sampling by the total count of the pests.

These contributions allow farmers to optimise production quality and increase revenue.
With that in mind, the proposed system can be implemented for all types of crops and
farms (indoor and outdoor) to allow farmers to make informed decisions in an easy way.

For the implementation, we designed trapezoidal plastic structures to protect the traps
and cameras for environmental conditions and to control the obtained images quality. At
the base of these structures, we placed yellow sticky traps and, on the top, the cameras
used as edge computing. The structures were placed in different crops and the obtained
images from the traps were sent to the cloud. The cloud has a CV model trained to detect
and count pests. The information resulting from the model is then processed and sent to an
application. The application allows farmers to easily make an informed decision, such as
when to use pesticides, just by looking at a dashboard with the evolution of pests in each
trap. We used low-cost/low-power cameras and solar panels for power, which allows for
long-term monitoring in environments without an external power supply. The complex
calculations are in the cloud, where all backend tasks/services are centralised.

The rest of the article is structured as follows. Section 2 presents material and methods,
describing the types of computation, communication protocols, network types, and CV
models. Section 3 describes the proposed approach, including the dataset and CV model
used, and the proposed IoT network. In Section 4, we present the conclusions.

2. Material and Methods

In pest monitoring, most approaches focus only on CV techniques [9,10], not consider-
ing the process to obtain images automatically and in large numbers, which hampers the
application of CV models in real contexts due to lack of information/images. Works that
present the two technologies together, CV and IoT, in pest monitoring, are therefore the
most promising [11,12], since the images are obtained in a more real context and not under
extremely controlled conditions, which could raise issues with the generalisation ability of
the CV models.

In the next subsections, we first introduce the most relevant aspects of the IoT, such as
computation types, communications protocols, and network topologies; and then the most
relevant CV models, such as faster Region-Convolution Neural Network (R-CNN) and You
Only Look Once (YOLO).

2.1. Internet of Things

The IoT is a network composed of interconnected nodes/devices that send, receive,
and store data. Those nodes can use edge, fog, and cloud computing (see Figure 1). The
communication protocols define the communication rules between nodes, and the network
topology defines the nodes’ distribution and communication links [13].

Depending on the purpose, environmental, hardware or communication constraints,
IoT networks can use different types of computation, communication protocols, and net-
work topology. Computation types mainly influence computational power, storage capacity,
and latency. Communication protocols mainly influence the security and payload size of
communications. The network topology mainly influences the reliability and scalability of
the network [13].
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Figure 1. Types of computation (adapted from [14]).

2.1.1. Computation Types

As depicted in Figure 1, edge, fog, and cloud are interconnected computation types
that should cooperate to fulfil the final service [14].

Edge computing is the computing performed on devices used to collect the data, i.e.,
devices that are closer to data sources. The devices used at the edge usually have low
computational power and low storage capacity, which makes it difficult to store or process
large amounts of data at the edge. Furthermore, the edge has low latency, mobility of
its devices (like the fog), and low bandwidth available [13,15]. Examples of edge devices
include low-cost cameras or humidity sensors.

Fog computing is the computing used to bring data storage and processing closer to
the edge, enhancing the edge ability. The fog can have several devices with different com-
putational and storage resources, which allows it to store or process data locally and almost
in real-time. Normally, the fog is a bridge between edge and cloud computing that allows
the reduction of the resources used by the cloud, while enhancing edge capabilities [13].
Examples of fog devices include Raspberry Pi and Arduino.

Cloud computing allows us to make more demanding calculations that are difficult
at the edge or fog. This type of computation is efficient, scalable, and allows the tailoring
of resources as needed [13]. It has disadvantages such as high latency, high bandwidth,
and high energy consumption. This type of computing performs the data processing and
analysis in the same place, usually in a centralised way. The types of cloud are public,
community, hybrid, or private [13,15].

As the IoT is a network composed of several interconnected devices, it is necessary to
choose the most appropriate communication protocols to communicate between nodes in
each scenario.

2.1.2. Communication Protocols

Communication protocols define the rules to communicate between nodes, allowing
them to send data between devices and users in a safe and reliable way. We can divide com-
munication protocols into two types: (1) request–response and (2) publication–subscription.

The most used protocol based on request–response is the Hypertext Transfer Protocol
(HTTP). This is one of the most stable and reliable protocols and allows the transmission
of large amounts of data. Its disadvantages are high memory and energy consumptions,
making it challenging to use at the edge.

The most used protocol based on publication–subscription, is Message Queuing
Telemetry Transport (MQTT), which is a lightweight protocol that allows scalability and
simplifies communication between devices (despite not having an encryption mechanism).
It is suitable for sending small amounts of data in low bandwidth and high latency scenarios
typical on the edge. It is also optimised to work on devices with memory constraints and
has other advantages, namely in terms of privacy issues. Publishers and subscribers do not
need to know each other’s existence. One subscriber can receive data from many devices,
and the publisher and subscriber do not need to be connected at the same time [16,17].



Appl. Sci. 2022, 12, 9397 4 of 14

After choosing the types of computation and communication protocols, it is neces-
sary to define how to arrange the nodes of the IoT network and how to connect these
nodes. This arrangement of nodes and how they communicate with each other defines the
network topology.

2.1.3. Network Topology

An IoT network is a representation of the distribution of its nodes in space and how
they interconnect. The most used topologies are point-to-point, star, and mesh, as depicted
in Figure 2 [18].

Figure 2. Network topology (adapted from [18]).

Point-to-point (P2P) is the simplest topology and has only two nodes. For this topology
to work, none of the elements (the two nodes and the link between them) can fail, which is
a tough constraint.

The star topology is one of the most common, since it is scalable and easy to deploy. In
this topology, all nodes are connected to a central device that acts as a gateway. The nodes
cannot communicate with each other, but only with the gateway. It is possible to add and
remove nodes from the network without breaking it. It has the disadvantage of having a
single point of failure (the gateway).

The mesh topology is not as common as might be assumed and is more expensive to
deploy. All nodes are connected to each other, which causes redundancy in the connections.
It also allows the network to work in case of a connection failure (because of the redun-
dancy). Nevertheless, it needs more computational power and more memory than the star
topology to move data from one node to the other [19,20].

2.2. Computer Vision

Computer Vision (CV) is an interdisciplinary research area that processes digital
images or videos to extract information [21]. Currently, CV is strongly based on artificial
intelligence, namely, on machine learning and deep learning models that replace human-
visual tasks, such as animal counting and crop or pest monitoring. In the specific context of
this work, we can divide CV into image classification and object detection. Typically, image
classification is used to classify an image, but it can be adapted to classify multiple objects
in the same image. For that, we have to segment the objects in the image, extract their most
relevant features, and then apply the classification model to each object. Object detection
models incorporate all those steps into a single model and allow for the classification of
multiple objects in the same image.

In pest monitoring, the goal is usually to detect and count the pests in each trap, and
not to holistically classify the trap; hence, object detection models are usually more suitable.
There are two main types of object detection models: (1) two-phase models, such as the
Faster Region-Convolution Neural Network (Faster R-CNN) and (2) one-phase models,
such as You Only Look Once (YOLO) [22].
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2.2.1. Faster R-CNN

Faster R-CNN is a two-phase model because it includes two phases: first, it looks for
the Regions of Interest (RoI) to predict if an object exists; then, using that RoI, it predicts
the object’s class and coordinates. This model has three main steps. The backbone is
where a Feature Pyramid Network (FPN) obtains the feature maps of the images. The
Region Proposal Network (RPN) predicts the RoI, that is, the regions that have objects and
their coordinates. Lastly, there are the RoI classifier and the bounding box regressor. The
first classifies each object in the bounding boxes (regions that have an object). The latter
improves predictions for the dimensions of those boxes [23] (see Figure 3).

Figure 3. Faster R-CNN general architecture (adapted from [24]).

2.2.2. YOLOv5

YOLOv5 is one of the most recent YOLO models and like the other YOLO models,
is a one-phase model because it only takes one look at the images, i.e., this model does
not first look for the RoI and then process that area. Instead, it makes the classification
and prediction all at once. It has three main steps. First, there is a backbone where a Cross
Stage Partial Network (CSPN) extracts the most relevant features. Then, a neck generates
feature pyramids using a Path Aggregation Network (PANet) to obtain new and better
feature maps, i.e., features maps that combine the same information with different scales.
The final step is the head (see Figure 4), which is used to acquire the bounding boxes from
the feature maps, classify them, and predict their coordinates [25].

Figure 4. YOLOv5 general architecture (adapted from [26]).

3. Proposed Approach

The main goal of this work is to propose and develop an IoT network that uses CV
for pest monitoring. We start by constructing and validating the use of CV models for
pest detection. Then, we define the type of devices and structures to capture images at
the edge of the network. Next, we use the cloud to centralise the backend of the IoT
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network. This is where we store and process data and connect the edge and users of the
network. Then, we develop and test a mobile application for users to easily monitor the
pest’s evolution. Finally, we connect all network nodes (edge, cloud, and application) and
place the intelligent traps in different crops to test the whole proposed approach.

3.1. Computer Vision Model

We have developed CV models to detect the Whitefly (WF) pest. This type of pest is
one of the most common; thus, it is one of the most relevant to fight, especially in tomato
crops. The life cycle of WF starts as an egg, then passes on to nymph and ends up as an
adult propagating to the entire crop. There are several species of whiteflies that are visually
similar, such as Trialeurodes vaporariorum and Bemisia tabaci. The next subsections describe
the dataset used to train several CV models (object detection models), the obtained results,
and the chosen CV model for the IoT network.

3.1.1. Dataset

To train the computer vision models, we used a public dataset [27] that contains
284 images (5184 × 3456) of yellow sticky traps with WF and other insects (Figure 5). The
dataset contains 4940 annotated WF instances and, as described by the dataset authors [27],
some unannotated or improperly annotated instances. This affects the precision of CV
models, as the detection of an unannotated instance is classified as a False Positive detection.
To improve the dataset, we contacted technicians and, with their help, we annotated the
missing WF instances. From that process, the total annotations passed from 4940 to 5863
WF instances. Finally, we divided the whole dataset into a training (80%) and a testing
(20%) dataset.

Figure 5. Part of a dataset image with WFs.

3.1.2. Model

We used the train dataset to train the Faster R-CNN, Scaled-YOLOv4, YOLOv5 (Small),
and YOLOv5 (XLarge) models. The Faster R-CNN was published in 2017 [28], the YOLOv5
models were made public in June 2020 [29], and the Scaled-YOLOv4 (Large) in November
2020 [30]. YOLO models allow testing of different depths of the same architecture, from
Tiny to XLarge (changing only the number of layers and neurons). This allows testing the
state of the art of object detection and evaluating the trade-off between performance and
depth of the network. The R-CNN allows the testing of a two-stage model and compares
performance with one stage models.

To evaluate those object detection models, we considered three metrics. Mean Average
Precision (mAP) is one of the most used metrics to assess the precision of object detection
models [31]. We also considered the metrics memory consumption and average detection
time for an image (using a NVIDIA Tesla T4 GPU).

As described in Table 1, YOLOv5 (XLarge) presented the best performance (best
mAP) in the test dataset and therefore was the model deployed in the IoT network. The
memory consumption was not an issue because we used the cloud, and average time for
each detection was not relevant because we did not have the goal of performing real-time
detection.
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Table 1. Computer Vision models performance.

Metric Faster R-CNN YOLOv5
(Small)

YOLOv5
(XLarge)

Scaled-YOLOv4
(Large)

mAP (%) 76.15 81.20 89.70 82.50

Memory (MB) 244 14 167 101

Average Time (S) 1.5 0.01 0.13 0.03

3.2. IoT Network

As depicted in Figure 6, we developed a star topology network with cameras (at
the edge) placed in crops, the backend centralised in a private cloud, a pest monitoring
application for the users obtain insights, and all communications using the HTTP protocol.
The chosen architecture (star topology) allowed the development of a very efficient and
inexpensive network. Furthermore, this type of topology allows us to easily scale the
network to other crops just by adding new edge devices. The cameras used at the edge
(ESP32-CAM), although low cost, allow the obtaining of images with enough quality to not
influence the performance of the CV models.

Figure 6. Proposed IoT network.

If we had used the fog layer, the cost would have increased significantly; each crop
would need a fog device and solar panels to power them. The goal of this system is not
to obtain images in real-time, so the lower latency of the fog (over the cloud) was not a
decision factor. Another advantage of fog that was not important to us was the mobility
of its devices, as we wanted to leave the devices in the same location for a long time (the
most autonomous possible). However, introducing a fog layer could be a good solution for
cultures without internet access or if the backend is on a public cloud.

The chosen communication protocol (HTTP) allowed us to send the images to the
cloud without the payload size restriction that MQTT sometimes has when dealing with
images. HTTP power consumption was not an issue because each edge node sent only
a daily image to the cloud to perform daily monitoring). HTTP memory consumption
was not a constraint, as we did not send high resolution images. However, the use of
MQTT would result in a lower memory and energy consumption, but as this protocol
was developed to send small amounts of data, the size of the images would have to be
reduced to have viable transfers. As MQTT was designed to be lightweight, it does not use
a security mechanism for data transmission. In that case, we would have to implement, for
instance, Transport Layer Security (TLS), to guarantee the encryption of the transmitted
images.

Using the application for automatic monitoring, the user only needs to visualise the
graph with the daily evolution of the pest in order to choose which intervention to take.
Nevertheless, this limits the monitoring to available nodes at the edge. With that in mind,
we introduced a feature for the user to use their phone’s camera to take a picture of a trap.
With that, he can point the camera at any yellow sticky trap and is not limited to the ones
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at the edge. However, this changes how images are obtained and introduces the possibility
of human error, which can influence the performance of CV models.

The next subsections describe the edge and cloud of the IoT network and show part of
the application.

3.2.1. Edge

The number of edge nodes to use on each farm mainly depends on the size of the farm.
With more nodes, it is possible to know more quickly and reliably how the number of pests
is evolving. However, as the pests are attracted by the traps inside each structure, just one
node is enough to see the daily evolution of the pests.

For each farm, we used one ESP32 microcontroller with a camera attached to obtain
the trap images. This is a low-cost, low-power microcontroller suitable for when there is no
external power source. It has only 520 kilobytes (KB) of memory, with 320 KB of DRAM (for
storage) and 192 KB of IRAM (for instruction execution); the rest is RTC memory (which
persists when the device is on standby) [32].

We attached the OV2640 camera to the ESP32 to create the ESP32-CAM. This camera
allows the obtaining of images of different qualities (jpeg quality) and resolutions (320 ×
240, 352 × 288, 640 × 480, 800 × 600, 1024 × 768, 1280 × 1024 and 1600 × 1200).Finally, we
programmed the ESP32-CAM to send daily images (1280 × 1024) to the cloud through the
HTTP method [33].

To test if the ESP-Cam had the capacity to detect pests, we counted the WF in the testing
dataset (we counted 1371 WF) and then resized those pictures to different dimensions and
sizes that are allowed by the Esp32-Cam. Next, we used the YOLOv5 (XLarge) model to
make detections on those pictures, as shown in Figure 7.

Figure 7. YOLOv5 (XLarge) performance (number of whitefly detections) for different image dimen-
sions and sizes.

The previous table shows that it is possible to use the Esp32-Cam with 1280 × 1024
images for pest detection without losing significant performance in YOLOv5 (XLarge)
(between 10.3% and 16.3% less detections).

To power the ESP32-CAM, we used two 18650 batteries and also solar panels to extend
the battery life (see Figure 8). The daily power consumption of each edge node is 24 mA
and the used batteries have 3350 mAh of power capacity, providing more than four months
of duration for each battery. The solar panels with 150 mA and an average of 5 h of direct
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sun exposure during the year (in Coimbra, where these edge nodes are placed) allow the
edge nodes to run without the need to change batteries.

Figure 8. Diagram of ESP32-CAM powered by solar panels.

In crops, the edge is subject to adverse conditions that can affect the durability of the
devices and the quality of the images. With that in mind, we designed a structure (see
Figure 9 in this paper and Figure A1 in the Appendix A) to protect the ESP32-CAM from
atmospheric conditions and to better control the image quality (such as brightness). At the
base of this structure, we placed the yellow sticky trap, and the ESP32-CAM at the top.

Figure 9. Trap structures at the edge.

3.2.2. Cloud

The backend part of the IoT network is in the cloud, which is available through an
Application Programming Interface (API) that makes the images available to the CV model
(YOLOv5 (XLarge)) and stores them. When an image arrives at the cloud, the model detects
the pests and counts them (see Figure 10 in this paper and Figure A2 in the Appendix A).
These discoveries, the metadata of the images, and plantation sites are stored in a relational
database. The pest monitoring application, through the same API, can access the CV
models, the database, and the stored images in the cloud.
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Figure 10. Example of a daily pest detection by the CV model.

3.2.3. Mobile Application

The mobile application was developed using React Native, and allows the user to
monitor pests through a mobile device (see Figure 11). For that, the user can choose a
plantation site and a specific edge node (one of the ESP32-CAMs) on a map. For that node,
the user can see the evolution of the detected pests and the images obtained for each day.
The middle image shows a pest evolution where the traps were changed almost every day.
To complement this approach, it is also possible to take a photo of a trap, which is sent to
the backend part of the IoT network. Then, the CV model makes the detection and returns
results to the application.

Figure 11. Part of the mobile app that allows users to monitor pests.
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4. Conclusions and Future Work

The presented approach aims to contribute to more sustainable and efficient farming. We
presented an IoT network to automate pest monitoring and to enhance part of the technicians
work with new technologies. The star topology of the network allows its easy extension to new
plantations and other pest types. This network is composed of edge devices, a private cloud,
and a mobile application, and uses HTTP to communicate between nodes. The low-cost devices
(such as the ESP32-Cam) are associated with low-power consumption, allowing the use of the
network in crops with external power constraints. It is possible to run the edge nodes for four
months using 18650 batteries, and without the need to change those batteries with the addition
of solar panels. Furthermore, the use of low-cost devices at the edge does not significantly
decrease the performance of CV models (between 10.3% and 16.3% less detections).

We tested four CV models (Faster R-CNN, Scaled-YOLOv4, YOLOv5 (Small), and
YOLOv5 (XLarge)) and used three metrics for their evaluation: mAP, memory consumption,
and average time for each detection. The model with the best mAP was YOLOv5 (XLarge),
with a mAP of 89.70%. The model with the lowest memory consumption and average time
for each detection was YOLOv5 (Small), with 15 MB and 0.01S, respectively.

As the model runs in the cloud and the goal is to monitor pests daily, we used the
model with the highest mAP (YOLOv5 (XLarge)) for the monitoring system. For a real-time
monitoring system, the model with the lowest memory consumption (to be closer to the
edge) and the lowest average time for each detection was determined to be the best option,
in this case YOLOv5 (Small). For a monitoring system with a CV model in the fog, the
Scaled-YOLOv4 constitutes the best choice, as it is more balanced.

The mobile application allows users to easily monitor the pest’s evolution, thus sup-
porting more informed decisions. The application was presented to potential users that
have shown interest in such a pest monitoring application, namely to integrate in their own
current monitoring system.

Most approaches on pest monitoring only address CV models. Advances in IoT, such
as reducing hardware costs and increasing computational power, make it especially relevant
to use IoT networks for the deployment of those CV models, giving them a purpose and a
use. Additionally, most proposed approaches use images obtained in controlled conditions,
e.g., always the same light or without noise, making it difficult to develop CV models with
good performance outside the lab. This work shows that the use of an IoT network allows
the acquiring of images in real contexts and in large quantities, which can then contribute
to improve the real performance of CV models.

Despite the advantages of an automatic monitoring system, there are some disadvan-
tages that must be taken into account. The lack of precision of the CV model or the lack of
the quality of the images can lead to false positives and/or false negatives, both of which
can be tackled by large annotated datasets throughout the pest’s different development
stages obtained under real conditions.

Future work will mostly focus on overcoming these disadvantages. For that, we will focus
on the expansion of the IoT network to obtain more images and the creation of a dataset with
ESP32-Cam images to improve CV models’ performance under uncontrolled conditions. Lastly,
we will evaluate performance of the monitoring system during multiple crop seasons.
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Appendix A

Figure A1. More examples of trap structures at the edge.
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Figure A2. Another example of a daily pest detection by the CV model.
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