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Abstract: This article presents the application of supervised learning and image classification for the
early detection of late blight disease in potato using convolutional neural network and support vector
machine SVM. The study was realized in the Boyacá department, Colombia. An initial dataset is
created with the acquisition of a large number of images directly from the crops. These images are pre-
processed in order to extract the main characteristics of the late blight disease. A classification model
is developed to identify the potato plants as healthy or infected. Several performance, efficiency, and
quality metrics were applied in the learning and classification tasks to determine the best machine
learning algorithms. Then, an additional data set was used for validation, image classification, and
detection of late blight disease in potato crops in the department of Boyacá, Colombia. The results
obtained in the AUC curve show that the CNN trained with the data set obtained an AUC equal
to 0.97; and the analysis through SVM obtained an AUC equal to 0.87. Future work requires the
development of a mobile application with advanced features as a technological tool for precision
agriculture that supports farmers with increased agricultural productivity.

Keywords: classification; image processing; mobile app; precision agriculture; supervised learning

1. Introduction

The most important economic activity in the department of Boyacá, Colombia is the
potato crops. According to a report presented by FEDEPAPA, Boyacá is the second state in
Colombia with the greatest influence of this crop. In the 2019/2020 period, the department
had 27.30% of the total planted area and 26.84% of the total production at the national level
being the greatest influence of this crop [1]. Therefore, research regarding potato growth
and production is a critical issue for the economy of the state.

Plant pests and diseases constantly threaten the quality and quantity of agricultural
production in general. The drop, also called late blight, is perhaps the most destructive
disease that affects potato crops and weakens them in a short time, generating great
economic losses. This pathogen is reported as one of the greatest limitations in production,
the causative agent being the Oomycete Phytophthora Infestant, which mainly affects the
leaves, stems, and tubers [2]. The first symptoms appear as small dark green spots, circular
to irregular; and they typically begin to develop near the tips or edges of the leaves, where
moisture is held longest. Under cool, wet weather conditions, foliar lesions expand rapidly,
turning the leaves to dark brown to black colors. As new infection spots appear, these
lesions spread to tissue and leaves that are quickly destroyed. Then, the damage expands
towards the petioles and stems of the potato plant [3]. Visual inspections and lab testing by
experts are the traditional way to detect the disease. Although these are precise procedures,
applying these techniques is time-consuming and increases computational cost. These
issues can be solved in a real application by applying a real-time technique to identify plant
diseases using specialized techniques and IT [4]. The proposed approach can detect various
diseases in the same image and the same diseases with different sizes. In addition, this
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approach can be accurately applied in different geographical areas from where the original
dataset was acquired.

2. Related Works

The literature review about this topic shows that in recent years, the application of
digital image processing techniques and machine learning models for the detection and
classification of diseases in various crops has increased significantly. The studies carried
out have obtained disease identification results with success rates greater than 95% in
crop disease prediction and classification tasks [5]. Shrivastava and Pradhan presented a
study on disease classification of rice plants using an image-based approach based only
on color features. In addition, they tested different classifiers and found that the support
vector machine achieved higher accuracy with 94.65% [6]; furthermore, a convolutional
neural networks (CNN) model was developed in this work to detect diseases in tomato
crops. The proposed model obtained an average precision of 91.2%, demonstrating the
effectiveness over previously trained models such as VGG16, InceptionV3, and MobileNet,
which obtained an average precision of 77.2%, 63.4%, and 63.75%, respectively. According
to [7]. access to smart devices can be used to facilitate automatic diagnosis of diseases
in maize crops and prevent losses. They present a method based on deep CNNs for the
recognition of diseases in maize leaves, which has the ability to run on independent smart
devices such as Raspberry-pi, smartphones, and/or drones with an accuracy of 88.46% [8].
Likewise, Ashqar and Abu-Naser carry out a study with the purpose of implementing a
CNN model capable of identifying five diseases in tomato crops on smartphones, and the
results obtained show an accuracy greater than 95.54% [9].

However, it has been observed that most of the studies in the literature diagnose
different diseases such as gota or tizon tardio for a particular plant or several plants [10].
In this study, a CNN architecture is proposed that will be compared with SVM for the
diagnosis of gout disease or late blight produced by the fungus phytophthora infestans
present in potato crops. The main goal is to find the architecture with the best performance
in identification and classification of the disease under study and using the created dataset
and the deployment using a mobile app.

The results show the effectiveness of supervised learning models in detecting healthy
and infected leaves with a significant reduction in human efforts to detet the disease
especially in large crops, and the strengthening of agricultural productivity in the region.
Finally, the development of a mobile app for precision agriculture supports the farmers of
the region with increased agriculture productivity.

This work proposes a supervised learning model based on the SVM and CNN algo-
rithms to classify and detect late blight disease in potato crops. This model was imple-
mented in a mobile application to support the farmers in defining strategies to control this
disease exhibited by their crops. In this work, the proposed deep-learning approach helps
with an accurate identification of the common types of leaf diseases related with late blight
in potato crops.

This article is organized as follows: The literature review conducted on machine
learning and deep-learning models is presented in Section 2. Section 3 describes the
material and methods used, the CNN architectures created, a comparation with SVM, and
the evaluation metrics; Section 4 contains the results and the discussion regarding the
different architectures; and finally, the final conclusions are reported in Section 5.

3. Materials and Methods

In this research, supervised machine learning techniques are applied to the early
detection of late blight disease in potato crops. The main focus is on the performance
analysis of ML models with the application of the linear kernel together with applying
architecture based to by the AlexNet model [11]. The three-step methodology followed
in this work is presented in Figure 1, and the steps are the following: (i) Data acquisition,
(ii) Linear kernel, (iii) Performance validation of the models.
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3.1. Mobile System Design

As illustrated in Figure 2, the distributed run-time system for the plant disease detector
is organized with parts executing on mobile devices at the user side and on centralized
servers at the cloud side. The layer in the left describes the Frontend server where the deep-
learning model used in the system (i.e., CNN for Supervised learning) and the Intermediate
Representation (IR) model run on the mobile device. The layer on the right illustrates the
Backend focused user interface, which is developed as an Android app to enable system
users to interact with the system conveniently.
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Figure 2. Functional architecture.

The detection of potato late blight was divided into three stages: Data adquisition,
implementation of linear kernel, and performance validation stage. In the training stages,
firstly, we need to create data sets for training, preprocess the data sets for training and de-
tection, then extract the features of contrast dissimilarity, homogeneity, energy, correlation,
and ASM from the existing data sets. After extracting the features, we need to train CNN
and SVM classifiers to obtain the final classifier.

In the linear kernel stage, firstly input the detection image; then, extract the charac-
teristics of contrast, dissimilarity, homogeinity from the input image; then, detect whether
the potato leaves suffer from late blight through the trained classifier; finally, obtain the
detection results.

For the implementation and development of this work, the Python programming lan-
guage was used, and the most used libraries for processing, feature extraction, classification,
and visualization of results were OpenCV, Scikit-learn, TensorFlow, and Matplotlib. The
first stage included the acquisition of the images of the potato leaves, then a pre-processing
is performed on each of the images of the data set. This process includes the elimination of
noise, scaling, and transformation of the color space so that the image would be cleaner, and
in this way, the segmentation techniques will be applied to later extract the characteristics
of the image. Finally, the SVM supervised learning models were trained using linear kernel
and CNN with architecture created from scratch based on the AlexNet model to detect
whether or not the leaf image is infected with late blight, and the validation process of the
models was carried out and obtained to evaluate the performance of each classifier.

3.2. Generating Data Set

The structuring and conformation of the data set called “APPpotato” is a main con-
tribution of this research, and in turn it is a contribution to the academic, scientific, and
agricultural production communities. The images used to define the data set correspond
to healthy leaves and those infected with late blight, which were captured in potato crops
located in the municipalities of Aquitania and Tuta in the Boyacá state. These two categories
have different altitudes, types of terrain, and different cultivation techniques. A mobile
device with a 10 MP (megapixel) camera was used in a semi-controlled environment with a
white background. The dataset is composed of 160 images of healthy and infected leaves
with late blight and was used for training and classification. More details about these
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images are shown in Table 1. Within the data set, three different types of potatoes were ana-
lyzed, corresponding to the varieties: Tocarreña, Pastusa, and Amarilla with phenological
stages between 2.5 and 6 months. Figure 3 shows sample images of healthy (A) and late
blight-infected (B) potato leaves of the training data set.

Table 1. Classification and total number of sheets that make up the data set.

Class Number of Images Variety

0 (infected) 160
49.4% Tocarreña
50.6% Pastusa

1 (healthy) 160
36.8% Amarilla
63.2% Pastusa
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3.3. Augmented Data Set

Some supervised learning algorithms require a large number of input data in training
to achieve greater efficiency and accuracy in predictions. Therefore, a script was developed
to augment the previously described original data set. As can be seen in Figure 4, random
but realistic transformations were applied in the process; i.e., rotation of the image, change
the size in the X and Y axes, apply magnification (zoom), and random flip the image
horizontally. After applying the augmentation algorithm, to the original data set, the final
result was the generation of 2240 images without background divided equally into healthy
and infected leaves.
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3.4. Image Pre-Processing

Image pre-processing includes two steps: (a) Image resizing, smoothing, and trans-
formation from RGB (red, green, blue) color space to HSV (hue, saturation, value) spaces
and (b) LAB three-dimensional analysis (brightness, red to green, blue to yellow) and its
gray scale. The process of rescaling the image to a smaller dimension was carried out
to optimize the computational time required for the treatment and extraction of features.
Most of the images obtained have a dimension of 2992 × 2992 pixels; after going through
the resizing process, the output images have a size of 256 × 256 pixels. The smoothing or
blurring of an image is achieved by convolving the image with a filter or kernel to eliminate
high-frequency content such as noise. Having the initial image in the RGB color space, we
proceed to transform the color space to HSV, LAB, and gray scale. Figure 5 shows: the
image (Figure 5A) corresponding to the photograph in the original RGB color space, it is
captured from the crop. The image (Figure 5B) corresponding to the color transformation
to the HSV model, The HSV color space has three components: hue, saturation and value.
‘Value’ is sometimes substituted with ‘brightness’ and then it is known as HSB. The image
(Figure 5C) corresponding to the transformation of color to the LAB model, is based on the
human perception of color. The color mode consists of one channel for Lightness (L) and
two channels for Color (Figure 5A,B). And finally, the image (Figure 5D) that corresponds
to the grayscale image, grayscale images are the those images where color information is
missing and all colour information is converted into gray scale format.
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3.5. Segmentation

The image segmentation aims to separate the points of interest with better precision to
obtain descriptive data of the image. One of the methods used to separate the leaf from
the background of the image was through the thresholding algorithm. In this process, the
grayscale image is transformed into another with only two colors (black and white). The
optimal threshold in this segmentation procedure is obtained with the Otsu method [12].
This threshold value is compared to the reference value of each pixel, and it is changed to
create the segmented images used in this analysis. Thus, segmented images were obtained
in two levels of gray: white (leaf) and black (background). Figure 6 shows the application
results of the segmentation algorithm using the thresholding method. Column (Figure 6A)
contains the original images, column (Figure 6B) contains the binary images obtained after
thresholding, and finally, column (Figure 6C), where the binary image is superimposed on
the original to remove the background.

The other method used to separate the leaf from the background was the mask method,
where the original image is initially passed to the HSV color space. In this method, the
channel (H) models the type of color which facilitates the processing and segmentation of
objects based on this property. Subsequently, the masks that will fulfill the filter function
are defined to separate the colors close to green and brown, corresponding to the leaf and
the stain, respectively, from the background of the image.
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Figure 7 shows the results after applying the range thresholding method. The column
(Figure 7A) shows the original image without being processed, it is captured directly from
the crop. The column (Figure 7B) shows the superposition of the green mask on the original
image, dephasing is wavelength dependent and the optimal behavior is reached for only
one wavelength. The column (Figure 7C) shows the superposition of the coffee mask on
the original image with late blight. Finally, the column (Figure 7D) shows the union of the
two masks and their superposition on the original image, guaranteeing that the parts that
do not correspond to the regions of the sheet are eliminated without background.
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3.6. Feature Extraction

Feature extraction is based on identifying features in the image, region, or boundary
and assigning quantitative and qualitative attributes to these detected features [13]. For this
investigation, feature extraction focuses on identifying patterns based on the RGB and HSV
color models and texture features based on the GLCM grey level co-occurrence matrix.

To carry out the extraction of color characteristics, initially, the color spaces RGB and
HSV models are selected in this investigation. Subsequently, each model has been divided
by the channels that compose it: red (R), green (G), and blue (B) for the case of RGB and
value of brightness (V), tone (H), and saturation (S) for the case of HSV. Finally, first order
statistics calculation is performed, including mean, standard deviation, variance, and range
applied to each component of RGB and HSV. As a result of this feature extraction, a total of
24 color features are obtained.
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• Contrast: It is the amount of local variations in the shades of grey of the image. If the
contrast is higher, there are different shades of gray and the feature is defined as:

levels−1

∑
i,j=0

Pi,j(i − j)2 (1)

• Dissimilarity: Similar to contrast. It is high when the region has a high contrast; the
metric can be defined as:

levels−1

∑
i,j=0

Pi,j
∣∣i − j

∣∣ (2)

• Homogeneity: Measure of similarity in the image; a value of 0 indicates a high
similarity. The measure can be expressed in the form:

levels−1

∑
i,j=0

Pi,j

1 + (i − j)2 (3)

• ASM (Angular Second Moment): Uniformity; if this is greater, there are fewer varia-
tions in the shades of gray. The metric can be defined as:

levels−1

∑
i,j=0

P2
i,j (4)

• Correlation: Dependence of the shades of gray in the image; if it is 0, there is no linear
correlation between the levels. The metric can be defined as:

levels−1

∑
i,j=0

Pi,j

 (i − µi)(j − µj)√
(σ2

i )(σ
2
j )

 (5)

The texture feature extraction is based on the computation of the gray level co-
occurrence matrix and the GLCM texture properties using Equations (1)–(5). A total
of twenty-four features are obtained. An estimate of the image properties related to second-
order statistics and based on the gray level co-occurrence matrix (GLCM) is shown in
Table 2.

Table 2. GLCM texture features.

0◦ π/4 π/2 3π/4

Contrast contrast-0 contrast-pi_4 contrast-pi_2 contrast-3pi_4
Dissimilarity dissimilarity-0 dissimilarity-pi_4 dissimilarity-pi_2 dissimilarity-3pi_4
Homogeneity homogeneity-0 homogeneity-pi_4 homogeneity-pi_2 homogeneity-3pi_4

Energy energy-0 energy-pi_4 energy-pi_2 energy-3pi_4
Correlation correlation-0 correlation-pi_4 correlation-pi_2 correlation-3pi_4

ASM asm-0 asm-pi_4 asm-pi_2 asm-3pi_4

A dimensionality reduction technique called the principal component analysis (PCA)
method was used to reduce the previously mentioned characteristics. This statistical
method simplifies the complexity of sample spaces with many dimensions while preserving
their information. The algorithm projects the original color and texture feature data that is
48-dimensional into just two dimensions. The two new components corresponding to the
two main dimensions of the variation are obtained as output.
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3.7. Classification

Classification is ideal for identifying which set certain input data belongs to. In this
investigation, the classification task was used to determine whether or not a potato leaf is
infected with late blight. From the training of the SVM supervised learning classification
models using linear kernel and CNN with the adaptation of the AlexNet architecture, the
performance of each algorithm is compared when training it on the same data set.

The trained SVM model is a supervised learning algorithm developed with a linear
kernel; that is, a separation hyperplane is defined as a linear function that can separate the
data set into two classes corresponding to the healthy and infected states. In Figure 8, the
architecture used for the CNN models is shown; they are made up of three convolutional
layers with Relu activation functions and three maximum pooling layers, a flattening of
all layers, a dense layer with Relu activation, a dropout, and finally the classification layer
corresponding to a dense layer with special sigmoidal activation for binary classification.
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3.8. Validation

The validation of the classification models allows evaluating the performance of the
models obtained from Support Vector Machines (SVM) and CNN. The accuracy, precision,
sensitivity, and specificity metrics obtained from a confusion matrix were used. Likewise,
the receiver operating characteristic (ROC) curve was analyzed together with the calculation
of the area under the ROC curve (AUC).

4. Results and Discussion
4.1. App Design

For the visualization of the predictions of the classification models and their use in
a real environment, the design of a prototype for a mobile application was proposed that
allows the visualization and analysis of the data obtained. Figure 9 shows the prototypes
so that a user can diagnose a potato leaf from a mobile device and identify whether or
not it is infected with late blight. Initially, the user fills out a form with information about
the crop from which the sample is being taken, in order to collect data for later reading
and analysis. Within the information requested from the user is the type of crop, the
phenological stage, the variety, the species, and data on the locality or place where the crop
is located, such as temperature, humidity, and average rainfall. From a capture or upload
of an image, the application will show the result based on the supervised model integrated
in the application.
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The application prototypes, in addition to allowing the diagnosis of a sheet, contem-
plates access to users with an administrator role to visualize the general statistics of the
processed data. That is, the administrators will be able to observe graphs that provide them
with relevant information on the diagnoses made.

In the prototype (Figure 10a) of Figure 10, a bar diagram is initially observed, which
graphs the number of healthy and infected leaves that are processed per month. In this way,
historical results can be compared to determine which are the months where the potato
crops are affected mainly by late blight, and thus one is able to generate time series for
later analysis to support decision making. In the prototype (Figure 10b), a bar chart is
shown where the number of healthy and infected leaves grouped by age can be displayed,
information that allows evaluating which of the phenological stages of the crop is more
susceptible to being infected with the Phytophthora infestans fungus. In the prototypes
(Figure 10c) and (Figure 10d) of Figure 10, circular diagrams are observed that allow
visualizing the percentage of processed leaves grouped by species and variety. It can be
seen that in early stages of crop development the disease does not attack significantly,
however, from month 4 onwards the leaves of the crop begin to show symptoms of late
blight infection. Finally, in the prototypes (Figure 10e) and (Figure 10f) of Figure 10, the
environmental conditions under which the diagnoses of both healthy and infected leaves
have been made are visualized. The environmental conditions under which the samples
were taken to form the data set correspond to a temperature that ranges between 9 ◦C and
12 ◦C, a relative humidity of 91%, average monthly rainfall of 885 mm and height above
the sea level of 2600 and 3050 to 3115 m.a.s.l.



Appl. Sci. 2022, 12, 9371 12 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 17 

shown where the number of healthy and infected leaves grouped by age can be displayed, 

information that allows evaluating which of the phenological stages of the crop is more 

susceptible to being infected with the Phytophthora infestans fungus. In the prototypes 

(Figure 10c) and (Figure 10d) of Figure 10, circular diagrams are observed that allow vis-

ualizing the percentage of processed leaves grouped by species and variety. It can be seen 

that in early stages of crop development the disease does not attack significantly, how-

ever, from month 4 onwards the leaves of the crop begin to show symptoms of late blight 

infection. Finally, in the prototypes (Figure 10e) and (Figure 10f) of Figure 10, the environ-

mental conditions under which the diagnoses of both healthy and infected leaves have 

been made are visualized. The environmental conditions under which the samples were 

taken to form the data set correspond to a temperature that ranges between 9 °C and 12 

°C, a relative humidity of 91%, average monthly rainfall of 885 mm and height above the

sea level of 2600 and 3050 to 3115 m.a.s.l. 

Figure 10. Prototype designs of obtained data visualization for administrators. Figure 10. Prototype designs of obtained data visualization for administrators.

4.2. Experimental Evaluation

One of the tools used to evaluate the performance of supervised learning models
trained for the classification of potato late blight disease was the confusion matrix. The
matrix columns represent the labels predicted by the model, and the rows represent the
true labels of the image.

Figure 11 shows the confusion matrices of the CNN models. The CNN confusion
matrix trained with the original data set comprises 64 test images corresponding to 20% of
the original image set. It is observed that it correctly classified 56 images and 8 images with
the wrong labels. Regarding the confusion matrix of the CNN trained with the augmented
data set, it was created with a total of 448 images corresponding to 20% of the augmented
data set, and it is observed that it correctly classified 417 images and 31 wrong label images.
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Figure 11. Confusion Matrices of the CNN Models.

Figure 12 shows the confusion matrices of the Support Vector Machine models. The
SVM model confusion matrices were created from 128 test images. Of the 128 images
tested, it is observed that the SVM model trained with color features correctly classified
112 images, the SVM model trained with texture features correctly classified 82 images; the
SVM model trained with PCA features correctly classified 90 images with the correct labels,
and the SVM model trained with combined features correctly classified 109 images.
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Based on the results obtained from the confusion matrices of the SVM and CNN
models, the performance evaluation metrics of Equations (1)–(5) were calculated. Table 3
shows the percentage of correct predictions against each model’s total data or the accuracy.
CNN models had the best performance compared to SVM models. The CNN model trained
on the augmented dataset achieved an accuracy of 93%, while the CNN trained on the
original dataset achieved an accuracy of 87.5%. Within the SVM models, the model trained
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with color features obtained better results with 87.5% accuracy, while the model trained
with texture, PCA, and combined features obtained 64%, 70.3%, and 85%, respectively.

Table 3. Evaluation metrics from confusion matrices.

Model
Metrics

Acurracy Precision Sensitivity Score-F Specificity

CNN
N/A 0.875 0.891 0.891 0.891 0.851

Augmented 0.93 0.929 0.933 0.931 0.932

SVM

Color 0.875 0.861 0.888 0.875 0.888
Texture 0.64 0.626 0.666 0.646 0.655

PCA 0.703 0.704 0.682 0.693 0.701
Combined 0.851 0.823 0.888 0.854 0.883

Regarding the precision or quality of the models in the classification of the leaves, it is
observed that the CNN trained with the increased data set achieves the highest precision
with 92.9% in classifying leaves with the disease. Regarding the SVM models, the highest
accuracy that can be achieved is 86.1% when training with the color characteristics.

The sensitivity or capacity of the models to correctly detect and classify leaves infected
with late blight is shown in column 5 of Table 3. It is observed that the CNN model trained
with the increased data set presents better performance with 93.3% of sensitivity; that is,
this model can detect and identify 93 out of 100 images infected with late blight. In turn,
the SVM model trained with color features has 88.8% sensitivity, respectively.

Additionally, the models’ specificity or capacity to detect the negative samples, that
is, the leaves that do not present late blight damage, is evidenced. The specificity of the
CNN model trained with the augmented data set is 93.2%, which indicates that its ability
to discriminate the cases where the leaves do not present late blight infection is high, while
the SVM model trained with characteristics color has 88.8% specificity.

The ROC curve shows the relationship between the true and false positive rates. Table 4
shows the area under the curve of each ROC curve corresponding to each trained model.

Table 4. Comparative matrix of results of the classifiers—ROC AUC.

Model Characteristic AUC

CNN
N/A 0.957

Augmented 0.973

SVM

Color 0.875
Texture 0.641

PCA 0.702
Combined 0.852

Figure 13 shows the ROC curves corresponding to the CNN models trained with the
original and augmented data sets, respectively. Compared to the evaluation carried out
with the ROC curves, it can be seen that the convolutional neural network models stand out
from the others, based on the fact that the CNN models obtained an AUC greater than 0.95.
The CNN trained on the augmented data set obtained an AUC equal to 0.97, indicating
that there is a 97% chance that this model can distinguish between a healthy leaf and a
leaf infected with late blight. It is followed by the CNN trained with the original data set,
which obtained an AUC equal to 0.95.
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Of the SVM models, the SVM that obtained the best results in ROC curve analysis
was the one trained with color features with an AUC equal to 0.87, followed by the models
trained with combined PCA and texture features with AUC equal to 0.85, 0.7, and 0.64
respectively. Figure 14 shows the ROC curves obtained by validating the SVM models
trained with color, texture, PCA, and combined characteristics. The line yellow represents
the 0.0 point to the 1.1 point is called the reference diagonal, or non-discrimination line.
Each point of the ROC curve (line blue) corresponds to a possible cut-off point of the
diagnostic test, and informs us of its respective sensitivity (Y-axis) and 1-specificity (X-axis).
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5. Conclusions and Future Work

This research project shows a mobile system that aims to assist Boyacá-Colombian
farmers to identify late blight disease in potato crops of their plants non-invasively by
inputting an image of a single plant leaf into the system and producing a early detection
result based on the image proccesing.

In the review of the literature, it is observed that there is no efficient process to detect
the presence of the fungus Phytophthora Infestans in early stages in potato crops, which
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is why a new method was proposed based on supervised learning models to detect and
diagnose the disease using mobile applications.

Of the image processing and segmentation algorithms tested, the method with which
the best results were obtained in the image background removal process was the HSV color
range segmentation algorithm. Regarding classification, the CNN model obtained better
results when trained with the augmented data set. On the other hand, the SVM models
obtained better results when the algorithm was trained with the color features, showing
that the color features play an important role in the development of the SVM classification
models. The models were trained and applied to even augmented datasets and validated
using typical performance metrics, confusion matrix, ROC, and AUC, showing that the
CNN classifier achieved the highest accuracy with 93.2% compared to the SVM classifiers,
where the highest accuracy was 87.5%.

For the integration of the supervised learning model and the use of this in a real
space, a mobile application was developed that allows early detection and diagnosis of the
presence of the fungus Phytophthora Infestans from images of potato leaves. In addition,
it allows comparing and maintain a history of late blight detection for the sectorized
production of crops, which will give way to identify conditions where the crop may be
more prone to contagion and infection.

Currently, the supervised learning model allows to analyze and determine the current
state of a potato leaf, and it is expected that future work will work on models that also allow
the stem, tuber, and plant to be analyzed completely. Additionally, it would be significant
to analyze the crop from video capture in a way that allows farmers to carry out precision
agriculture and supports them in making decisions to improve yield by taking preventive
and corrective actions against blight disease, late in the potato crop.

The next step in our project is to create a multi-platform application that can detect
the disease of every type of crop and can provide the proper solution for those diseases of
the crop in real time. Additionally, we aim to aggregate with more data than the current
dataset.
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