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Abstract: Addressing the problem that traditional methods cannot reliably monitor surface subsi-
dence in coal mining, a novel method has been developed for monitoring subsidence in mining
areas using time series unmanned aerial vehicle (UAV) photogrammetry in combination with LiDAR.
A dynamic subsidence basin based on the differential digital elevation model (DEM) was constructed
and accuracy of the proposed method was verified, with the uncertainty of the DEM of difference
(DoD) being quantified via co-registration of a dense matching point cloud of the time series UAV
data. The root mean square error calculated for the monitoring points on the subsidence DEM
was typically between 0.2 m and 0.3 m with a minimum of 0.17 m. The relative error between the
maximum subsidence value of the extracted profile line on the main section after fitting and the
measured maximum subsidence value was not more than 20%, and the minimum value was 0.7%.
The accuracy of the UAV based method was at the decimeter level, and high accuracy in monitoring
the maximum subsidence value was attained, confirming that an innovative strategy for monitoring
mining subsidence was realized.

Keywords: subsidence monitoring; UAV photogrammetry; airborne LiDAR; co-registration; dynamic
subsidence basin

1. Introduction

Monitoring of surface subsidence plays a vital role in protecting the ecological environ-
ment of mining areas and ensuring the sustainable development of modern coal mines [1].
Traditional observation technologies, such as the total work station, have some limitations,
such as low efficiency, high labor costs, and an inability to produce surface subsidence
basins. With the development of UAV platform and computer vision technologies, the use
of structure from motion (SfM) and Multiview-Stereo (MVS) algorithms to process UAV
images are increasingly being used to produce terrain data of high resolution, namely, point
cloud, digital surface model (DSM), and digital orthophoto maps (DOM) for research and
applications in the earth sciences [2,3].

Compared with methods based on satellite or airborne LiDAR, the dynamic, safe, low-
cost, and efficient data acquisition afforded by a UAV mean that the UAV based technique
has great potential for monitoring subsidence caused by coal mining. In determining the
ground displacement using a UAV, research has, to date, focused on assessing its effective-
ness in monitoring subsidence. Most studies have compared the DEM of two different
measurement periods [4–7]. Zheng et al. [8] and Dawei et al. [9] constructed dynamic surface
subsidence basins based on DEM of difference (DoD) and retrieved mining subsidence-
related parameters. Miao et al., optimized the parameters of the filtering algorithm of the
progressive triangulation densification filtering, and determined the subsidence area and
the maximum subsidence value using airborne LiDAR [10]. Yu et al., constructed the DoD
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based on the fuzzy inference system, and obtained the surface deformation information
of the study area more accurately by using Bayesian estimation based on the weight filter
window [11]. Lu et al., calculated the DoD, extracted surface subsidence information by
setting the elevation difference and area threshold, and adopted the method based on
elevation difference analysis [12]. The research of Stupar et al., showed that UAV can obtain
high-density DEM, which can be used for other activities during and after mine excavation,
and has good consistency with GNSS RTK data [13].

There are also studies that use dense point clouds derived from UAVs and algorithms
that allow point cloud to point cloud comparison. Pal et al., used UAV photogrammetry
to obtain multi-temporal point cloud data, and quantified the subsidence of the two
periods through the nearest neighbor point cloud to cloud (C2C) comparison method [14].
Esposito et al., carried out multi-temporal point cloud comparison experiments based on
UAV photogrammetry in open-pit mines, and verified the effectiveness of a Multiscale
Model to Model Cloud Comparison (M3C2) algorithm for accurate change detection [15].
Puniach et al., compared and analyzed the effectiveness of different image registration
algorithms in multi-temporal DOM matching, and proposed a workflow to automatically
determine the horizontal displacement caused by underground mining [16]. Dawei et al.,
combined UAV photogrammetry with interferometric synthetic aperture radar (InSAR)
technology to monitor ground mining subsidence basins and obtained relatively reliable
mining subsidence parameters [17]. Tong et al., presented a practical framework for
the integration of UAV based photogrammetry and terrestrial laser scanning (TLS) with
application to open-pit mine areas, showing that the accuracy of geo-positioning based on
UAV imagery can be improved [18].

UAV technology is highly appropriate for monitoring surface subsidence in coal
mining. Generally, the monitoring accuracy is at the decimeter level, and a few studies
have reported a centimeter capability [19,20]. Given that the level of accuracy reported in
independent studies differ, it is desirable to use a variety of sensors, including LiDAR, to
obtain multi-source monitoring data to facilitate the development of UAVs for multi-source
monitoring [21]. When comparing multi-temporal measurements in different studies, it is
essential to ensure the consistency between measurements from the different sources.

In the present study, time series UAV photogrammetry was combined with LiDAR to
exploit the advantages afforded by the two different technologies in monitoring subsidence.
The airborne LiDAR data was used as a reference to co-register the multi-temporal UAV
photometry data, which improved the repeatability of UAV multi-temporal data. Co-
registration of the multi-temporal data, denoising of the subsidence model, analysis of the
uncertainty, and improvement in the accuracy of monitoring were studied in depth, with a
view to improving monitoring performance and to promote use of the new technique in
coal mining operations.

2. Overview of the Study Area

The area of study was the working face of the No. 1 coal mine of the Yangmei Group.
The main characteristics of the mine were as follows: the strike length was 1345 m, the dip
length was 226 m, the average dip angle of the coal seam was 4◦, the average mining depth
was 446.8 m, and the average coal thickness was 7.24 m. A half strike observation line A,
and a dip observation line B, were arranged. The relative positional relationship between
the working face, the observation stations, and the research area is illustrated in Figure 1.
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Figure 1. Schematic for relationship between the working face, observation stations, and study area.

3. Data and Methodology
3.1. Data

A summary of the data collection parameters is presented in Table 1. The data of
14 June 2020 have been abbreviated to 06.14 as are the other data.

Table 1. Time series data collection statistics.

Number Time Acquisition Result Form Point Cloud
Number Area km2 Density per m2

1 14 June 2020 UAV image Point cloud, DSM, DOM 2.3 × 108 4.5 52
2 20 July 2020 UAV image Point cloud, DSM, DOM 2.4 × 108 4.5 53
3 7 September 2020 UAV image Point cloud, DSM, DOM 2.2 × 108 4.2 53
4 15 November 2020 UAV image Point cloud, DSM, DOM 2.4 × 108 4.5 53
5 31 July 2021 UAV image Point cloud, DSM, DOM 4.7 × 108 4.3 110
6 16 January 2022 Airborne LiDAR Point cloud 2.5 × 108 4.0 62

The FEIMA D2000 quad-rotor UAV equipped with a SONY a6000 camera was used to
collect the visible images and simulate the ground flight. A ground sample distance (GSD)
of 4 cm/pixel was provided at a flight height of 255 m relative to the ground. Each flight
was set with 80% forward overlaps and 60% side overlaps. Photoscan software was used to
generate the UAV point clouds, the digital surface model (DSM) and the digital orthophoto
maps (DOMs). The D-LIDAR 2000 module carried by the D2000 UAV served to collect
the original LiDAR data, and the LAS-format point cloud was obtained by preprocessing.
Detailed information about the camera and LiDAR module are shown in Table 2.

First, the outliers in the point cloud were removed by the statistical outlier removal
(SOR) filter tool in CloudCompare software(2.10, https://www.danielgm.net/cc/). The
filter performs a statistical analysis on the neighborhood of each point and calculates the
average distance from it to all adjacent points. Points whose average distance were outside
the standard range (defined by the global distance average plus the defined standard
deviation) would be defined as outliers and removed from the data. Then, the progressive
triangulation densification filtering algorithm in TerraSolid software (2019, Finland, https://
terrasolid.com/) was used to automatically classify ground points, and the DEM generated
from the initial filtering result was visually inspected, the corresponding misclassified

https://www.danielgm.net/cc/
https://terrasolid.com/
https://terrasolid.com/
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point clouds were detected through the section line, and the misclassified points were
manually corrected using the classification tool to improve the initial filtering result. Finally,
multi-temporal DEMs were generated by interpolation of ground point cloud. All data
coordinate systems were of the WGS-84 to ensure consistency of the coordinate datum.

Table 2. Parameters configuration of aerial survey module and LiDAR module.

D-CAM2000 Aerial Module D-LiDAR2000 LiDAR Module

Camera SONY a6000 Ranging 190 m@10%Reflectivity@100 klx
450 m@80%Reflectivity@0 klx

Effective pixels 24.3 million Scanning frequency 240 kHz
Sensor 23.5 × 15.6 mm (aps-c) Ranging accuracy ±2 cm

Focal length 25 mm Horizontal positioning accuracy 0.02 m

The average density of the original point cloud of 06.14 data is 52 per m2, the average
density of ground point cloud obtained by point cloud filtering is about 3.5 per m2, the
average spacing of point cloud is about 0.5 m, and the resolution of DEM is 0.5 m. In order
to enable differential calculation of data in different periods, the DEM data of other periods
were resampled to the same spatial resolution.

3.2. Methodology

This study integrated airborne LiDAR data and multi-temporal UAV photogrammetry
data and proposed a method for monitoring mining subsidence featuring co-registration
of UAV LiDAR data and photogrammetry. The process consists of four steps: first, the
airborne LiDAR point cloud was used as the reference data to co-register the multi- temporal
UAV dense matching point cloud, and then the performance of the co-registration was
evaluated through the calculated M3C2 distance. Further, a dynamic subsidence basin for
surface subsidence monitoring was constructed based on the DoD obtained from the UAV
dense matching point cloud filtering and interpolation. Finally, the development process
and subsidence law of the subsidence basin was studied. On this basis, we analyzed the
accuracy of the dynamic subsidence basin by comparing it with the measured points in
field investigation, and also quantified the uncertainty of the DoD. The flow chart of this
study is shown in Figure 2.
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4. Results and Analysis
4.1. Co-Registration and Performance Evaluation

Taking the airborne LiDAR point cloud of 01.16 as the reference, the closest iterative
point (ICP) algorithm in the CloudCompare software was used to register automatically the
five-stage dense matching point cloud. Specifically, the transformed parameters calculated
by the ICP algorithm on the point cloud subset of the stable region were applied to the
entire point cloud. Three stable regions were selected near the control points as identified
in the observation of the surface movement, as depicted in Figure 3a. These regions had
less vegetation and almost no subsidence. Figure 3b represents the number of overlapping
images used to calculate each pixel; also, the data obtained in the stable region would not
be affected by insufficient image overlap.
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of overlapping images computed for each pixel of the DOM.

The Multiscale Model to Model Cloud Comparison (M3C2) algorithm of the Cloud-
Compare software was used to calculate the distance between the multi-temporal point
clouds in the stable region after co-registration to evaluate the quality of co-registration [22].
The standard deviation of the distance was used as an indicator of the measurement preci-
sion, and the mean was regarded as a measure of accuracy of the point cloud. The results
are presented in Table 3. The microtopography of the stable surface would change due
to weathering or vegetation, therefore, it was difficult for the results for co-registration to
reach the theoretical value of 0 m.

Table 3. The mean and standard deviation of the M3C2 distance in the stable region.

Dataset Mean (m) Standard
Deviation (m) Duration (day) Platform

01.16/06.14 0.24 0.13 581 LiDAR/UAV
01.16/07.20 0.34 0.15 545 LiDAR/UAV
01.16/09.07 0.30 0.19 496 LiDAR/UAV
01.16/11.15 0.32 0.14 427 LiDAR/UAV
01.16/07.31 0.35 0.15 169 LiDAR/UAV

As shown in Figure 4, the calculated M3C2 histogram reveals that the distribution is
Gaussian in shape but with a certain degree of positive skewness, the red bars represent
the number of point clouds in each interval and the vertical black lines represent where the
mean is located. Furthermore, the mean values for the data of 07.20 and 07.31 are relatively
large, and the presence of dense vegetation has a certain impact on the results at these time
periods. The standard deviation for the distance was between 0.13 and 0.19, indicating that
the repeatability of the UAV multi-temporal photogrammetry data was good.
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4.2. Construction and Verification of Accuracy for the Dynamic Subsidence Basin

The dynamic subsidence basin was constructed using DoD analysis, as shown in
Figure 5a–e is the DOM for each period, Figure 5f–i is the time series subsidence map
obtained by subtracting the DEM of two adjacent periods, Figure 5j–m is the cumulative
time-series subsidence map obtained by subtracting 07.20, 09.07, 11.15, and 07.31, respec-
tively, from 06.14; the outliers are shown in the white grids. In the cumulative time series
subsidence map, as the working face advanced, the range of influence of the surface ex-
panded accordingly, the maximum subsidence value increased gradually, and the range of
the subsidence basin became closer to the center of the goaf.
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Figure 5. Development process for the dynamic subsidence basin at the working face: (a) 1−06.14;
(b) 2−07.20; (c) 3−09.07; (d) 4−11.15; (e) 5−07.31; (f) 1−2; (g) 2−3; (h) 3−4; (i) 4−5; (j) 1−2; (k) 1−3;
(l) 1−4; and (m) 1−5.

Based on the total measured data for the station, the accuracy for the subsidence basin
was verified by comparing the difference in elevation between the measured data on the
monitoring point with the difference in elevation extracted from the UAV subsidence DEM.
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The mean error (ME), the mean absolute error (MAE), and the root mean square error
(RMSE) may be calculated as follows:

ME =
1
n∑n

i=1(H − h) (1)

MAE =
1
n∑n

i=1(|H − h|) (2)

RMSE =

√
1
n∑n

i=1(H − h)2 (3)

where H and h refer to the measured elevation difference and the elevation difference
extracted from the subsidence DEM, respectively.

The calculated results are presented in Table 4, and where the average error was small,
being in the range ±0.2 m. The RMSE was greatly affected by the abnormal value, and
was generally greater than the average error and the average absolute error, most of which
being between 0.2 m and 0.3 m. The minimum error was 0.17 m. Under the influence of
time decoherence, the RMSE of the data with the larger time interval of 06.14 is larger, and
the results of line A and line B for 07.31−06.14 are more than 0.3 m.

Table 4. Comparison of subsidence value error calculation between measured points and UAV
extraction.

Data Set
Average Error (m) Average Absolute Error (m) Root Mean Square Error (m)

Line A Line B Line A Line B Line A Line B

07.20−06.14 −0.16 −0.11 −0.20 0.14 0.24 0.17
09.07−06.14 −0.06 −0.14 0.25 0.20 0.27 0.23
11.15−06.14 0.13 −0.10 0.26 0.22 0.30 0.27
07.31−06.14 0.06 −0.28 0.31 0.29 0.34 0.32

Taking the intersection of line A and line B as the origin, the measured subsidence
was compared with the subsidence for the monitoring points in the DEM, as shown in
Figure 6. The subsidence curve extracted by the subsidence DEM was close to the measured
subsidence curve, and the deviation was small near the maximum subsidence value.
However, many jump points in the elevation may be observed in the subsidence value
extracted by the subsidence DEM.
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Figure 6. Comparison of subsidence values about the monitoring points: (a) line A 07.20−06.14;
(b) line A 09.07−06.14; (c) line A 11.15−06.14; (d) line A 07.31−06.14; (e) line B 07.20−06.14; (f) line B
09.07−06.14; (g) line B 11.15−06.14; and (h) line B 07.31−06.14.



Appl. Sci. 2022, 12, 9374 8 of 12

4.3. Analysis of the Subsidence Characteristics of the Main Section

Analysis of the main section is essential for the monitoring of mining subsidence and
relies on robust line analysis at the discrete monitoring points. To this end, the section lines
on the four subsidence DEMs were extracted from the main sections of the strike and dip
of the subsidence basin along the working face at 0.5 m intervals to ensure that the start
and end coordinates of the section lines were the same, and the values were graphed, as
shown by the black scatters in Figure 7. The direction of the strike and dip profiles is from
left to right and from top to bottom, with lengths of 1600 m and 910 m, respectively.
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The Savitzky–Golay smoothing denoising method was used to fit the scatter data. This
method is based on the use of a polynomial low-pass filter. As can be seen in Figure 7, the
low-frequency signal changes slowly and the waveform is smooth, while the high-frequency
signal changes quickly and abruptly.

The instability in altitude during flight leads to more jump points in the elevation in
the UAV data, therefore, Savitzky–Golay smoothing was suitable for reducing the mutation
noise in elevation. Finally, the time series subsidence curve for the main section was
produced, as is shown by the red curves in Figure 7.

It can be seen from Figure 8 that the maximum subsidence values for the strike and
the dip increased regularly, and the subsidence velocity of the last data was reduced
significantly compared with that of the previous three periods; also, the subsidence value
was close to the maximum value under the geological mining conditions. In the time-series
strike subsidence curve, the area of maximum subsidence tended to move to the right,
which was consistent with the direction of mining of the work face. The comparison
between the maximum subsidence value of the fitting curve and the measured value is
shown in Table 5. The relative error between the fitted and measured value was not more
than 20%, and the minimum value was 0.7%. Use of UAV photogrammetry to monitor the
mining subsidence can reflect comprehensively the range of influence of mining subsidence,
and a high level of accuracy for monitoring the maximum subsidence value can be realized.
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Table 5. Comparison of maximum subsidence values between measured values and curve fitting.

Data Set Measured Value (m) Fitting Value (m) Relative Error (%)

Line A 07.20-06.14 −1.43 −1.44 0.70
Line A 09.07-06.14 −2.17 −2.43 11.98
Line A 11.15-06.14 −3.30 −3.50 6.06
Line A 07.31-06.14 −3.60 −3.66 1.67
Line B 07.20-06.14 −1.53 −1.46 4.58
Line B 09.07-06.14 −1.86 −2.19 17.74
Line B 11.15-06.14 −2.33 −2.78 19.31
Line B 07.31-06.14 −2.86 −2.90 1.40

Figures 7 and 8 are the comparison of the main section profiles of strike and dip
extracted from the subsidence DEM in different periods, showing the dynamic development
process of the subsidence curve in the form of line, which conforms to the development
law of the mining subsidence curve and verifies the effectiveness of the curve fitting and
subsidence monitoring methods.

4.4. Quantification of Uncertainty in the DoD

The uncertainty of the data must be considered to distinguish between real changes in
the terrain and the noise generated by the various sources of error. The interpretation of
the uncertainty in the DoD typically requires two steps:

1. Propagating the uncertainty in an individual DEM to DoD

The uncertainty sources in the DEM generated by interpolation of the data for the
ground points include the system error of the UAV, the accuracy and density of the point
cloud, the filtering error, the surface composition, the sampling interval, and the interpola-
tion method. Uncertainty is expressed as δz, and ignoring the horizontal component, the
relationship between δz and the actual elevation ZActual is as follows:

ZActual = ZDEM ± δZ (4)

where ZActual is the true elevation value, and ZDEM is the actual elevation value.
Use of the RMSE value based on the checkpoint data is one of the most common

methods to estimate the DEM uncertainty δz. Two methods can be used to evaluate the
vertical accuracy of data: comparison with field observation data and comparison with
two point clouds [23]. For rigorous estimation of the error, we need to collect the complete
checkpoint data for the ground, which clearly is difficult to achieve in mountainous terrain.
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Therefore, the standard deviation of the M3C2 distance for evaluation in multi-temporal
point cloud co-registration is used as an index of the DEM uncertainty δz.

When calculating the value of the differential DEM, the error will propagate to DoD,
and the propagation error (δµ) is determined as follows [24]:

δuDoD = t
√
(δznew)

2 + (δzold)
2 (5)

where δuDoD is the propagation error, and δznew and δzold are the individual errors in the
two DEMs which have been subtracted, respectively, assuming that the error in each grid
is random and independent, t is the critical Student’s t-value at a user-chosen confidence
interval (i.e., t = 1 for 68% confidence interval) [25,26].If the spatially explicit estimation of
δznew and δzold does not exist, the combined error can be calculated as a single value of the
entire DoD [27].

2. Assessment of the significance of the propagated uncertainty

An assessment of the significance of the change in the uncertainty of the elevation in
the DoD depends on the threshold selected and whether we discard or apply lower weights
for changes in height below the minimum level of detection (minLoD). The propagation
uncertainty (i.e., δuDoD) is used to define the threshold for the change in elevation or
the minLoD. In the DoD data of 06.14–07.20, the standard deviation values for the M3C2
distance calculated by the airborne LiDAR data of 06.14 and 07.20 were 0.13 m and 0.15 m,
respectively, such that a minLoD of 0.20 m was calculated. The change between −0.2 m
and 0.2 m in the DoD was considered insignificant and discarded from the results.

The variation in the visibility of the change in elevation with the minLoD threshold in
the DoD is shown in Figure 9. The original DoD with no elevation threshold is shown on
the far left, and gradually the more conservative the DoD becomes, the larger the MinLoD
becomes, as shown on the right. When the DEM is more uncertain, the minLoD threshold
is higher, and more information is lost in the DoD for assessment of the significance
during a change in elevation, and a more reliable DoD is obtained. Although UAV data
may be obtained in mountainous regions and areas with dense vegetation, the DEM
derived from dense point clouds has potential for uncertainty in the quantification process
and for detecting change. The DoD with a minLoD threshold facilitates the detection of
small changes in elevation which may be associated with errors and can reliably quantify
topographic changes caused by subsidence.
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5. Conclusions

1. Taking the standard deviation of M3C2 distance as the index, the repeatability of
the SfM-UAV time-series data was evaluated via airborne LiDAR data. The results
showed that the standard deviation of the M3C2 distance was between 0.14 and 0.19,
which shows that the repeatability of the multi-temporal photogrammetric data of the
UAV was good;

2. The dynamic subsidence basin constructed by DoD analysis can reveal clearly the
development process of surface movement in the basin. As the working face advances,
the range of influence of the surface will expand correspondingly, and the maximum
subsidence value will gradually increase;

3. The RMSE of the difference in elevation between the measured monitoring points and
that from the subsidence DEM extraction is mostly between 0.2 m and 0.3 m, with
the highest accuracy being up to 0.17 m. The relative error between the maximum
subsidence value fitted by the profile line of the main section and the measured
value was less than 20%, and the minimum value was 0.7%. The accuracy of UAV
subsidence DEM monitoring the maximum subsidence value is high;

4. The DEM derived from the dense matching point cloud of the UAV has the potential
to estimate the uncertainty and detect changes in elevation. The DoD with a minLoD
threshold is helpful for detecting small changes in elevation that may be related to
experimental errors, thus permitting us to quantify reliably topographic changes
caused by subsidence.
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