
����������
�������

Citation: Yang, T.; Zuo, L.; Yang, X.;

Liu, N. Target-Oriented Teaching

Path Planning with Deep

Reinforcement Learning for Cloud

Computing-Assisted Instructions.

Appl. Sci. 2022, 12, 9376. https://

doi.org/10.3390/app12189376

Academic Editor: Eui-Nam Huh

Received: 3 August 2022

Accepted: 5 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Target-Oriented Teaching Path Planning with Deep Reinforcement
Learning for Cloud Computing-Assisted Instructions
Tengjie Yang 1, Lin Zuo 2,*, Xinduoji Yang 1 and Nianbo Liu 1,*

1 School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

2 School of Information and Software Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

* Correspondence: linzuo@uestc.edu.cn (L.Z.); liunb@uestc.edu.cn (N.L.)

Abstract: In recent years, individual learning path planning has become prevalent in online learning
systems, while few studies have focused on teaching path planning for traditional classroom teaching.
This paper proposes a target-oriented teaching path optimization scheme for cloud computing-
assisted instructions, in which a sequence of learning contents is arranged to ensure the maximum
benefit for a given group of students. First, to evaluate the teaching performance, we investigate
various student models and define some teaching objectives, including the pass rate, the excellence
rate, the average score, and related constraints. Second, a new Deep Reinforcement Learning (DRL)-
based teaching path planning method is proposed to tackle the learning path by maximizing a multi-
objective target while satisfying all teaching constraints. It adopts a Proximal Policy Optimization
(PPO) framework to find a model-free solution for achieving fast convergence and better optimality.
Finally, extensive simulations with a variety of commonly used teaching methods show that our
scheme provides nice performance and versatility over commonly used student models.

Keywords: teaching path planning; deep reinforcement learning; target-oriented; proximal policy
optimization; student model

1. Introduction

In recent years, massive open online courses such as MOOCs, Khan Academy, MuKe,
and other online learning systems have been designed and developed for educational
purposes. One of the fundamental techniques in the design of individual learning paths is
to arrange sequence of learning contents for improving a student’s knowledge or skill in
particular subjects or degree courses. To reasonably arrange a personal learning sequence
of learning contents, one’s implicit learning behavior patterns from the student’s online
learning behavior data need to be taken into account. Compared to the prevalence of a
personal learning path in online systems, similar recommendation methods in traditional
teaching and learning are still very limited in cloud computing services.

In traditional classroom teaching, teachers often arrange learning contents from ex-
perience, as the learning details of individual students are unknown and beyond their
control. Of course, a teacher may receive miscellaneous messages including questions
and answers, in-class assessments, and students’ facial expressions, gestures, and body
movements, that enable them to evaluate the students’ learning performance. However,
such information is often sketchy, and cannot cover every student or track everyone’s
learning details. This makes teachers often unable to design a teaching path with a fine
granularity. With the development of e-learning systems and teaching-aided systems, the
learning behavior data of students can be observed and investigated. For example, clickers
and mobile devices support in-class [1] question–answer interactions about some specific
learning contents. Camera and body sensors [2] are utilized to capture learning facial
expressions and body language to evaluate the teaching effects, respectively. After class,
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electronic exams and exercises provide delayed but quantitative learning responses for
students. Therefore, we can build learning models of students based on this information,
and explore related teaching or learning recommendation methods for better performance,
including via online systems.

The main feature of traditional teaching is its one-to-many teaching structure between
teacher and students, which means that the teaching path, e.g., a sequence of learning
contents to ensure the maximum benefit for a given group of students, is completely
different from the personal learning path in online learning systems. Thus, studies seeking
to optimize personal learning paths cannot provide an effective solution for teachers. Some
researchers have proposed a group learning path or teaching path based on the student’s
personal information [3,4], by combining the strengths or similarities of each student
to achieve better results in group tasks. Generally, there is no target-oriented teaching
planning scheme which helps teachers arrange the learning contents of a course (knowledge
points) to achieve predefined targets in practical classroom teaching.

This paper uses a DRL method to perform target-oriented teaching path planning
for teachers. First, our scheme is intended for traditional classroom teaching, e.g., for the
maximum benefits of the entire class. Second, our scheme is target-oriented, which means
some quantitative targets, such as teaching time, passing rate, average score, and so on,
are invoked as optimization goals. Third, the relevance of various knowledge points is
considered in the optimization. The learning of one knowledge point is affected by that of
its anterior knowledge points. Finally, our method is independent of student models, in
which the DRL algorithm directly generates planning based on feedback from students—
not student models. We conducted experiments with a variety of commonly used student
models as virtual students, and the results compared with the baseline methods prove that
our method is applicable, efficient, and versatile.

The main work and contributions of this study are:

• To the best of our knowledge, we are the first to propose a teaching path planning prob-
lem to help teachers achieve multiple teaching objectives based on refined feedback
from students;

• To more efficiently obtain the solution, we present a new DRL scheme which is capable
of processing the huge state space of the learning of the entire class and the complex
strategies caused by the interrelationship between knowledge points.

• Finally, we compare our method with baselines on various student models, and the
results show that our method is effective and has better performance.

The remainder of this paper is structured as follows. Section 2 brief overviews the
background and related work. In Section 3, we present the teaching path planning problem
and explore our DRL method in detail. Experiments with various student models are
described in Section 4. Finally, Section 5 summarizes the paper and outlines the research
perspectives.

2. Related Work
2.1. Student Model

Determining how to model the learning process of students has traditionally been one
of the focuses of teaching-related research. Research by Ebbinghaus et al. [5] first proposed
the human forgetting curve. The formula proposed can be utilized to infer the strength
of human memory for a knowledge point after some time. Research by Settles et al. [6]
enhanced the forgetting curve formula and proposed a half-life model, which achieved quite
good results in the experiment of learning a second language. Research by Zaidi et al. [7]
proceeded with the half-life model and made a detailed comparison. On the other hand,
research by Corbett and Albert et al. [8] proposed a Bayesian Knowledge Tracking (BKT)
model based on the student’s learning process to predict the probability of a student
mastering knowledge or a skill through their current state and behavior. The research by
van De Sande et al. [9] elaborated and analyzed the BKT model in detail. Research by
Byech et al. [10] applied neural networks to the process of student modeling that could build
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student models without the help of experts. Deep learning tracking models also bring some
rewards. Research by Ding et al. [11] showed how to incorporate sensible uncertainties by
explicitly regularizing the cross-entropy loss function. Research by Lu et al. [12] proposed
using the data of students in other similar courses to predict the performance of the
current course.

2.2. Learning Path Planning

Once the students have been modeled, the next step is to scientifically plan the learning
path. Research by Rafferty et al. [13] defined the learning process of the student as a partially
observable Markov process to plan the learning path. Research by Elshani et al. [14]
regarded the relevant information of the course and students as genes and used genetic
algorithms to generate the optimal learning path. Research by Niknam et al. [15] proposed
a learning path recommendation system which uses a bionic ant colony optimization
algorithm to search for a suitable learning path for learners. Research by Reddy et al. [16]
developed a virtual experimental method that eliminates the need to conduct experiments
on real students and introduced three methods to deal with the interval repetition problem
as a comparison. Various learning path recommendations are based on multi-dimensional
knowledge graphs. Research by Hoi et al. [17] defined and classified online learning.
Research by Wang et al. [18] combined the results of learning and answering questions
to model knowledge points and courses. Based on the established model, a strategy for
displaying knowledge graphs is proposed, using topological diagrams to guide learners,
and to provide learners with a personalized learning path. To meet different learning needs,
the research of Shi et al. [19] designed a multi-dimensional knowledge object framework,
which can generate customized learning paths based on the learning situation of e-learners.
Research by Reddy et al. [20] used deep reinforcement learning methods to generate
recommended learning paths and achieved good results in a variety of memory models.
Research by Sinha et al. [21] introduced two new reward functions. One is the newly
obtained, and the other is the reward simulated by the neural network. Both achieved
respectable results. The above work achieved excellent results, but they all aimed at
planning the learning path of a single student, and most of them did not consider the
relationship between knowledge points. There are other related studies such as the research
of Ghiani et al. [22] through modeling to solve how to arrange a suitable curriculum to
optimize students’ learning. Another example is the research by Xie et al. [4] based on
the strengths and weaknesses of each student in the group and the relationship between
knowledge points to complement each other and generate a recommended learning path
so that they can work together to complete the group task.

2.3. Cloud Computing

The adoption of cloud computing in education has the potential to improve knowledge
management. For this reason, the education sector is the one that has adopted cloud com-
puting services the most. Research of Muhammad et al. [23] proposed an academic cloud
architecture SIM-Cumulus to target research institutions. Research by Ibrahim et al. [24]
empirically compared and provided an insight into the performance of some renown
state-of-the-art task scheduling heuristics. Research by Wang et al. [25] aimed to research
the influence of cloud computing-based big data platforms on IE education. Research by
Tai et al. [26] put forward a novel cloud computing-aided multi-type data fusion approach
considering data correlation in education to accommodate the large volume, diverse types
and correlation of educational data. Research by Zhao et al. [27] stated that once the energy
loss has been rectified, it is possible to improve the learning platform at all universities,
colleges, and other educational platforms using cloud computing technologies.
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3. Methodology
3.1. Background

With rapid progress in sensing and communication technologies, rich classroom
interactions with smart devices has become more and more popular. Blended learning,
also known as hybrid learning or mixed-mode instruction, appears as a new education
approach that combines e-learning and traditional classroom learning. Compared to e-
learning focused on individual learning, blended learning is “a combination of traditional
face-to-face modes of instruction with online modes of learning, drawing on technology-
mediated instruction” [28], which can be applied to a group of students with especially
designed teaching methods.

Compared to cameras, motion sensors, and other devices, accepting and intending to
use mobile devices in the classroom are topics of growing interest in the field of blended
learning. A mobile-based assessment acceptance model [29] investigated the perceived
ease of use and perceived usefulness, the constructs of facilitating conditions, social influ-
ence, mobile device anxiety, personal innovativeness, mobile-self-efficacy, perceived trust,
content, cognitive feedback, user interface and perceived ubiquity value and investigates
their impact on the behavioral intention. A key problem lies in the fact that smartphones in
classroom teaching may enhance the learning but also become an interference [30]; findings
have shown that this is a challenging task, and that the proper rules of using smartphones
in class for students to abide to should be established before teaching. Clicker Assessment
and Feedback (CAF) [31] assesses and investigates students’ perceptions of CAF tools,
examines the effects of university professors’ CAF development, and then investigates the
impact of professors’ CAF methods on student learning and engagement. An exploratory
study [1] compared the number of correct, incorrect, and missing responses from students
who responded to in-class polling questions using clickers or mobile devices. In one of
two classes, students using mobile devices had a greater number of missing responses and
fewer correct responses than students using clickers, but there were no differences in the
final grades. In the other class, there were no differences in these measures. In-class phone
usage in college students was found to be negatively correlated with student grades [32], in
which students use their phones for more than 25% of effective class duration, and phone
distractions occur every 3–4 min for over a minute in duration. A research synthesis [33]
investigated the effects of integrated mobile devices in teaching and learning, including
110 experimental and quasi-experimental journal articles, and found a moderate mean
effect size of 0.523 for the application of mobile devices to education. In addition, mobile
pedagogies [34] or mobile learning [35] are not discussed in this study, which belong to
the extensions of e-learning systems for reducing or replacing the teaching activities of
human teachers.

In this study, we proposed a target-oriented teaching path optimization scheme as
cloud computing-assisted instructions for blended learning. In a typical classroom teaching
environment, e.g., one teacher and a group of students having certain lessons, and the main
assumptions of our scheme are listed as follows:

1. The teacher and all students have smartphones or pads with an especially designed APP,
which supports in-class question–answer and can access cloud computing services.

2. All teaching contents, including in-class questions, homework, exams, are converted
into some knowledge points, or some combinations of knowledge points.

3. All the responses of students, including in-class answers, homework, exam answers,
are recorded by cloud computing services for teaching path optimization.

4. All teaching targets, including the passing rate, average score, and so on, can be
defined as the mastering of knowledge points by students, e.g., the results of teaching
path optimization.

According to the above assumptions, we can first find that e-learning is the prerequisite
of teaching path optimization, in which all learning details should be captured and recorded
in smart devices. Second, the teacher needs to add a series of knowledge point labels on all
teaching/learning materials, in which special teaching knowledge is required. Third, the
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teacher and students should insist on blended learning, e.g., the use of smart devices in all
lessons. Considering the range and the time, it is not easy for both teacher and students.

3.2. Problem Formulation

In this section, we investigate the core elements of the teaching process and formulate
them to facilitate subsequent research. First, the teaching process is typically defined as a
partially observable Markov process, as shown in Figure 1—where St represents student
knowledge stated in time t, which cannot be directly observed; Ot represents student
observation results in time t, which is usually the score of text; and at represents student
actions in time t; which usually means the next knowledge point that the student will learn.

Figure 1. Partially observable Markov decision process [8].

The Markov property is also called no aftereffect, which means that the next state is
only related to the current state and has nothing to do with the previous state. For example,
in the process of playing Go, the next stage of the game is only related to the current state
and the next move. How the game comes to be in its current state is not important. A
Markov process is a random process that satisfies the Markov property and describes a
series of changing processes of the state. The sequence of states generated in this process is
referred to as a Markov chain. Fitting the law of state change to a functional relationship,
we call it the state transition function. If the state transition function includes the action
taken in the current state, that is, the state change will be affected by the current action,
which is called the Markov decision process. Taking Go as an example. The next stage of
the game is also affected by the next move, while the next state of a clock is only affected
by the current state.

In the process of Markov decision-making, we can usually obtain a complete picture
of the exact state, or make it clear what the current state is. In a chess game, we can know
the current state. In the process of student learning, we cannot know the current student’s
accurate state. We can only infer the student’s state through testing and other methods.
A Markov process like this is referred to as a partially observable Markov process, which
means that only one sequence of observation states can be observed.

Teaching path planning is a sequential decision-making problem under uncertain
conditions, as shown in Figure 2. Through continuous teaching, a chain of knowledge
points, a chain of student states, and a chain of test results are gradually formed. The
constraints and assumptions we need to meet are presented as follows:

• The total class time is limited, that is, the teacher can only have a limited number of
classes for teaching, and each class can only teach one knowledge point;

• There is only one teacher, and one or more students, and all students participate in the
course at the same time;

• There are three teaching objectives as the optimization target of teaching path planning:
the ratio of students passing the final exam; the ratio of students achieving excellent
results in the final exam; and the average score of students in the final exam. This
poses an exam-oriented optimization target for our teaching path planning scheme;

• The knowledge points are directly related to each other and the learning of the current
knowledge point will be affected by the learning of its anterior knowledge points.
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Figure 2. (I) The teacher teaches a knowledge point; (II) The students study it with the changes in
their student states; (III) The results of in-class and off-class tests for students are observed. During
the continuous teaching process, a knowledge point chain, a student state chain, and a student test
result chain are formed.

Formally, we use S to represent the set of students and K to represent the set of knowl-
edge points. In addition, preKi represents the pre-knowledge point of the i-th knowledge
point, and Seq represents the knowledge point sequence that will be taught by the teacher.
More specifically, Si,k represents the probability that the i-th student has mastered the
k-th knowledge point. n represents the total number of class times, m represents the total
number of students, p represents the requirement of passing rate, and e represents the
requirement of an excellence rate. The above four constraints can be embodied by the
following formula:

Seq = {a1, a2, · · · , an}n (1)

S f in
f1←− (Seq, Sinit) (2)

Reward
f2←− (pass, excellent, average) (3)

St+1
i,k

f3←− (St
i,k, St

i,preKi
) (4)

where fi represents a mapping relationship. Formula (1) indicates that the length of Seq is
equal to the total number of class time n, that is, the first constraint. an means the action
that the teacher chooses in the n-th class time. Formula (2) indicates that the final state of all
students is the initial state that changes from the same knowledge point learning sequence,
that is, the second constraint discussed above. Formula (3) indicates that the teaching result
consists of three parts, namely the third constraint. It is useful to note that when the passing
rate and excellent rate meet the requirements, more improvement will not bring about the
improvement of teaching results. Finally, Formula (4) indicates that the probability of a
student’s mastery of a knowledge point will be influenced by the pre-knowledge point,
that is, the final constraint.
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3.3. Student Model

In this section, we will introduce some of the most widely used memory models or
student models. We will apply these models in Section 6 to simulate teaching experiments.

Exponential forgetting curve: The forgetting curve was proposed by the German
psychologist H. Ebbinghaus [5], which describes the law of the human brain for forgetting
new things. This curve affects nearly all subsequent research on human memory cognition.
A variation of the forgetting curve was proposed by Reddy [16] to record students’ learning.
In this model, the probability of students recalling an item is a binary value, that is, 0
means that they cannot be recalled and 1 means that they can be recalled. On this basis,
we introduce the correlation between knowledge points. If a knowledge point is a pre-
knowledge point of another knowledge point, then the memory of this knowledge point
will affect the recall probability of the latter. The formula can be described as follows:

Pi = exp(−θ · D
S
) · PPpreKi

(5)

where Pi means the probability of recalling the i-th knowledge point; θ is the difficulty of
each knowledge point; and D is the time interval between the previous learning of each
knowledge point and the current. S is the memory strength for each knowledge point. Like
the research [20], we set S as the total number of studies so far.

Half-life regression: The research of Settles [6] combines psychology theory and
modern machine learning technology, and proposes a model of half-life regression. The
formula is as follows:

Pi = 2−
D
h (6)

where Pi means that the probability of recalling the i-th knowledge point, D is the time since
previous learning, and h is the half-life or measure of strength in the learner’s long-term
memory. When D is equal to h, the probability of recalling a knowledge point is 1

2 . h can be
calculated by the following formula:

h = 2θ·x (7)

where x denotes a feature vector that summarizes a student’s previous exposure to a
particular knowledge point, and θ is a vector of weights for the features x. Finally, we also
establish the associations between knowledge points and use the binary recall probability.
The final formula is as follows:

Pi = 2−
D

2θ·x · PpreKi (8)

Bayesian Knowledge Tracing: BKT is the most widely used learning model and was
proposed by Corbett and Anderson [8]. The Bayesian knowledge tracking model equates
the learning process of a partially observable Markov decision process. Based on the
original BKT, we increased the correlation between knowledge points, the formula is
as follows:

St+1
i = St

i + l̃i · (1− St
i ) (9)

l̃i = li · (1−mi(1− SpreKi )) (10)

right = Si(1− slip) + (1− Si) · guess (11)

where St+1
i denotes the probability of a student mastering the i-th knowledge point in time

t, li denotes the efficiency of students learning the i-th knowledge point, mi means the
degree of influence of the pre-knowledge point of the i-th knowledge point, right denotes
the probability of students recalling the i-th knowledge point in time t, slip is the probability
of mastering knowledge points but making mistakes in exams, and guess is the probability
of not mastering knowledge points but being lucky in exams.
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3.4. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is part of the most important machine learning
method for dealing with the interaction between the agent and the environment. It uses
learning strategies to maximize returns or achieve specific goals, and solve sequential
decision-making problems under uncertain conditions. The basic principle is that if the
agent finds that a certain behavior will cause the environment to give positive feedback, it
will be more inclined to choose this behavior in the future. Otherwise, it will reduce this ten-
dency. In the Markov decision process, the ultimate goal is to obtain the following strategy:

π∗ = argmax
π∈Π

∑ γtR(si, ai, π) (12)

Among them, si represents the state of time i. ai represents the action in state i.
Furthermore, R(si, ai, π) represents the reward for selecting the action in this state in the
strategy π. γ means that we value long-term or short-term gains more.

Reinforcement learning algorithms can be divided into two types: model based and
model independent. Model-based algorithms use a model to simulate the feedback given
by the environment, while algorithms that are not linked to the model will not learn and
understand the environment.

The criteria for selecting actions based on algorithms can be separated into two
algorithms: value-based and strategy-based. In value-based algorithms, the output of
each algorithm represents the value of each action, and the action selection is performed
according to the value ranking. Common algorithms include Q-learning and Sarsa. In the
strategy-based algorithm, the output of each algorithm is the probability of each action,
and then the action is selected on the probability. Common algorithms include the policy
gradient algorithm.

Some algorithms combine these two types, such as the actor–critic algorithm, and
the policy gradient algorithm belongs to this type. The strategy gradient (PG) algorithm
is currently one of the most effective reinforcement learning methods. The PG algorithm
establishes two neural networks, one of which is for an actor to generate actions and
interactions with the environment, and the other for a critic to evaluate the performance
of the actor. However, one of the main problems of the PG algorithm makes it difficult to
determine the appropriate learning rate. When it is too large, the training of the model will
oscillate. when it is too small, the training will be very slow.

3.5. Proximal Policy Optimization

As mentioned previously, Proximal Policy Optimization (PPO) [36,37] is an algorithm
based on the actor–critic framework. An actor neural network is utilized to generate
actions, and a critic is used to evaluate the performance of the actor. Reinforcement
learning algorithms are divided into on-policy and off-policy. On-policy means that the
agent used to take samples is the same as the training agent. Off-policy is different, which
has changed from "learning by doing by yourself" to learning through the experience of
others so that the samples can be reused. As an off-policy algorithm, PPO first uses an
actor for data collection to generate sample sets. After that, the actor and critic are updated
multiple times in a loop. The samples used for each update are randomly sampled again
from the sample set. After multiple updates are completed, a new round of data collection
through the latest actor begins.

PPO implements off-policy through importance sampling. We can calculate the ex-
pected value of a distribution of the function p(x) that is difficult to take samples, by
sampling another arbitrary distribution q(x). Importance sampling uses important weight
p(x)
q(x) as a coefficient for each datum to correct the difference between the two distributions.
Finally, the expectation function of q(x) is substituted by the following formula:

Ex∼p[ f (x)] = Ex∼q[ f (x)
p(x)
q(x)

] (13)
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Theoretically, q(x) can be any distribution. However, if the difference from the original
distribution is too large, the variance of the sample will be too large, even though the
expected value is the same. If the sample is not sufficient, the deviation may be unac-
ceptably large. The nature of importance sampling dictates that, if the difference between
two distributions is too large, more samples are needed to ensure the reliability of the
results. Therefore, the algorithm needs to tightly control the difference between the two
distributions, i.e., the gradient of each update of the neural network. KL scatter is one of
the most common methods used to measure the difference of the distributions. Therefore,
the most common method is to add a KL constraint to the objective function, and then use
the Lagrangian pairing method to pass the constraint to the objective function, which is
the core idea of PPO. Since the PG algorithm is on-policy, the actor can only be updated
once after each sampling. This is because the objective function needs to be substituted for
the latest actor sample for calculation. Through importance sampling, PPO uses samples
of actors that are not the latest to replace the samples of the latest actor, allowing multiple
updates after each sampling.

The nature of importance sampling determines that if the difference between the
two distributions is excessively large, more samples are needed to ensure the reliability
of the results. Therefore, it is necessary to strictly control the difference between the two
distributions, that is, the gradient of each update of the neural network. The KL divergence
is one of the most common methods used to measure the difference in distributions.
Therefore, the most frequent method is adding KL constraints to the objective function.
After adding some other simplification techniques, this becomes the Trust Region Policy
Optimization (TRPO) algorithm.

Nevertheless, even if it has been simplified, TRPO still has a huge amount of calcula-
tions. Because the calculation of adding constraints is very complicated, a common method
is to use the Lagrangian pairing method to pass the constraints to the objective function,
which is the core idea of PPO. PPO is divided into two ways, as follows:

• when using the dual Lagrangian method, a dynamically changing β value is used to
constrain the update speed. The objective function is as follows:

LKL(θ) = Êt[
πθ(at|st)

πθold(at|st)
Ât−

βKL[πθold(·|st), πθ(·|st)]]

(14)

where πθ means the newest actor stochastic, πθold means the newest strategy when
taking samples, and Ât is the estimator of the advantage function of time t based
on the current critic value function Vϕk . During the training process, the value of β
is changed depending on the expected value of the KL divergence. The formula is
as follows:

d = Êt[KL[πθold(·|st), πθ(·|st)]] (15)

Let dtarg present the target value. If d is less than dtarg/1.5, then β is reduced to a half.
If d is greater than dtarg × 1.5, then β is doubled. Other conditions remain unchanged.

• Use the clip function in Figure 3 to directly limit the difference between the output
actions of the latest actor and the older actor. The probability ratio is as follows:

rt(θ) =
πθ(at|st)

πθold(at|st)
(16)

where θ denotes the current parameters of the actor neural network; θold denotes the
parameters at the time of sampling; and πθ(at|st) denotes the action probability of the
actor output after inputting the observed states st in which the parameters are. It is
worth mentioning that due to the use of the LSTM neural network, the current actor
output is influenced by the previously inputted observation states in the same input
sequence, corresponding to the learning environment as the learning trajectory and
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feedback from all previous times during the complete learning process of a course.
Therefore, the closer rt is to 1, the better. The reconstruction objective function is
as follows:

LCLIP(θ) = Êt[min(rt(θ)Ât,

clip(rt(θ), 1− ε, 1 + ε)Ât)]
(17)

where ε is a custom constant, and the clip function limits the upper and lower bounds
of the input.

Figure 3. Clip function.

Of the two methods, the training process is the same. Only some functions have
changed. The training process is shown in Figure 4. The calculation method of the advan-
tage value is the same. We previously mentioned that Â is obtained based on the value
function. The value function is defined by the critic neural network. By putting the time
t and state st into the critic, we can obtain the value V(st) at the current moment. The
formula for calculating the advantage value is as follows:

Ât = ξ + (γλ)ξt+1 + · · ·+ · · ·+ (γλ)T−t+1ξT−1 (18)

where γ means the discount factor, T means the total of time, λ means the GAE parameter,
and ξ is calculated by the following formula:

ξ = rt + γV(st+1)−V(st) (19)

where rt means the reward value given by the environment for the t-th action. v(st)
represents the evaluation value obtained when the input state is entered into the observed
state st similar to the actor, and the current output is influenced by the previous input.

Figure 4. PPO: (I) Sampling by actor; (II) the collected data are sampled again and passed to the actor
and critic; and (III) updating through the two different loss functions.
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3.6. Teaching Path Planning with DRL

In this section, we use DRL to deal with the teaching path planning problem.
First of all, based on the commonality between the student’s learning process and

the student model, we define the entire class teaching process as a POMDP. We formulate
this process through the four following points. Combined with the specific model, the
parameters are defined as follows:

• State Space: State Space S is all the possible states of all students in the class, that
is, the possibilities for mastering a knowledge point. The difference is that for the
EFC model, there are knowledge point difficulties, the times of learning, and the time
after the last learning of each knowledge point. Contrary to the EFC model, the HLR
model has no knowledge point difficulties and has a feature matrix. The feature matrix
contains the times of the learned knowledge points, the times that knowledge points
can be memorized, and the times that knowledge points cannot be recalled.

• Observation Space: Because the teaching process is a POMDP, the real state cannot
be obtained, and there is only one observation result, that is, the partial state. All
possible states of this part constitute the Observation Space O, which is specifically
all current real-time feedback, that is, whether the knowledge point is mastered. In
actual teaching, real students obtain results by answering questions, etc. The model
tests the samples through the following formula:

O ∼ Bernoulli(S) (20)

• Action Space: The action space A is a collection of actions that can be acted upon, that
is, knowledge points that teachers can choose to teach.

• Transfer Function: The transfer function refers to the process of transforming state
St+1 into state St through action A. Specifically, after the teacher teaches, the class as
whole changes state. In the EFC model, it changes the times of learning the knowledge
point and the interval time between two times of learning. In the HLR model, it is
similar to EFC, except that the feature matrix θ is additionally changed. The BKT
model completes the state transition through Formula (9).

Both Long Short-Term Memory (LSTM) and Gate Recurrent Unit (GRU) are part of the
most widespread recurrent neural networks today, and are both capable of learning long-
distance dependencies. Through comparative experiments, the performance of the two is
similar, but the LSTM training process is more stable in this environment. Therefore, as a
continuous process, we use the PPO algorithm based on the LSTM neural network structure
to solve the POMDP problem. Specifically, we use the ready-made implementation of the
open source framework garage. We identify the two following points combining the above
exact model and four constraints:

• Reward Function: We define the player’s reward as the expected value of the test. The
formula is as follows:

grade =
K

∑
i=0

Pi (21)

In constraint 3, it can be seen that the overall reward is composed of three parts, as
shown in the following formula:

Reward = a0Rp + a1Re + a2Ra (22)

Rp = min(m · p, num(pass)) (23)

Rp = min(m · e, num(excellent)) (24)

Ra =
m

∑
i=0

gradei/m (25)
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where Rp represents the pass rate reward, Re represents the excellent rate reward, Ra
represents the average score reward, num(pass) represents the number of students
who passed the test, and num(excellent) represents the number of students with
excellent test scores. We consider the logarithmic reward, for which the formula is
as follows:

Reward = log(a0Rp + a1Re + a2Ra) (26)

• Discount factor: The discount factor determines whether to pay more attention to
current returns or long-term returns. In the teaching process, we usually pay more
attention to the teaching income at any time, so a large discount factor is better.

The observation space, the sequence of knowledge points learned, and the current
time together constitute the input of the LSTM. The output is the next knowledge point to
be learned. The procedure of the PPO algorithm is shown in Algorithm 1:

Algorithm 1 PPO-Clip

1: Initial policy parameters θ0 and value function parameters ϕ0
2: for k = 1 to N do
3: for i = 1 to M do
4: Run policy πk = π(θk) in environment for T time steps
5: Compute advantage estimates Âi based on the current value function Vϕk
6: end for
7: Collect set of trajectories Dk = τi
8: Update the policy by maximizing the objective:

θk+1 = arg max
θ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

min

(
πθ(at|st)

πθk (at|st)
Aπθk (St, at), g(ε, Aπθk (St, at)))

via stochastic gradient ascent with Adam
9: Fit value function by regression on mean-squared error:

ϕk+1 = arg min
ϕ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

(Vϕ(st)− R̂t)
2

via stochastic gradient ascent with Adam
10: end for

• First, we initialize various parameters and then train through K iterations. In a training
iteration, collecting samples is the primary activity, which uses an actor neural network
to generate a strategy to capture a period of an environmental change trajectory. In
our algorithm, the actor neural network used to generate the strategy and the critic
neural network used to calculate the value are both LSTM. The input of the actor is
the sequence of the observation space of the whole class, the knowledge points of the
previous teaching, and the time interval from the previous teaching. The output is the
currently selected teaching knowledge point sequence. After receiving the knowledge
that it is about to be taught, the environment model returns the teaching observation
and reward. At the time of sample collection, the specific data of the sample are the
current observation, the knowledge point for teaching, the observation after teaching,
and the reward obtained.

• According to the collected data, the advantage value is calculated through a critic
neural network. The input of the critic is the same as the actor, and the output value
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is used to calculate the advantage. Then, we train the actor neural network based on
Line 8.

• Then we use Line 9 to train the critic neural network.
• Looping the above steps k times is a complete training process.

It is worth mentioning that we used the same random projection method as in [20] to
reduce the input dimension so that a larger number of knowledge points can be processed.

4. Experiments

In this section, we introduced the experimental design in detail and analyzed the
experimental results to verify the effectiveness of the method proposed in this article
through various comparisons.

4.1. Experimental Setup

We introduced three models in the teaching path planning to simulate students’
experiential learning and DRL. We set up four strategies for comparison:

• Random method: Random method is completely random when selecting a recom-
mended knowledge point, and is the most common.

• Linear method: Linear method seeks to evenly allocate time to each knowledge point
and then teach in the order of knowledge points. This is the most widespread method
in traditional classrooms.

• Cyclic method: Cyclic method means that after learning all the knowledge points one
by one, if there is still time, re-learn the first knowledge point and repeat.

• Threshold method: The threshold method is a cheating method. It directly reads the
explicit content of the student model and selects the knowledge point with the lowest
average mastery.

We set the number of students to 20, knowledge points to 25, class times to 80, and
5 time units between each class. The results of the experiment are reflected by the number
of qualified students in the class, the number of outstanding students in the class, and the
average mastery of knowledge points. When a student’s average mastery of all knowledge
points exceeds 0.6, we think that they can pass, and when it exceeds 0.8, we think that they
are excellent. The parameter {a0, a1, a2} in the Formula (22) and (26) are set to {5, 3, 1}.

To have a reasonable class score distribution, for the EFC model, we set the level
distribution of class students as level ∼ N(−4, 2) with an upper limit of −1, and the
learning difficulty of the knowledge points corresponding to each student is θ ∼ N(level, 2)
with an upper limit of 0. We used Formulas (22) and (26) as the reward functions for
training, and the results are shown in Table 1. When we canceled the knowledge point
association, since there is no restriction on the association between knowledge points, we
set the level distribution of class students as level ∼ N(−2.6, 2). The experimental results
are shown in Table 2.

For the HLR model, we set the level distribution of class students as level ∼ N(0.7, 3)
with a lower limit of 0, and the memory strength parameter corresponding to each student
is θ = (1, 1, 0, θ0 ∼ N(level, 2)). Furthermore, Formulas (22) and (26) were used as the
reward functions for training, and the results are shown in Table 3. When we canceled the
knowledge point association, the experimental results are shown in Table 4.

For the BKT model, we set the level distribution of class learning as level ∼ N(0.5, 1),
and the learning difficulty of the knowledge points corresponding to each student is
l ∼ N(level, 1) with an upper limit of 0.7 and a lower limit of 0.2. We use the same method
in experiments, and the results are presented in Table 5. When we canceled the knowledge
point association, since the BKT model has no forgetting mechanism, we set class times to
40. The experimental results are shown in Table 6.

We set the batch size to 4000, the hidden layer size to 32, the discount rate to 0.99, the
GAE parameter to 0.95, and the step size to 0.001.
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Finally, we verified the effect of multi-target settings. We numbered the three sub-
rewards of Formula (22) in order, as shown in Table 7 and then recombined them into the
rewards given to training by the DRL environment. The results are shown in Table 8.

Table 1. The results of EFC that consider the knowledge points association.

Method Average Pass Excellent SD Average
(log) Pass (log) Excellent

(log) SD (log)

Random 0.319 3 0 0.222 0.353 5 1 0.255
Linear 0.229 2 0 0.213 0.308 3 1 0.265
Cyclic 0.443 6 3 0.255 0.522 8 3 0.276

Threshold 0.428 6 3 0.258 0.489 7 3 0.289
DRL 0.438 6 3 0.247 0.500 9 3 0.241

Table 2. The results of EFC that do not consider the knowledge point association.

Method Average Pass Excellent SD Average
(log) Pass (log) Excellent

(log) SD (log)

Random 0.462 5 2 0.201 0.366 3 2 0.208
Linear 0.413 4 2 0.205 0.309 3 1 0.218
Cyclic 0.557 8 3 0.212 0.451 4 2 0.220

Threshold 0.556 7 3 0.213 0.451 4 2 0.224
DRL 0.485 8 2 0.204 0.396 5 2 0.225

Table 3. The results of HLR that consider the knowledge point association.

Method Average Pass Excellent SD Average
(log) Pass (log) Excellent

(log) SD (log)

Random 0.271 4 1 0.252 0.209 1 0 0.173
Linear 0.412 5 4 0.300 0.377 5 2 0.284
Cyclic 0.422 5 4 0.288 0.373 5 3 0.269

Threshold 0.347 4 3 0.299 0.312 5 1 0.280
DRL 0.503 7 4 0.237 0.564 6 4 0.285

Table 4. The results of HLR that do not consider the knowledge point association.

Method Average Pass Excellent SD Average
(log) Pass (log) Excellent

(log) SD (log)

Random 0.525 6 4 0.207 0.490 6 1 0.170
Linear 0.680 12 5 0.173 0.645 8 6 0.169
Cyclic 0.586 8 4 0.223 0.514 6 5 0.239

Threshold 0.582 8 4 0.233 0.514 6 5 0.236
DRL 0.625 12 4 0.212 0.540 8 5 0.227

Table 5. The results of BKT that consider the knowledge point association.

Method Average Pass Excellent SD Average
(log) Pass (log) Excellent

(log) SD (log)

Random 0.470 3 0 0.111 0.461 4 0 0.119
Linear 0.630 10 4 0.147 0.536 8 0 0.151
Cyclic 0.620 9 4 0.144 0.560 8 2 0.156

Threshold 0.599 8 2 0.144 0.595 8 2 0.157
DRL 0.643 12 4 0.150 0.592 10 3 0.152
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Table 6. The results of BKT that do not consider the knowledge point association.

Method Average Pass Excellent SD Average
(log) Pass (log) Excellent

(log) SD (log)

Random 0.553 7 0 0.096 0.528 6 0 0.110
Linear 0.624 12 3 0.120 0.575 7 1 0.121
Cyclic 0.633 13 3 0.123 0.580 8 1 0.126

Threshold 0.633 13 3 0.124 0.583 8 1 0.127
DRL 0.633 12 3 0.123 0.581 8 1 0.126

Table 7. Component definition.

Num 1 2 3

Name Rp Re Ra

Table 8. Component comparison experiment.

Method Average Pass Excellent

12 0.405 5 3
13 0.406 6 0
23 0.429 6 2

DRL(123) 0.437 6 3

4.2. Results

Tables 1–6 show the experimental results of the three models. The experimental
results are divided into two parts, with Formulas (22) and (26) as the objective function,
respectively. The results of each part consist of the following parts:

• The average value of the average mastery of knowledge points of each student in
the class;

• The number of students whose average mastery of knowledge points exceeds 0.6;
• The number of students whose average mastery of knowledge points exceeds 0.8;
• The standard deviation of the average mastery of knowledge points in the class.

For the EFC model, it can be observed in Table 1 that the DRL method is significantly
better than the random and linear methods. DRL is similar to cyclic and threshold methods.
When Formula (26) is used as the objective function, DRL has a better effect. At the same
time, the standard deviation of DRL-based students’ performance is the smallest in all cases.
Table 2 shows the results after disassociating the knowledge points. The general situation
is the same as in Table 1. The DRL method also performs better when Formula (22) is used
as the objective function.

The effect of the HLR model implemented in Table 3 differs from that of the EFC model.
The effect of the linear method was improved. DRL achieved the best results in terms of
average grade, pass rate, excellent rate, and standard deviation. When we cancelled the
knowledge point association, the result shown in Table 4 was obtained. The effect of linear
teaching was greatly improved. The DRL method was second only to the linear method.

Table 5 shows that the DRL method is superior to other methods in all aspects of the
BKT model. When we canceled the knowledge point association, it can be observed in
Table 6 that the DRL method did not differ greatly from the other methods. This is because
the BKT model does not consider the forgetting strategy, so four methods can obtain a good
result.

After experimenting with a random combination of multiple targets, the result in
Table 7 shows that adding each sub-reward to the reward of Formula (22) will improve the
effect of DRL, which proves that the reward function we proposed is both reasonable and
effective. Through the above experiments, it can be seen that each of the four comparison
strategy methods have advantages and disadvantages. In contrast, DRL achieves good
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results in all cases. In some of the experiments, DRL did not obtain the best teaching
results but obtained higher rewards due to the algorithm setting a larger discount factor to
quickly improve the performance in the early stage to improve the overall rewards. The
effectiveness of DRL does not depend on a specific context, which proves the efficiency and
generality of the method. Furthermore, a multi-part randomized combination experiment
verified that each part of the reward function setting was beneficial. Thus, DRL, as the
group teaching recommendation algorithm used in the system, can meet the system design
requirements for this recommendation function.

4.3. Discussion

Through the above experiments, it can be seen that the four comparison methods have
their own advantages and disadvantages. In contrast, DRL can achieve good results in
any situation. The effect of DRL does not depend on a specific environment, which proves
the efficiency and versatility of the method. At the same time, the random combination
experiment of multiple parts verifies that each part of the reward function setting is
beneficial. In addition, due to the high discount factor we set, DRL will achieve a better
result at the fastest speed and slow down the speed of improvement in the later stage.

5. Cloud Computing Assisted

Various teaching aids are necessary to facilitate teaching interactions and the better
utilization of the built student models during or after the classroom. Their integration of
advanced technologies in the fields of mobile computing, pervasive computing, commu-
nication technologies, augmented reality, sensors, artificial intelligence, and data mining
provides a wide range of classroom interactions based on these technologies. Considering
that there are more functions in the system and machine learning algorithms, it is difficult
for the single-server architecture to load the system operation pressure, so the system
adopts a distributed architecture. The system is divided into different microservices ac-
cording to the functional modules, and multiple microservices can run on different servers
and call each other through pre-designed interfaces to complete the teaching assistants
work together. The server side of the system adopts the development method of front
and back-end separation: the back-end part adopts the distributed architecture based on
the SpringCloud framework, and the development language is JAVA; the front-end part
is developed based on the Vue framework; the client side is based on Android platform,
and the development language is JAVA, and the database uses Mysql; the server side is
deployed on a Linux server.

6. Conclusions

In this article, we studied how to arrange the teaching path of teachers within a
limited time course, considering the different situations of different students and the
interrelationship between knowledge points. Most of the current related work focuses
on students’ learning path planning. We are the first to study teacher-oriented teaching
planning based on the entire teaching semester and the entire class. Our research goal is
to make the entire class benefit from this course as much as possible, which is embodied
in the passing rate, excellence rate, and the average score of the class for the exam. For
this problem, we proposed the use of DRL to generate strategies through neural networks.
We utilized a variety of student models to conduct simulation experiments and achieved
excellent experimental results. This proves that this method can be applied to various
environments and is widely operative.

In this article, the first limitation is that there are no experiments based on real students.
Real-life tests will bring some new problems, such as how to better obtain feedback from
students without affecting students’ learning, how to confirm the accuracy of students’
feedback, and how to eliminate errors. At the same time, our experiments were built on
the assumptions in Section 3.1, which only consider the perfect condition that all learning
details are captured by the system. In real-life tests, the teacher and students may have
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many problems with Blended Learning that leave some learning details unobserved by the
system. Thus, real-life tests and related optimization based on partially observed facts will
be our next research agenda.
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