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Abstract: Carbon fiber is becoming a key material for engineering applications due to its excel-
lent comprehensive properties. The process parameter optimization is an important step in the
polymerization process of carbon fiber production. At present, most of the research on process
parameter optimization is usually carried out on a single production line, without considering the
correlation between optimization problems. In this paper, a multiobjective mechanism model for
the co-optimization of the polymerization process of carbon fiber production is established. Each
of these submodels is a multiobjective process parameter optimization task, corresponding to the
polymerization process of a production line. In order to solve the model effectively, we also designed
an evolutionary multitasking algorithm based on transfer learning, which reuses the past experiences
of one task to generate a population pool for the next iteration of another task, enabling explicit
genetic transfer between different tasks and accelerating the population convergence speed. The
proposed multitasking framework for operation optimization has been conducted on 10 different
production conditions of the polymerization process. Experimental results show that compared
with other implicit and explicit genetic algorithms, this algorithm is very competitive in generating
effective solutions. This research provides important support for process parameter optimization
and manufacturing of carbon fiber production, which will help engineers and technicians to make
informed decisions.

Keywords: polymerization process; carbon fiber production; process parameter optimization;
co-optimization; evolutionary multitasking algorithm; transfer learning

1. Introduction

Polyacrylonitrile (PAN) and mesophase pitch (MP) are two of the most important
precursors in the carbon fiber industry. The structure and composition of the precursor
have an important influence on the performance of the carbon fiber obtained. Currently, the
carbon fiber market is mainly dominated by PAN. Acrylonitrile (AN) polymerization is one
of the key technologies in carbon fiber polymerization, and plays an important role in the
preparation of high-performance carbon fiber [1–3]. The initiator decomposes at a certain
temperature to produce free radicals, which causes initiate monomer chain polymerization,
and accelerates the polymerization rate.

Figure 1 shows the carbon fiber production process. Carbon fiber is prepared from
raw PAN precursor, which usually undergoes four processes: namely polymerization
process, spinning process, oxidation stabilization process, carbonization and graphitization
process. First, polymerization is the process of producing high-quality spinning stock
solution to obtain high-quality copolymer by using precursors, and is the key to producing
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high-performance carbon fiber [4,5]. Next, the purpose of the spinning process is to increase
the speed of the cyclization reaction as well as to improve the orientation of the molecular
chains in the fiber. Next, the oxidation stabilization process crosslinks the PAN chains in
order to produce a molecular structure that is resistant to high temperature processing.
Finally, the carbonization and graphitization process removes some carbon elements by
subjecting the fiber to high-temperature processing to produce a high-strength carbon
fiber with a stable structure. Generally, to improve the efficiency of industrial production,
parallel process are used to provide good preparation for the subsequent process. In this
paper, a co-optimization method of process parameters is proposed to solve the problem of
multiple production lines during polymerization.
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Figure 1. Carbon fiber production flow chart.

It is difficult to optimize process parameters of the polymerization process of carbon
fiber production (PPCFP), mainly because of the following reasons. First, the PPCFP is
complex, environmentally demanding and involves many processes and each of which has
a significant impact on the quality of subsequent carbon fiber [6–8]. Optimization objectives
are often contradictory and require some trade-offs. For example, resource efficiency and
economic benefit are the two important production indices of PPCFP [9]. The more efficient
the resource efficiency benefits, the lower the economic benefits. Therefore, PPCFP can be
regarded as a typical multiobjective optimization problem (MOP). Finally, each production
line (PL) in the parallel production process is very similar at the problem level. How to
use the similarity of different tasks to optimize operational indices has become one of the
important research issues in PPCFP.

In recent years, the operational indices of MOP in industrial production have exten-
sively attracted attention. Yang et al. [10] fitted three kinds of assistant models via a large
amount of historical production data in the beneficiation processes. The most accurate
model is the optimization function in the actual production process, and the remaining
model alternately assists the most accurate model for optimization. Taking into account five
indicators such as iron concentrate output and concentrate grade for mineral processing
production planning, Yu et al. [11] established a nonlinear multiobjective programming
model. The author designed G-NSGA-II and G-SPEA2 based on a gradient hybrid operator
to solve the model. Wang et al. [9] suggested integrating multiple mutation operators and
adaptive selection strategy into an evolution algorithm (EA), which can effectively obtain
better control parameters from the model in a continuous annealing production line model.
Qian et al. [12] developed a multifidelity sequential optimization approach to determine the
optimal design of the metamaterial vibration isolator. In the actual industrial optimization
process, with the increase of the data dimensionality and the expansion of search space, the
performance of the optimization algorithm is challenged. Moreover [13,14] put forward
two search space reduction strategy algorithms, which provide a good idea to solve the
above problems.

Inspired by Darwin’s theory survival of the fittest [15], EAs mimic the natural extinc-
tion of organisms in nature, and can learn from individual or entire populations. EAs have
also shown excellent performance in solving complex optimization problems such as MOPs
in the real world, thanks to parallel processing, strong search ability and a wide range of
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applications [16]. As one of the most active research fields in evolutionary optimization,
multiobjective optimization EAs (MOEAs) have successfully been used in solving MOPs,
which aims to strike a good balance between convergence and diversity [17,18]. At the same
time, multitasking optimization has also attracted a lot of attention. It can handle more
than one task at a time using a population, and each task can be one or more predefined
objective functions. At this time, the optimization problem is classified into multifactorial
optimization (MFO) [19,20]. With the help of the implicit parallelism search in the popula-
tion and the related knowledge between tasks, the proposed multifactorial evolutionary
algorithms (MFEAs) have successfully been used in solving MFO [21]. MFEAs have been
successfully applied to many practical problems, such as job shop scheduling problems
and expensive optimization problems [22,23].

Multipopulation approaches were developed in [24–26], where each subpopulation
solved a task by exchanging genetic material between the multiple populations. For a
promising performance, three strategies were adopted: Separated Genetic Algorithms, Bat
Algorithms, and Variable Neighborhood Search. Zheng et al. [27] adopted an effective strat-
egy based on random replacement via differential evolution to conduct knowledge transfer
between populations, so that each subpopulation can efficiently handle the corresponding
task. Feng et al. [28] proposed an Evolutionary Multitasking algorithm with explicit genetic
transfer (EMT-EGT) that used a denoising autoencoder as a key component for inter-task
knowledge transfer. By integrating the advantages of different solvers, the algorithm can
deal with infeasible solutions effectively and avoid the algorithm converging to the local
optimal solution. The resource allocation in the multitasking optimization was considered
in [29]. The author believes that during population execution, acceptable solutions can
be obtained via an online dynamic resource allocation strategy. Goh et al. [30] adopted
hybridized competitive and cooperative mechanisms to optimize dynamic multi-objective
problems. The MOP is divided into several subcomponents, each particular subcomponent
of which will be completed by each subpopulation, and the eventual winners of the compe-
tition will cooperate with each other to guide the evolution process according to different
optimization requirements. Yu et al. [31] developed an approach that was able to address
these challenges through adaptive genetic and differential operators, a Gaussian mutation
operator, and a memory-like strategy. Then, the optimal population location was gained
effectively, which can help the convergence speed of the algorithm to accelerate. In Azzouz
et al. [32] a dynamic constrained NSGA-II was developed using a more elaborated and
self-adaptive penalty mechanism. Considering the characteristics of these methods, test
benchmarks were designed. The algorithm maintains the advantages of convergence and
diversity, can deal with infeasible solutions effectively and avoids the algorithm converging
to the local optimal solution.

In this paper, we demonstrate an ideal multitasking optimization framework to solve
the complex PPCFP. The framework takes full advantage of knowledge transfer across
tasks for PPCFP. The main contributions of this article can be summarized as follows.

(1) Considering the correlation and characteristics of PPCFP, we established a multi-
objective mechanism model for the co-optimization of the polymerization process.
Each submodel is a multiobjective process parameter optimization task for a single
production line of the polymerization process.

(2) EMT-EGT is based on different solvers, in which search mechanisms with the multiple
solvers can be considered to accelerate the convergence speed between tasks. With
this in mind, we proposed the transfer learning-based EGT (Tr-EGT), in which the past
experience of one task is reused to generate the population pool for the next iteration
of another task. Experimental results indicate that Tr-EGT achieves its effectiveness in
addressing the PPCFP.

The rest of this paper is arranged as follows. In Section 2 we present the problem
description and model for the polymerization process. In Section 3 we describe the details
of the proposed algorithm. In Section 4 we will present the experimental results in incorpo-
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rating our algorithm to solve the proposed model. In Section 5 we will draw a summary of
this paper and outline the future research directions.

2. PPCFP Problem Formulation

We first review the PPCFP to be solved in this Section. On this basis, the mechanism
model of the multiobjective process parameter optimization function is described.

2.1. Description of Polymerization Process

Figure 2 shows the general diagram of the polymerization unit.
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Figure 2. Schematic diagram of polymerization unit.

Generally speaking, the polymerization process can be divided into five stages: raw
material preparation stage, polymerization reaction stage, demonomer stage, filtration
stage, and defoaming stage. The main raw material for the preparation of carbon fibers
is AN, which has the molecular formula C3H3N, contains side cyanide and is suitable for
free radical polymerization. A common comonomer is itaconic acid (IA), which has the
molecular formula C5H6O4 and is introduced to improve the hydrophilicity of polyacry-
lonitrile by making the exothermic process more moderate and easily controlled. AN,
comonomer, initiator, additives, and solvents enter into the reaction kettle, and a series of
complex reactions occur under the action of the initiator. The chemical reaction equation is
shown in Equation (1) [4].

n1 C3H3N + n2 C5H6O4 + additives
Initiator, Solvent−−−−−−−−−→ [C3H3N]n (1)

They blend completely at a certain temperature through the action of a stirrer. The
polymerization of AN is usually triggered by free radicals, which releases reaction heat.
Therefore, one of the key factors to ensure the stability of polymer quality is to take out the
released reaction heat in time to achieve the dynamic balance of heat within the polymerizer.
During the reaction, the rotation speed of the stirrer should be strictly controlled so that the
molecular weight of the PAN can be stabilized in a certain range. Filters can remove gels
and impurities from the polymer, allowing it to be pre-purified, thereby improving product
quality. Under certain temperature and vacuum conditions, the bubbles in the polymer
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solution are removed, and the PAN raw liquid is transported to the spinning stage after the
defoaming.

2.2. Optimization Modeling

In this paper, the correlation between optimization problems is considered, and process
parameter optimization is studied via a multiobjective multifactorial mechanism model
of PPCFP. In the mechanism model, the yield (Q) and the production capacity utilization
(C) are taken as objections in a different production lines. We use operational indices as
decision variables and constraints.

2.2.1. Parameters and Variables

The aim of process parameter optimization is to improve the global production effi-
ciency of PPCFP through the synergistic mechanism model. The model consists of two
optimization tasks of the polymerization process of a production line, in which each sub-
model deals with a single task. The symbols and meanings of the model used in our
formulation are described in Table 1.

Table 1. Symbols and meanings.

Symbol Meaning Symbol Meaning

Q1,1 Yield in PL 1# w1 Weight factor
Q2,1 Yield in PL 2# w2 Weight factor
C1,2 production capacity utilization in PL 1# w3 Weight factor
C2,2 production capacity utilization in PL 2# k Tradeoff factor
M1 Monomer concentration of kettle 1 Ts Temperature of material mass flow
M2 Monomer concentration of kettle 2 qM1 Material mass flow of kettle 1
I1 Initiator concentration of kettle 1 qM2 Material mass flow of kettle 2
I2 Initiator concentration of kettle 2 H Specific heat capacity
N1 Comonomer concentration of kettle 1 t Production time
N2 Comonomer concentration of kettle 2 β Correction parameters
T1 Temperature of kettle 1 m Material quality
T2 Temperature of kettle 2 R Idea gas constant

Mmin Lower bound of monomer concentration Utra Heat transfer coefficient
Mmax Upper bound of monomer concentration Atra Heat exchange contact area
Imin Lower bound of initiator concentration Tjac Jacket average temperature
Imax Upper bound of initiator concentration kp Chain growth rate constant
Nmin Lower bound of comonomer concentration f Initiation efficiency
Nmax Upper bound of comonomer concentration kt Material mass flow
kd1 Decomposition rate constant of kettle 1 Ad Pre-exponential factor
kd2 Decomposition rate constant of kettle 2 Ed Activation energy

In order to ensure the safety and reliability of the polymerization process, every
decision variable needs to satisfy a certain range in the actual industrial production. Table 2
shows the fixed parameters and their values. The ranges of every decision variable are
presented in Table 3.

Table 2. Fixed parameters and their values.

Parameters Value Parameters Value

w1 0.49315 H 4179 J/(kg·K)
w2 1 β 0.99
w3 1 f 0.8
k 1 R 8.314 J/(mol·K)
Atra 1 m2 Ad 1 × 1013

Tjac 333.15 K Ed 120 kJ/mol
kp 1960 L/(mol·S) kt 7.82 × 108 L/(mol·S)
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Table 3. Boundaries of decision variables.

Name M1 I1 N1 M2 I2 N2

Lower
bound 0.1 0.01 0.01 0.1 0.01 0.01

upper
bound 1 0.1 0.1 1 0.1 0.1

Unit mol/L mol/L mol/L mol/L mol/L mol/L

2.2.2. Production Conditions

Production conditions often change due to the properties of polymerization process.
To ensure that the production index is in the most optimum condition under different
production conditions, we need to re-optimize process parameters of any given production
condition. Taking this cue, we investigated the optimization of 10 different production
conditions during the polymerization process. These production conditions are set out in
Table 4.

Table 4. 10 typical operational conditions in production process.

Name t(S) T1(T) qM1 (g/S) T2(T) qM2 (g/S)

Conditon 1 1 333.96 1054 333.97 946
Conditon 2 2 333.77 1028 333.78 972
Conditon 3 3 333.57 1042 333.62 958
Conditon 4 4 333.35 1084 333.47 916
Conditon 5 5 333.23 1001 333.23 999
Conditon 6 6 333.04 1012 333.06 988
Conditon 7 7 332.78 1067 332.95 933
Conditon 8 8 332.57 1083 332.80 917
Conditon 9 9 332.48 1014 332.53 986

Conditon 10 10 332.22 1058 332.42 942

2.2.3. Modeling

From the above analysis, in order to optimize both the yield (Q) and the production
capacity utilization (C) of two tasks simultaneously, optimization objectives can be defined
as follows [33,34].

Task1 :



Maximize Q1,1 =

kp(
f ∗ kd1

kt
)

1
2 (I1 ∗ e−

t
10 )

1
2 M1e−10N1 (2)

Maximize C1,2 =

k
e(w1∗M1+w2∗I1+w3∗N1)e−(334.15−T1)

(3)

Task2 :



Maximize Q2,1 =

kp(
f ∗ kd2

kt
)

1
2 (I2 ∗ e−

t
10 )

1
2 M2e−10N2 (4)

Maximize C2,2 =

k
e(w1∗M2+w2∗I2+w3∗N2)e−(334.15−T2)

(5)

s.t.


Mmin ≤ Mi ≤ Mmax, i= 1, 2. (6)

Imin ≤ Ii ≤ Imax, i= 1, 2. (7)

Nmin ≤ Ni ≤ Nmax, i= 1, 2. (8)

As the Equations (3) and (5) show, the Ti require to be calculated by mathematical
formulas. According to the heat conservation theorem, the change of heat in the polymeriza-
tion reactor is equal to the sum of the input and output energy of the system. For simplicity,
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the changes in chemical reaction heat, kinetic energy, and potential energy of solution in
the polymerization reactor are negligible. The formula is presented in Equation (9) [35].

mH
dTi
dt

= qMi H(Tsi − Ti)

+ Utra Atra(Tjac − Ti), i = 1, 2. (9)

Assume the temperature of the solution Ts during the time from the polymer reser-
voir to the polymerizer satisfies exponential distribution. The formulas are shown in
Equation (10).

Tsi =

{
µie−λit if t ≥ 0, i = 1, 2.
0 others

(10)

As shown in Equations (2) and (4), the kd requires to be calculated, which is likely to
vary with ambient temperature [36], and its relationship with temperature can be expressed
by the widely used Arrhenius formula. The formula is presented in Equation (11).

kdi = Ade−(
Ed
RTi

)β

, i = 1, 2. (11)

3. Proposed Algorithm

This section details the multitasking optimization framework of the proposed Tr-EGT.
The offspring generation of Tr-EGT using TCA is also introduced.

3.1. Framework of Tr-EGT

The flowchart of the proposed Tr-EGT algorithm for operational indices optimizations
of the polymerization process is shown in Figure 3.
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Figure 3. Flow chart of the proposed Tr-EGT.

First, for each optimization problem, i.e., OP1 and OP2, we assign it a single-task
evolutionary solver with an independent population. Next, to establish the connections
between different optimization problems, two sets of solutions are randomly sampled
from the corresponding search space as the source domain and target domain of the
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domain adaptation approach, and a transformation mapping matrix across tasks is obtained.
Further, the explicit genetic transfer occurs when the two evolutionary solvers performed at
a certain interval. In particular, during the execution of both solvers, a good solution sought
by one solver is injected into the population of the other through a domain adaptation
approach.

Algorithm 1 demonstrates the framework of Tr-EGTto help the readers better under-
stand the flowchart.

Algorithm 1 Framework of Tr-EGT

Require: Gmax, maximum generation; G, interval of explicit solution transfer across tasks;
F1(.), the optimization function for OP1; F2(.), the optimization function for OP2;
solver1, a single-task evolutionary solver for OP1; solver2, a single-task evolution-
ary solver for OP2; κ(·, ·) , kernel function.

Ensure: the POFs of each task.
1: Initialization two populations and set g = 0.
2: Calculate FOP1 and FOP2 to get the POF1g and POF2g, respectively via use solver1 and

solver2.
3: for g = 1 to Gmax do
4: if mod (g, G) = 0 then
5: Next-Offspring1 =Tr-OG(F1(.), POF2g, κ(·, ·)).
6: Next-Offspring2 =Tr-OG(F2(.), POF1g, κ(·, ·)).
7: else
8: Generate Next-Offspring1 and Next-Offspring2, respectively using assortative

mating.
9: end if

10: POP1g+1 = POP1g ∪ {Next-Offspring1}.
11: POP2g+1 = POP2g ∪ {Next-Offspring2}.
12: Update the POP1g+1 and POP2g+1.
13: POF1g+1=solver1(POP1g+1).
14: POF2g+1=solver2(POP2g+1).
15: g = g + 1.
16: end for

Tr-EGT follows the general framework of EMT-EGT, except that the transfer learning-
based offspring generator (Tr-OG) is adopted to conduct efficient knowledge transfer across
tasks. F1 and F2 are the optimization functions with respect to OP1 and OP2, respectively,
and POF1g and POF2g represent their POF, which has already been found. Next-Offspring1
and Next-Offspring2 are the offspring for F1 and F2 at the next generation. When the
interval conditions are met, Tr-OG generates an offspring population using the POF of
domain adaption approach. A new generation is chosen from the joint of the offspring
population and its parent population via environment selection, which can be used to
evolve at generation g + 1. Specifically, we can get two types of knowledge transfer; in
general, one is OP1 → OP2, and the other is OP2 → OP1. For OP1 → OP2, the obtained
POF1g and F2(.). In general, the feasible solutions of OP2, are used as the source domain
and target domain, respectively. A mapping function ϕ is got using the domain adaptation
approach, which maps source and target data with different distributions into the latent
space. Next, a good offspring population is generated, which accelerates convergence of
the population.

3.2. Offspring Generation Using TCA

In recent years, more and more attention has been paid to transfer learning, which
can effectively solve issues between different problems by conducting knowledge trans-
fer [37,38]. Domain adaption is an important branch of transfer learning and transfer com-
ponent analysis (TCA) is commonly used to reuse the knowledge across problems [39,40].
In this paper, TCA is applied to EGT to minimize the two different probability distributions
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for source and target domains in latent space [41]. In the reproducing kernel Hilbert space
(RKHS), the distance between two different distributions can be calculated using a kernel
function. Based on the RKHS, the maximum mean discrepancy (MMD) is employed to
minimize the discrepancy between two distributions [41]. To retain the key properties
and reduce computational complexity, we construct the kernel function κ from the data to
obtain a low-rank transformation matrix W.

The TCA algorithm for solving optimization problems can be presented as follows.

arg min
W

µ · tr
(

WTW
)
+ tr

(
WTKLKW

)
subject to WTKHKW = I

(12)

where H = I− (1/[m + n])11T and I ∈ R(m×n)×(m×n). m and n denote the numbers of
sampled solutions for source and target data. The solution of Equation (12) can be solved
by the well-known generalized eigenvalue decomposition [42].

In the following algorithm, Tr-OG algorithm (provide pseudo code in Algorithm 2),
taking sampled solutions in Fs(Xs) and Ft(Yt) as the input to the TCA, the transformation
matrix W can be naturally obtained. The latent space (LS) is constructed with the W.
Further, a decision variable x is searched in LS according to ‖ϕ(Ft(x))− l‖ (line 6), which
is used to generate the offspring population for Ft(Yt).

Algorithm 2 Framework of Tr-OG

Require: Fs(.), the optimization function of source domain; Ft(.), the optimization function
of target domain; POFg, the POF of the function Fs(.); κ(·, ·), kernel function.

Ensure: A offspring for Ft(.).
1: Initialization.
2: Randomly sample two sets of the solutions with respect to Fs(.) and Ft(.), defined by

Xs and Yt , respectively.
3: Calculate Fs(Xs) and Ft(Yt) of two different optimization problems.
4: Obtain a transformation matrix W through TCA {Fs(Xs), Ft(Yt), κ(·, ·)}.
5: Construct the LS by using a mapping function ϕ(.).
6: Generate a offspring for Ft(.) via argmin

x
‖ϕ(Ft(x))− l‖, l ∈ LS.

For example, the Tr-EGT algorithm is used to solve the optimization problem OP1,
which contains two objectives of yield and production capacity utilization. Suppose we
have obtained the POF of OP1 problem, POFg and p ∈ POFg. A mapping function ϕ(.) is
obtained via the TCA algorithm, which is used to map the p into a high-dimension LS.
Then a solution x for the OP2 problem at generation g+1 will be found by using the Tr-EGT
algorithm, and this solution x meets the requirements which is closest to l in the LS. This
solution x will be output as one of the offspring with regard to the initial population, which
can help the OP2 problem at generation g+1 solve faster. At the same time, when we get
the POF of the OP2 problem, the above method can also speed up the solution of OP1 faster,
thereby achieving an efficient solution of the problem between the two tasks.

4. Experimental Studies

In order to verify the validity of the proposed multitask algorithmic framework, we
present a case study of 10 different operating conditions of the polymerization process in
this section.

In this experiment, hypervolume (HV) [43,44] is used as a performance metric to
compare results between different algorithms. A large HV value means that the algorithm
has better diversity and convergence. Accuracy in calculating the HV index depends on
the selection of reference points. First, We calculate the maximum value of the boundary
in different environments, multiply the maximum value by 1.1 as the reference point for
different environments, and then the reference point in different environments is selected
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for evaluation. The solved HV value is then normalized. Next, we use the normalized HV
metric to compare the diversity and convergence of different algorithms.

4.1. Parameter Settings

Following [28], two types of solvers are required to optimize two tasks, i.e., one is
SPEA2, and the other is NSGA-II. The interval for explicit knowledge transfer is set to ten.
The rmp of MO-MFEA is set to 0.3. To fairly compare the performance of algorithms, the
population size of MO-MFEA, EMT-EGT, and Tr-EGT is set to 200, and the single task-based
NSGA-II population scale is set to 100. When the maximum generation of 200 is reached,
all algorithms are terminated and its independent number of runs is 20. Table 5 shows the
parameter details of all algorithms.

Table 5. Parameter setting for the multitasking multiobjective experiment.

Algorithm rmp SBX ηc PM ηm N G Maxgen Runs

NSGA-II - 20 20 100 - 200 20
MOMFEA 0.3 20 20 200 - 200 20
EMT-
EGT - 20 20 200 10 200 20

Tr-EGT - 20 20 200 5 200 20

4.2. Simulation Results and Discussion

The experimental results of these four algorithms, i.e., NSGA-II, MO-MFEA, EMT-
EGT, and Tr-EGT, on two tasks under 10 operational conditions are listed in Tables 6 and 7,
respectively.

The average HV values over 20 independent runs of all algorithms are shown, and
we highlight the best result for each task in boldface. The best run result for each test case
is highlighted. The Wilcoxon rank sum test at the significance level of 0.05 is employed,
where the symbol “+/− / ≈” indicates that the result of the corresponding algorithm is
significantly better, significantly worse, and comparable to that Tr-EGT, respectively.

It can be observed that Tr-EGT performs better than NSGA-II, MO-MFEA, and EMT-
EGT, which indicates that the strategy of transfer learning-based explicit genetic transfer
can accelerate the convergence speed of the population. EMT-EGT only obtains the best
results on T1 of 10 operational conditions using an evolutionary solver with NSGA-II,
while NSGA-II performs well in all tasks, but may not take full advantage of different
solvers (i.e., NSGA-II and SPEA2), leading in the occurrence of negative transfer. From
the MO-MFEA experiments, we can see that it does not always help to solve a strong
correlation e.g., PPCFP model, and harnessing the inductive bias may hurt, thereby leading
to the possibility of negative knowledge transfer.

To visualize the performance of all algorithms during execution, Figure 4 shows the
average HV numerical curves over 20 independent runs on task1 under all conditions.
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Table 6. Averaged HV value and Standard Deviation obtained by NSGA-II, MO-MFEA, EMT-EGT, and Tr-EGT of task1 on ten conditions.

Problem Task NSGA-II MO-MFEA EMT-EGT Tr-EGT

Conditon 1 T1 2.656× 10−1(3.036× 10−2)≈ 2.269× 10−1(2.399× 10−3)− 2.733× 10−1(1.938× 10−2)≈ 2.753 × 10−1(1.668 × 10−2)
Conditon 2 T1 2.907× 10−1(2.818× 10−2)− 2.562× 10−1(3.114× 10−3)− 3.006× 10−1((2.533× 10−2)≈ 3.120 × 10−1(1.992 × 10−2)
Conditon 3 T1 3.446× 10−1(3.406× 10−2)≈ 2.939× 10−1(2.706× 10−3)− 3.601× 10−1(3.100× 10−2)− 3.624 × 10−1(2.664 × 10−2)
Conditon 4 T1 3.619× 10−1(3.322× 10−2)≈ 3.056× 10−1(2.758× 10−3)− 3.537× 10−1(3.135× 10−2)≈ 3.761 × 10−1(2.651 × 10−2)
Conditon 5 T1 3.359× 10−1(2.600× 10−2)≈ 2.792× 10−1(2.805× 10−3)− 3.237× 10−1(2.839× 10−2)− 3.482 × 10−1(3.380 × 10−2)
Conditon 6 T1 4.363× 10−1(2.892× 10−2)− 3.730× 10−1(1.648× 10−3)− 4.428× 10−1(4.244× 10−2)≈ 4.608 × 10−1(2.833 × 10−2)
Conditon 7 T1 4.660× 10−1(4.394× 10−2)− 4.034× 10−1(4.132× 10−3)− 4.702× 10−1(4.309× 10−2)− 5.067 × 10−1(4.459 × 10−2)
Conditon 8 T1 4.432× 10−1(3.857× 10−2)− 3.761× 10−1(3.068× 10−3)− 4.478× 10−1(3.214× 10−2)− 4.808 × 10−1(3.380 × 10−2)
Conditon 9 T1 3.759× 10−1(3.875× 10−2)≈ 3.227× 10−1(3.379× 10−3)− 3.808× 10−1(2.878× 10−2)− 3.981 × 10−1(2.673 × 10−2)

Conditon 10 T1 5.036× 10−1(5.163× 10−2)≈ 4.196× 10−1(3.861× 10−3)− 4.979× 10−1(4.177× 10−2)≈ 5.067 × 10−1(2.843 × 10−2)

Table 7. Averaged HV value and Standard Deviation obtained by NSGA-II, MO-MFEA, EMT-EGT, and Tr-EGT of task2 on ten conditions.

Problem Task NSGA-II MO-MFEA EMT-EGT Tr-EGT

Conditon 1 T2 2.657× 10−1(2.602× 10−2) ≈ 2.229× 10−1(2.337× 10−3)− 2.251× 10−1(3.685× 10−4)− 2.678 × 10−1(2.138 × 10−2)
Conditon 2 T2 3.074× 10−1(2.742× 10−2)≈ 2.518× 10−1(3.080× 10−3)− 2.545× 10−1(5.238× 10−4)− 3.189 × 10−1(2.547 × 10−2)
Conditon 3 T2 3.285× 10−1(3.384× 10−2)≈ 2.821× 10−1(2.634× 10−3) − 2.843× 10−1(5.461× 10−4)− 3.437 × 10−1(3.352 × 10−2)
Conditon 4 T2 3.246× 10−1(3.580× 10−2)≈ 2.733× 10−1(2.296× 10−3) − 2.757× 10−1(5.343× 10−4)− 3.387 × 10−1(3.145 × 10−2)
Conditon 5 T2 3.301× 10−1(3.049× 10−2)− 2.799× 10−1(2.790× 10−3)− 2.824× 10−1(4.715× 10−4)− 3.590 × 10−1(2.667 × 10−2)
Conditon 6 T2 4.290× 10−1(4.162× 10−2)≈ 3.647× 10−1(1.724× 10−3)− 3.676× 10−1(6.411× 10−4)− 4.348 × 10−1(3.135 × 10−2)
Conditon 7 T2 4.000× 10−1(3.476× 10−2)− 3.446× 10−1(3.429× 10−3) − 3.487× 10−1(6.301× 10−4)− 4.184 × 10−1(2.688 × 10−2)
Conditon 8 T2 3.524× 10−1(3.959× 10−2)≈ 3.018× 10−1(2.604× 10−3)− 3.042× 10−1(4.283× 10−4)− 3.640 × 10−1(2.765 × 10−3)
Conditon 9 T2 3.808× 10−1(4.134× 10−2)≈ 3.098× 10−1(3.264× 10−3)− 3.128× 10−1(6.248× 10−4)− 3.863 × 10−1(2.706 × 10−2)

Conditon 10 T2 4.122× 10−1(3.911× 10−2)≈ 3.460× 10−1(3.048× 10−3)− 3.493× 10−1(4.789× 10−4)− 4.269 × 10−1(2.758 × 10−2)
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Figure 4. Average HV numerical curves of NSGA-II, MO-MFEA, EMT-EGT and Tr-EGT over 20
independent runs on task1.

The MO-MFEA is generally stagnant and it is easy to get stuck in local optimal regions.
Meanwhile, The EMT-EGT and NSGA-II algorithms achieve a good performance may be
attributed to formulated PPCFP. It can be also observed that Tr-EGT converges rapidly
under all conditions in the early optimization stages, which is attributed to the fact that it
employs the Tr-OG strategy to autonomously exploit latent complementarities between
two different problems, thereby successfully improving the positive knowledge transfer.
Since the proposed Tr-EMT algorithm shares the same evolutionary solver as NSGA-II,
the only difference is that the proposed method contains explicit genetic transfer between
different tasks, the convergence speed of the average HV numerical curve confirms the
effectiveness of performing Tr-EMT for optimization. Moreover, compared to the recently
proposed benchmark algorithm MO-MFEA with implicit genetic transfer for multiobjective
multitask optimization, the Tr-EMT algorithm obtains superior solution quality in terms
of the average HV value across all tasks, which further confirms the effectiveness of the
proposed Tr-EMT with explicit genetic transfer across tasks. Even if MO-MFEA and NSGA-
II share the same evolutionary search operator, with the help of the implicit cross-task
genetic transfer, in general, MOMFEA will show faster convergence than NSGA-II on
multiobjective tasks. However, experimental results show the opposite, with NSGA-II
having a faster convergence rate, which also suggests that negative transfer occurs even
with the higher similarity between tasks.

The average HV values over 20 independent runs on task2 under all conditions are
shown in Figure 5. It can be observed that for the EMT-EGT algorithm, inductive bias from
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another task fails to relieve premature convergence, resulting in deteriorated performance.
Like Figure 4, the MO-MFEA also falls into a local optimal.

Figure 5. Average HV numerical curves of NSGA-II, MO-MFEA, EMT-EGT and Tr-EGT over 20
independent runs on task2.

Table 8 shows the mean computational times of the four algorithms for tasks under
conditions 1, 7, and 8. Among them, MO-MFEA, EMT-EGT, and EMT-EGT, as multitasking
algorithms, are able to optimize tasks T1 and T2 at the same time, with values in the table
being the sum of the time of both tasks. The Tr-EGT algorithm takes more time than EMT-
EGT, NSGA-II and MO-MFEA. There are two main reasons for this. First, in the EMT-EGT
algorithm, the MMD distance between the solution set of one task and the environment of
another needs to be calculated to generate the initialized population pool for the iteration
process of the next task, thus leading to accelerate the convergence speed of the algorithm.
Secondly, we set a small value for inter-task knowledge transfer frequency G relative to
Tr-EGT, which means an increase in the frequency of computing MMD distance. However,
the additional computational time added in the EMT-EGT algorithm is acceptable for the
optimization process in the carbon fiber industry.
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Table 8. Mean computational times obtained between different algorithms for Conditions 1, 7, 8 over
20 runs in task1 and task2 (in seconds).

Problem Task NSGA-II MO-MFEA EMT-EGT Tr-EGT

condition 1 T1 18.19 36.23 70.26 404.89condition 1 T2 17.86
condition 7 T1 18.84 37.50 75.77 354.51condition 7 T2 18.73
condition 8 T1 19.30 38.89 76.15 345.98condition 8 T2 18.75

Figure 6 shows the average approximation PFs among 20 runs obtained by the MO-
MFEA, EMT-EGT, and Tr-EGT in the objective space under conditions 1, 7, and 8. It can be
observed that the solutions got by the Tr-EGT can be distributed to a large area. In other
words, under these conditions, the Tr-EGT algorithm can find a high production capacity
utilization with an acceptable yield. With this information, the Tr-EGT can achieve better
diversity and convergence than the traditional multitasking framework, thus helping the
engineers/technicians to make informed decisions.
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Figure 6. The average approximate PF was obtained by the multitask algorithms under Conditions 1,
7, and 8 over 20 runs in task1 and task2.

5. Conclusions and Future Work

This article investigates the process parameter optimization problem of PPCFP, and
establishes a multiobjective multifactorial mechanism model. In the model, each submodel
is a multiobjective process parameter optimization task. Next, a multitasking framework
Tr-EGT was proposed to treat the PPCFP. The main difference between Tr-EGT and existing
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EGT algorithms lies in the Tr-OG strategy. The Tr-OG strategy establishes the connection
across tasks via a transformation matrix, which employs the transfer learning approach to
generate an offspring population, accelerating the convergence of the two populations. The
performance of Tr-EGT is tested by a numerical simulation experiment and compared with
the other multitask optimization algorithms on two practical problems of PPCFP. For future
work of the PPCFP, we are interested in considering a constrained a dynamic multiobjective
optimization model under dynamic environment such as a change in equipment capacity.
In addition, other optimization objectives such as energy consumption can also reflect the
production process in more ways than one. In the field of complex engineering manufac-
turing, which often involves computationally expensive optimization, we will put more
effort to study the algorithm shorten time-consuming manufacturing process. Although the
proposed multitasking optimization algorithm works well to achieve a good performance
on handling most MOPs, there is still negative knowledge transfer, which leads to poor
multitasking performance. Therefore, in the future, we would like to investigate how to
reduce negative transfer across tasks.
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