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Abstract: To effectively analyze the safety risk of chemical enterprises and ensure the safety of
production and management of enterprises, the contradiction problems in the process of index
selection and risk early warning model in practical application are addressed. In this paper, extension
engineering is introduced into the safety-security field of chemical enterprises to extract hidden
useful information from the production environment and outdoor environment data and provide
decision support for the managers of chemical enterprises. First, based on data preprocessing and
extension analysis, the safety-security data of chemical enterprises that meet the quality requirements
and can be efficiently mined are searched. Then, the outdoor environment is combined in the paper
to conduct the mining of these data in two aspects: (1) comprehensive analysis and evaluation of
data quality; (2) key factors affecting factory safety mining, realizing the safety-security evaluation of
intelligent factories in chemical enterprises. Based on the proposed chemical factory safety extension
prerisk model, the risk assessment of the safety status of a chemical enterprise in Hebei Province is
carried out. The research results of this paper provide a theoretical basis for the safety production
analysis of such chemical enterprises and put forward practical suggestions for preventing possible
accidents in the production process.

Keywords: chemical enterprises safety; security evaluation; intelligent data analysis; extension
engineering; dependent function

1. Introduction

Industrial safety is an important guarantee technology for industrial upgrading to
fully automated production of intelligent systems. Industrial accidents have their own char-
acteristics; accidents are relatively rare compared with the whole life cycle of production,
and the scope of consequences is large [1,2]. The characteristics of equipment reliability
are not always the determining factors when assessing industrial safety risks; the indus-
trial safety of complex processes is influenced by both external and internal factors [3,4].
During the production process, the geographical location, the quality of the raw materials,
the weather conditions, unsafe conditions of the environment, the technological process,
unsafe operation of personnel, the unsafe state of objects, and many other factors can
cause negative phenomena. However, most of the raw materials and products of chemical
enterprises are in flammable, explosive, toxic, and harmful states. These dangerous goods
easily cause casualties and property losses in accidents [5,6]. Early detection of these factors
is important to take timely preventive measures to prevent the occurrence of harm. To
study the abnormal behavior of complex process systems, the mathematical modeling
method is usually used, and the problem of studying various processes is simplified to the
problem of studying the properties of mathematical models. Thus, the risk early warning
model for the production process of chemical enterprises is established, and the massive
data accumulated over the years in the chemical industry are used for risk early warning.
Therefore, how to incorporate environmental factors in the production process into the
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safety assessment and provide safety-security assisted decision support for chemical enter-
prise managers has become an urgent problem to be solved in the safety-security field of
intelligent factories.

Most of the existing factory risk assessment methods use index or probability eval-
uation [7–9]. The adoption of the index makes the system structure complex, and it is
difficult to express that the evaluation of the risk unit has a feasible method using the
probability. The evaluation method focuses on different production links and aspects that
are not the same, and it is difficult to form a complete system. At the same time, although
single factor and single index evaluation are widely used in a short time due to their sim-
plicity and convenience, there are some shortcomings, such as insufficient comprehensive
information and easy distortion, which cannot meet the increasingly strict and accurate re-
quirements of chemical factory risk evaluation. In recent years, it has gradually developed
from single factor and single index analysis to systematic comprehensive evaluation and
examination direction. For the evaluation of complex dangerous environments, the most
commonly used evaluation methods mainly include the comprehensive index method [10],
set pair analysis method [11], fuzzy comprehensive evaluation method [12], neural network
method [13], gray theory comprehensive evaluation method [14], and ICI Mond evaluation
method [15]. The literature [7] established a security system dynamics model based on
the methods of system dynamics. The model reflects the complex relationship among the
safety factors of the storage and distribution station. The methods of system dynamics
are used to model and analyze the relationship among the safety influencing factors. The
literature [10] established the index system for coal mine safety assessment according to
the influencing factors of coal mine safety: a comprehensive safety evaluation model for
coal mine is built on the basis of analytic hierarchy process, and the effective safe manage-
ment measures are proposed. The literature [11] built an evaluation and prediction model
for occupational hazards in coal mines based on set pair analysis. The model uses three
aspects of identity–discrepancy–contrast to study the relationship between uncertainty and
certainty of a factor or event. The literature [12] established a quantitative risk assessment
model of the third party damage based on analytic hierarchy process and fuzzy compre-
hensive evaluation. The weight of factors could be determined by improving the analytic
hierarchy process, and the importance of each factor is calculated by fuzzy comprehensive
evaluation model. The literature [13] proposed a 5M safety model by combination with
the characteristics of the rail transit safety assessment, including complexity, dynamic,
ambiguity, etc. The neural network method is used to dynamically evaluate railway safety.
The application of gray numbers will improve the ability of decision-making models to
respond to the ambiguity that arises from having incomplete information. The GM (1,1)
model is constructed by using annual datasets of work-related deaths from five branches:
mining and commercial casualties, highway traffic accidents, railway traffic accidents, fire
disasters, and all fatal casualties [14]. The safety assessment of a waste incineration power
plant is carried out by using Imperial Chemical Company (ICI, Kaohsiung, Taiwan) Mond
fire and explosion index evaluation of toxicity. The difference between before and after
compensation of the total risk coefficient R of different units in the plant is obtained [15].
Zhang et al. analyzed the evaluation method of the safety degree of chemical enterprises.
A risk evaluation model of the coal chemical production process is established based on
fuzzy comprehensive evaluation theory. It provides a theoretical basis for the safety pro-
duction analysis of such coal chemical enterprises and puts forward practical suggestions
for preventing accidents that may occur in the process of production [16]. Orsoni A. com-
bined simulation and fuzzy logic techniques, considered the domino effect of possible
unexpected events, and conducted a systematic risk assessment of the design and layout
configuration specified for the plant handling hazardous substances. The design schemes
are evaluated and compared quantitatively by the fuzzy method [17]. A mathematical
model of the styrene production process function was established by using neural network
technology. Based on the prediction results, some suggestions are put forward for the in-
dustrial safety assessment of special hazardous production processes [18]. Bozzano M. et al.
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combined system design activities with safety assessment and the methods used to help
safety engineers realize the automation of some working stages to maintain an adequate
level of safety [19]. Alanen J. et al. established a network security risk analysis method
for industrial control systems. Based on the hybrid risk assessment ontology, security risk
assessment management is carried out, and the method is successfully demonstrated [20].
However, most of the existing methods are greatly affected by subjective factors, such as
the fuzzy comprehensive evaluation method [21,22]. Some are dependent on the quality
and quantity of sample data, and the physical significance is not clear enough, such as
the neural network method [23,24], and some are too complex to be calculated and go
against popularization and application, such as the comprehensive index method. The
most important step in the traditional evaluation method is determining the evaluation
index and its weight; mostly, a single weighting method is used. The subjective weighting
method is subjectively influenced by decision-makers and lacks objectivity. The objective
weighting method ignores the difference in the importance of indicators to evaluation
objects [25]. Therefore, we consider that the importance degree of different indicators is
different in the actual evaluation work, and the evaluation of the importance of indicators
will be affected by the subjective willingness of decision-makers. Meanwhile, the data
collected by the production monitoring system are certain values and have some errors.
These values are difficult to effectively describe the fuzzy, complex, and uncertain accident
patterns of the system, and the states of these patterns usually fluctuate within a range.

To the best of our knowledge, there is no research on the impact of using extension
engineering on the safety-security evaluation of the factory and the production environ-
ment of the workshop on personnel work [26–30]. Extension data mining uses an extension
set as the basis of set theory, combined with extension methods and existing data mining
methods, to mine knowledge based on extension transformation in a database or data ware-
house, and the bases for decision-making and technical innovation in the economy, finance,
management, marketing, planning, medicine, design, and other fields are provided [31,32].
Extenics is a new discipline established by scholars led by Cai Wen, Yang Chunyan, etc. It
uses formal models to study the possibility of things’ expansion and the rules and methods
of exploration and innovation, and it is also used to solve contradictory problems [33–35].
The core of extenics is transforming contradictory problems into compatible problems, and
the key of extenics is determining the weight coefficient of the evaluation index. There are
many contradictory problems in the real world, as in the production process of chemical
enterprises as the chemical workshop wants to achieve higher production in the safest state.
However, the production of more finished products requires the workshop and personnel
to bear a large load, which can easily amplify the potential safety hazards. It also means
that the warehouse needs to store a larger amount of finished products, and the possibility
of damage is increased [36–40]. At the same time, due to the particularity and individual
differences of actual production operations and working conditions, the production safety
influencing factors of different workshops are not the same, so the parameter selection of
workshop safety level evaluation is also different. In the specific production process, the
parameter selection of safety factors and the evaluation index weight coefficient need to be
determined by more objective and scientific methods. In this paper, the weight coefficient
determined by the establishment of an analytic digital model is completely transformed
into field monitoring data.

The safety evaluation of chemical plant (SECP) model proposed in this paper is
an extension mathematical model driven by the real-time monitoring data and outdoor
meteorological data of the production operation in the factory. It is used to solve the
contradictions of production requirements and safety prevention and conduct regular safety
evaluation of the production safety prevention in the chemical factory. In chemical plant
security evaluation, data integrity, correctness, and consistency caused by measurement,
calculation, packet loss, and human factors in the actual data input and collection process
are greatly affected by data errors, incomplete information, and human subjective factors.
Since hardware error cannot be avoided, it is difficult for the data measured in the industrial
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field to be an accurate value. It is a common phenomenon that the time series data
collected by the on-site monitoring system of the enterprise have local fluctuations, and
such fluctuations are often random. In terms of data collection, this may lead to data
deviation, resulting in the distortion of the data in terms of reflecting the real world. That
is, there is an uncertainty difference in the process of characterizing real-world production
systems by using data, and this uncertainty will reduce the accuracy of the final safety
evaluation results. This paper uses the chemical factory safety extension prerisk model to
assess the process risk of chemical production systems. The uncertainty of the data can be
well described by converting the observed values into interval data. The risk assessment
of the production process using extension theory can relate the degree of risk to each
influencing factor (including production factors and environmental factors). Through the
multi-level index division, the risk degree of the joint action of the factory production
equipment and the surrounding environment can be assessed to achieve the purpose of
early warning. This paper first comprehensively analyzes and evaluates the data quality.
It has good objectivity, fairness, and interpretability. The key point is selecting suitable
examination evaluation index dimensions according to the application scenes. Second,
because the sensor has certain errors in collecting data, the certainty numerical data are
converted into uncertainty interval data to make the later training results more accurate,
and the index weight is determined by the game theory comprehensive weighting method.
Finally, the safety comprehensive evaluation is carried out by the uncertainty elementary
dependent function in two nested regions.

The rest of the paper is organized as follows: Section 2 discusses the primitive rep-
resentation of safety-security data of chemical enterprises. Section 3 provides a chemical
factory safety extension prerisk model and discusses the details of the model. Section 4
presents the evaluation and analysis of safety and environmental data of each workshop in
chemical enterprises. Section 5 discusses the evaluation results. Section 6 concludes the
paper and discusses possible future works.

2. Primitive Representation of Safety-Security Data of Chemical Enterprises

SECP is a process of systematically collecting information according to the require-
ments of production objectives and safety principles, and the safety level of process moni-
toring and the production environment in the process of production operations are judged
and evaluated. SECP includes workshop safety evaluation, hazard source risk assessment,
toxicant analysis, employee self-assessment, and accident consequence simulation analysis.
As real-time data monitoring of gas concentration in workshops and data collection of in-
door and outdoor environment information are the main methods to obtain safety-security
feedback information, they are also important ways to check the safety level and evaluate
production safety and the environment. In this paper, the analysis and mining of the
safety and environmental data of chemical industry (SEDCI) mainly aimed at real-time gas
concentration data. The outdoor meteorological index data are used to assist in determining
the daily risk and the suspected hazard source location, and then the workshop working
condition data (noise, light, etc.) are combined for analysis, the value implied by these
data is fully mined to further improve workshop safety and work quality. The following is
the preparation stage of “workshop safety and environment evaluation data” and “factory
outdoor meteorological data”, which are expressed in primitive form and divided into two
steps: data selection and data preprocessing.

2.1. Data Selection

SECP indicators should be selected according to the actual production operation
environment. Based on the results of field investigation, it is found that the working
environment of the factory is complex, and the dangerous sources and dangerous situations
are complex. Through investigation, screening, and confirmation with the field engineer,
the indexes with smaller influencing factors are removed. Meanwhile, according to the
following principles: (1) Principles of practicality and representativeness: practicability
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is the first principle and basic premise of constructing the early warning index system.
There are many factors that cause accidents in chemical plants, and the problems involved
are also very wide. People often choose many evaluation indicators in order to achieve a
more comprehensive and accurate description of the research object. However, there are
many factors that cannot reflect specific problems well. These indicators not only have
great difficulties in quantification and operation but also may affect the accuracy of the
evaluation results. Therefore, when establishing the early warning index system, it should
have a certain representativeness so as to make the established early warning index more
concise and easy to operate. In this paper, the indicators are screened according to the
opinions of experts in the field, and a simple and easy-to-operate evaluation index system
is established. (2) Principles of scientificity and systematicness: the indicators should be
based on the prior knowledge of the field, and it should be able to objectively reflect the
various factors that affect the production of chemical products of an enterprise and their
interrelationships so as to accurately reveal the safety status of chemical enterprises. Early
warning management involves all aspects of the safety management of chemical enterprises.
The accuracy of early warning can be ensured only by comprehensively integrating and
analyzing various risk factors and using a number of quantitative indicators to predict
the risk degree of chemical production. (3) The principle of combining qualitative and
quantitative aspects: quantitative indicators can reduce the influence of subjective factors
and try to make the early warning objective and real. Due to the influencing factors being
complex, it is sometimes difficult to accurately describe with numbers. Especially when the
data are insufficient, qualitative indicators are particularly important, which can be used
to identify a certain development trend of the stage. Therefore, it is necessary to consider
these two indicators in the early warning. The following parameters are selected as the
evaluation basis in this paper, as shown in Figure 1.
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Figure 1. SEDCI index screening and hierarchical division.

Based on the basic indicators of the workshop, the thermal comfort index and visible
light environment are introduced to evaluate the influence of the working environment
on the working state of employees in the workshop. Among them, the thermal comfort
index is introduced to evaluate the thermal environment, and the thermal comfort index
refers to the comprehensive reflection of various factors of the human body on the thermal
environment. This paper selects the predicted mean vote (PMV) to describe the thermal
comfort index. The original range of the PMV index is [−3, +3], and the corresponding
thermal sensation is 7 levels of cold, cool, slightly cool, comfortable, slightly warm, warm,
and heat. In this paper, the PMV index is redefined according to field working conditions,
as shown in Table 1.
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Table 1. PMV level division.

PMV 0 1 2 3

Thermal sensation comfortable more comfortable heat overheat

The data collection in the visible light environment is performed by the Likert 5-
point scale method. During the production process, visible light intensity data at different
positions in the workshop are collected. In this paper, the visible light environment
assessment index level is determined according to the measured environment, as shown in
Table 2.

Table 2. Visible light index division.

Visible Light Index 0 1 2 3 4

Visible light index well better general poor bad

The purpose of data selection is to determine the operation object of the discovery
task, which means extracting relevant data from the original database to form the target
data according to the needs of users.

R1(t) =


N1(t), c1, v1(t)

c2, v2(t)
. . . . . . . . . . . .

cn, vn(t)


where N1(t) is the object, c is the feature name of the object, v is the magnitude of N1(t)
on c, and t is a general parameter. For example, for SEDCI, N1(t) = hydrogen production
workshop A, c1 = hydrogen concentration, c2 = oxygen concentration, c3 = hydrogen sulfide
concentration..., vn(t) is the magnitude corresponding to cn. At the same time, four hydrogen
workshops in the factory are selected as examples to select the following indexes for the
data from March 2019 to August 2019 as the SEDCI. SEDCI is the real monitoring data for
gas chemical production workshops in the real world. The workshops monitor and control
the production behaviors of the systems by integrating digits and equipment. The collected
data contain the following information: (1) the running data of production system between
March and August (excluding equipment maintenance and time outside the production
schedule); (2) the data of 2000 collection points in four hydrogen workshops are collected
(one point represents a collected attribute, such as the temperature of equipment is a point).
Since there are a large number of attributes irrelevant to safety evaluation in the collected
points, we have screened these attributes under the guidance of experts; (3) for production-
related data, the read frequency from the real-time database is once per second; (4) for
environment-related data, we collect them every five minutes.

2.2. Data Preprocessing

In modern society, data are the necessary foundation for enterprises to progress to
informationalization. However, with the rapid expansion of enterprise application system
data, the emergence of new applications, and the integration of applications, data quality
problems have become increasingly prominent. These problems are mainly reflected in
incorrect data, incomplete data, inconsistent data, and other aspects. Poor-quality data have
become an important factor affecting the correct decision-making, safety prevention, and
dangerous source investigation of chemical enterprises. Therefore, data quality management
will become an essential link in the informationalization process of chemical enterprises.

Data analysis and mining rely on real and accurate data, and the quality of data affects
the success or failure of data application. There are many reasons for the low data quality
of chemical factories studied in this paper, including careless input of original data, low
accuracy of equipment, interference of the external environment, data packet loss, and
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dislocation of data integration. Data collection in workshops is frequent and varied, and
data quality problems are more prominent. Due to the large amount of data, the complex
correlation between data and the diversification of data structure, the consistency and
integrity of data are difficult to maintain. This is a potential vulnerability for obtaining
knowledge-assisted security decision-making through data mining. Data preprocessing
processes the extracted data R1(t) to meet the requirements of data mining. Its main work
includes data filling, data deduplication, outlier data deletion, derivation calculation of
missing data, and data type conversion. This step is mainly studying the quality of data
and finding datasets that meet the requirements and can be effectively mined to prepare for
further analysis. The dataset can be represented by the multidimensional matter element R2:

R2(t) =


N2(t), c1, v1(t)

c2, v2(t)
. . . . . . . . . . . .

cn, vn(t)


At present, the problem of data quality has become an important factor affecting the

application of data mining. Due to the existence of incorrect, incomplete, redundant, or
sparse data, the credibility of the final mining conclusion is reduced. For example, in SECP,
abnormal data are often generated due to incorrect input of transcribing information and
other factors. At this time, these abnormal data must first be eliminated and cleaned, and
then data mining is performed. Otherwise, data mining cannot be performed. Even if the
data mining is made, the accuracy of conclusion is also very low, and it greatly affects the
application value. However, data cleaning work often takes considerable time. With the
increase in data, new information with possible data quality problems is imported into
the database every time and every day. Data cleaning must be carried out continuously to
ensure the data quality used for data mining.

Since the SEDCI is mainly sensor data, there are discrete numerical data and sinusoidal
electrical signals. First, the quartile method is adopted in this paper for discrete data, and
the daily data are regarded as an individual. The range of outliers of data is determined
by historical data, as shown in Figure 2. The outlier data and daily data missing by more
than 50% are deleted, and the missing value is interpolated by cubic spline interpolation.
For sinusoidal signals, the collected signal data are converted into the time domain to the
frequency domain, and error data, such as peak load shifting and abnormal cycles, are
removed. The first digit of the daily data individual is taken as the first peak position. The
last bit is taken as the last trough position. Daily individual data are interpolated to the
same length, and then the data are inversely transformed from the time domain to the
frequency domain. Thus, an extension set is established on the raw dataset.
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The matter element extension model in extenics is an evaluation method to solve the
fuzziness, diversity, and incompatibility of evaluation objects, but there are also imperfec-
tions in theory and application. For example, when the index data exceed the controlled
field, the dependent function cannot be calculated and, thus, cannot be evaluated. At
the same time, due to the influence of each index unit, an excessively large magnitude
difference between indexes will easily affect the accuracy of the analysis results. To make
each index more convenient for scientific induction, the data should be normalized. The
influence of each index on the workshop safety environment is both positive and negative,
so different normalization treatments should be carried out. For the indicator of positive
effect, the expression is:

vn(t)
′ =

vn(t)− vnmin

vnmax − vnmin
(1)

Additionally, for the indicator of negative effect:

vn(t)
′ =

vnmax − vn(t)
vnmax − vnmin

(2)

The data of each index value after data preprocessing are evaluated by the extension
method of point to interval. The correct, complete, and consistent set of data individuals
is selected from the raw dataset so that the data quality can meet the requirements of
effectively mining and determining the weight of the model to ensure the balance between
the available quality of data and the original information of data. Therefore, the matter
element model of the workshop safety evaluation index data quality is denoted as:

B =

uB, cB1, vB1(t)
cB2, vB2(t)
cB3, vB3(t)

 =

uB, correctness vB1(t)
integrity vB2(t)

consistency vB3(t)


The judgment standards, such as correctness, integrity, and consistency, are as follows.

The score of each index is the ratio of counting to total number after querying according to
the standard:

(1). column not null (weight: 9, expected value: 90): integrity;
(2). column: reach the specified length (weight: 10, expected value: 90): effectiveness;
(3). column: value is within the standard range (weight: 10, expected value: 98): effectiveness.

According to the definition of the extension set and the type of extension transform, the
domain extension transform, association rule extension transform, and element extension
transform are carried out to select the dataset for mining.

3. Chemical Factory Safety Extension Prerisk Model

The index system of safety and environmental data of chemical enterprises is de-
termined, and the index weight is determined by using the comprehensive weighting
method based on game theory. The extension prerisk model of safety and environmental
data of chemical enterprises is established by combining the one-dimensional uncertainty
elementary dependent function in two nested regions, which provides theoretical support
for evaluating the safety and environmental data of chemical enterprises.

3.1. Comprehensive Weighting Method Based on Game Theory

There are many methods to calculate the weight of indicators, such as the analytic
hierarchy process (AHP), simple correlation function method, entropy weight method,
gray correlation method, neural network, and expert scoring method. Most of them are
subjective or too complex, and they are inconvenient to use in practice, and some of them
rely too much on data. Therefore, game theory combines the subjective weighting method
(the fuzzy analytic hierarchy process (FAHP) and the objective weighting method (the
coefficient of variation method)) to improve the scientificity of weight assignment in this
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paper, which not only overcomes the subjective deficiency of the AHP method but also
makes up for the defects of the coefficient of variation method that relies too much on
data and ignores the important effect of indexes on the evaluation objects. The weights
obtained by the two weighting methods are optimized comprehensively, and then the
comprehensive weights of safety and environmental data indexes of chemical enterprises
are obtained.

Suppose L kinds of methods are used to calculate the index weight of safety and
environmental data of chemical enterprises, and the value of L is 2 in this paper. The basic
weight set is ωk = {ωk1,ωk2, . . . ,ωkm}(k = 1, 2, . . . , L), and we set α = {α1,α2, . . . ,αk} as a
linear combination coefficient. Then, any combination of L vectors is:

ω =
L

∑
k=1

αkωT
k , αk > 0 (3)

With the aim of minimizing the deviation with ω and each ωk, L linear combination
coefficients αk in Formula (3) are optimized to obtain the most satisfactory weight ωk* in ω.
The countermeasure mode thus obtained is:

min

∣∣∣∣∣
∣∣∣∣∣ L

∑
k=1

αkωT
k −ωk

∣∣∣∣∣
∣∣∣∣∣
2

, k = 1, 2, · · · , L (4)

The linear equations of the optimal derivative conditions equivalent to Formula (4) are:
ω1·ωT

1 ω1·ωT
2 · · · ω1·ωT

L
ω2·ωT

1 ω2·ωT
2 · · · ω2·ωT

L
...

... · · ·
...

ωL·ωT
1 ωL·ωT

2 · · · ωL·ωT
L




α1
α2
...

αL

 =


ω1·ωT

1
ω2·ωT

2
...

ωL·ωT
L

 (5)

where (α1,α2, . . . ,αL) is calculated and normalized:

α∗k = αk

/
L

∑
k=1

αk (6)

Then, the comprehensive weight of the evaluation index obtained by combination
weighting is:

ω∗ =
L

∑
k=1

α∗k ωT
k (7)

The comprehensive weights ω* obtained by the optimization of Formula (7) are
substituted into the one-dimensional uncertainty elementary dependent function in two
nested regions formula, and the evaluation results of safety and environmental data of
chemical enterprises can be obtained.

3.2. Establish the Extension Prerisk Model

This paper uses a one-dimensional uncertainty elementary dependent function in two
nested regions to conduct quantitative calculations. The safety and environmental data of
the chemical enterprises index are shown in Figure 1. The calculation steps are as follows.

3.2.1. Establish the Extension Matter Element

The extension matter element is denoted as Q = (U, X, V). In this paper, the influencing
factor set of safety and environmental data of chemical enterprises is X = {X1, X2}, where
X1 = {X11, X12, X13, X14, X15, X16, X17, X18, X19}, and X2 = {X21, X22, X23, X24}.

In this paper, the safety and environmental data of chemical enterprises are evaluated
at four levels. The evaluation level set is U = {U1, U2, U3, U4}, where U1 is nonrisk, U2 is
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light risk, U3 is medium risk, and U4 is heavy risk. V is the evaluation set of U with respect
to X.

3.2.2. Determine the Classical Field and Controlled Field

The classical field of safety and environmental data of chemical enterprises is repre-
sented by Qji, and its expression is as follows:

Qji =
(
Uj, Xi, Vj

)
=


Uj Xi1

〈
aji1, bji1

〉
,

〈
a′ ji1, b′ ji1

〉
Xi2

〈
aji2, bji2

〉
,

〈
a′ ji2, b′ ji2

〉
· · · · · · · · ·
Xim

〈
ajim, bjim

〉
,
〈

a′ jim, b′ jim
〉


where Uj is the Jth prerisk level, j = 1, 2, 3, 4; Xin is the influencing factor, n = 1, 2, . . . , m,
i = 1, 2, and Vj is the value range of each index at Uj.

The expression of the controlled field Qui is:

Qui = (U, Xi, Vu) =


U Xi1 〈aui1, bui1〉

Xi2 〈aui2, bui2〉
· · · · · ·
Xim 〈auim, buim〉


where U represents all prerisk levels and Vu is the value range of Xin.

The matter element to be evaluated is determined.

R =


Xi Xi1 〈yi1, zi1〉

Xi2 〈yi2, zi2〉
· · · · · ·
Xim 〈yim, zim〉


where i = 1, 2.

3.2.3. Calculate the Correlation Degree

1. The one-dimensional certainty elementary dependent function in two nested regions
is the distance between point x and interval X0.

Definition 1. Let x be any point on the real axis, X0 = <a, b> be any interval in the real domain,
and called

ρ(x, X0) =

∣∣∣∣x− a + b
2

∣∣∣∣− b− a
2

(8)

is the distance between point x and interval X0.

In practical problems, in addition to the position relation between a point and an
interval, it is often necessary to consider the position relation between a point and two
intervals.

Definition 2. Let X0 = <a, b>, X = <c, d>, and X0 ⊂ X; then, the position value of point x
regarding the nested interval composed of intervals X0 and X is specified as

D(x, X0, X) =


ρ(x, X)− ρ(x, X0), ρ(x, X) 6= ρ(x, X0) and x /∈ X0,
ρ(x, X)− ρ(x, X0) + a− b, ρ(x, X) = ρ(x, X0) and x ∈ X0,
a− b, ρ(x, X) = ρ(x, X0).

(9)

D(x, X0, X) describes the position relation of point x regarding the nested interval composed of
intervals X0 and X.
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According to the definition of distance and position value, it is obvious that D(x, X0, X) < 0.

Definition 3. Let X0 = 〈a, b〉, X = 〈c, d〉, and X0 ⊂ X, denoting the common endpoint of X0 and
X is xz (if there is no common endpoint, xz is an empty set); then, for any x 6= xz,

K(X) =


ρ(x,X0)

D(x,X0,X)
− 1, ρ(x, X0) = ρ(x, X) and x /∈ X0

ρ(x,X0)
D(x,X0,X)

, others
(10)

K(x) is the elementary dependent function of point x with respect to X0 and X.

2. One-dimensional uncertainty elementary dependent function in two nested regions.
Usually, extension theory calculates distance from point to interval when dealing with

evaluation problems. Since this paper is to evaluate the safety risks in chemical enterprises,
the real value is distorted due to the fluctuation in the environment, personnel operation,
and data acquisition process in the workshop site. It is difficult to use definite measurement
values to represent the actual running state of the equipment; that is, the acquisition results
have uncertain fluctuations. Therefore, we convert the determined measurement value into
the form of uncertain interval value to reduce the influence of external factors and make
the evaluation results more objective and scientific.

(1) Combining the interval distance formula of the one-dimensional uncertainty ele-
mentary dependent function in two nested regions, the distance value of each first level
index in the four prerisk levels is calculated as ρiu, where i = 1, 2, u = 1, 2, 3, 4. The
calculation formula is shown as follows:

ρ(X, Ω1) =

∣∣∣∣ x1 + x2

2
− a1 + a2

2

∣∣∣∣−( a2 − a1

2
− x2 − x1

2

)
(11)

ρ(X, Ω2) =

∣∣∣∣ x1 + x2

2
− b1 + b2

2

∣∣∣∣−( b2 − b1

2
− x2 − x1

2

)
(12)

where Ω1 is the classical field and Ω2 is the controlled field. Ω2 is the overall range of the
standard values of all evaluation indicators, and Ω1 is the range of each standard value of
the evaluation indicators by levels.

(2) Using the position value formula of the one-dimensional uncertainty elementary
dependent function in two nested regions, the position value of each first level index is
calculated as Diu(Xi, Ω1, Ω2), where i = 1, 2, u = 1, 2, 3, 4. The calculation formula is shown
as follows:

D(X, Ω1, Ω2) =


a1 − a2, ρ(X, Ω2) = ρ(X, Ω1)

ρ(X, Ω2)− ρ(X, Ω1) + a1 − a2, ρ(X, Ω2) 6= ρ(X, Ω1) and X ⊂ Ω1

ρ(X, Ω2)− ρ(X, Ω1), ρ(X, Ω2) 6= ρ(X, Ω1) and ∃x ∈ X−Ω1

(13)

(3) Using the formula of the one-dimensional uncertainty elementary dependent
function in two nested regions, the correlation degree of each first level index is calculated
as Ku(Xi), where i = 1, 2, u = 1, 2, 3, 4. The calculation formula is shown as follows:

K(X) =

{
ρ(X, Ω1)/D(X, Ω1, Ω2), ρ(X, Ω1) = ρ(X, Ω2) and ∃x ∈ X−Ω1

ρ(X, Ω1)/D(X, Ω2, Ω3), others
(14)

3.2.4. Extension Comprehensive Evaluation

First, according to step 4, the correlation matrix of each first-level index is calculated
as follows:

Ku(Xi) =

(
K1(X1) K2(X1)
K1(X2) K2(X2)

)
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Second, the weights of the two first-level indexes are calculated as follows:

ω = (ω1, ω2)

The comprehensive correlation degree of the four evaluation levels of safety and
environmental data in the four workshops of chemical enterprises is calculated by using
the fuzzy analytic hierarchy process (FAHP). The calculation formula is as follows:

K(X) = (ω1, ω2)

(
K1(X1) K2(X1)
K1(X2) K2(X2)

)
=
(
K1(X) K2(X)

)
(15)

where Ku(Xi) is the correlation function matrix of each first-level index, and K(X) is the
comprehensive correlation function matrix of safety and environmental data evaluation of
chemical enterprises.

Finally, according to the following formula:

K(X) = max
j=1,2,3,4

Kj(X) (16)

The safety and environmental data of four workshops in chemical enterprises are
comprehensively evaluated.

4. Evaluation and Analysis of Safety and Environmental Data of Each Workshop in
Chemical Enterprises

According to the chemical factory safety extension prerisk model, the real scene and
data of the specialty gas production workshop in a chemical plant are taken as an example
for calculation and analysis. The chemical enterprise area studied in this paper is located
in northern China. The city has a temperate continental monsoon climate. The spring is
varied, windy and dry, the summer is hot and has less rainfall, the autumn is mild, the
winter is cold and dry, the annual sunshine time is long, and the sunshine intensity is
high. The factory mainly produces hydrogen, nitrogen trifluoride, tungsten hexafluoride,
trifluorome- thanesulfonic acid, high-purity gas, and mixed gas. The annual output can
reach 7300 tons of specialty gas and 80,000 tons of liquid nitrogen. The production flow
chart of a workshop in the chemical plant is shown in Figure 3.

The production workshop has a large area and high lifting frame; gas monitoring
sensors need to be set in layers and sections (the data collection scheme is shown in
Figure 4), and the working environment is characterized by high noise, high temperature,
and dark lighting. The warehouse in the factory stores inflammable, explosive and toxic
raw materials, semifinished products, and finished products. Once an accident happens,
it will cause great harm to the life and safety of personnel. Gas leakage accidents are the
most common in the factory, while explosion accidents are the most harmful. An explosion
will cause a significant impact to the whole city, residents, and surrounding areas, and
the leaked toxic gases will cause harm to the factory area and surrounding people. At the
same time, the flammable, explosive, and toxic chemical raw materials and complicated
fire conditions in the factory area will greatly hinder the effective implementation of rescue
work by firefighters.

Through the calculation of Formula (7), the weight of each index of safety and envi-
ronmental data of chemical enterprises are shown in Table 3:

Table 3. First-level index weight value.

ω1 ω2

0.706 0.294
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The classical field and controlled field of safety and environmental data evaluation of
each workshop in chemical enterprises are shown in the following Tables 4 and 5:

Table 4. Classical field of indoor safety and environment indexes (N1).

N1 Nonrisk U1 Light Risk U2 Medium Risk U3 Heavy risk U4

hydrogen concentration 〈0.08, 0.25〉 〈0.25, 0.53〉 〈0.53, 0.79〉 〈0.79, 0.98〉
hydrogen sulfide concentration 〈0.05, 0.28〉 〈0.28, 0.52〉 〈0.52, 0.78〉 〈0.78, 0.95〉

methane concentration 〈0.12, 0.30〉 〈0.30, 0.57〉 〈0.57, 0.82〉 〈0.82, 0.98〉
indoor temperature 〈34.18, 36.32〉 〈36.32, 38.26〉 〈38.26, 40.06〉 〈40.06, 41.96〉

indoor humidity 〈7.86, 8.57〉 〈5.92, 7.86〉 〈3.82, 5.92〉 〈1.38, 3.82〉
noise 〈99.05, 99.32〉 〈99.32, 99.59〉 〈99.59, 99.82〉 〈99.82, 99.97〉

voltage 〈220.25, 228.88〉 〈228.88, 232.52〉 〈232.52, 236.12〉 〈236.12, 239.75〉
thermal comfort index 〈1.21, 1.82〉 〈1.82, 2.72〉 〈2.72, 3.26〉 〈3.26, 3.89〉

visible light 〈2.12, 2.67〉 〈2.67, 3.06〉 〈3.06, 3.46〉 〈3.46, 3.92〉

Table 5. Classical field of outdoor meteorological indexes (N2).

N2 Nonrisk U1 Light Risk U2 Medium Risk U3 Heavy Risk U4

outdoor temperature 〈32.18, 33.86〉 〈33.86, 35.06〉 〈35.06, 35.82〉 〈35.82, 36.75〉
outdoor humidity 〈39.63, 47.85〉 〈30.02, 39.63〉 〈18.86, 30.02〉 〈8.62, 18.86〉

light 〈570.95, 13,980.85〉 〈13,980.85, 27,390.85〉 〈27,390.85, 40,800.85〉 〈40,800.85, 54,158.65〉
wind 〈23.85, 30.72〉 〈16.58, 23.85〉 〈9.32, 16.58〉 〈1.78, 9.32〉
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Controlled field:

indoor safety and environment indexes hydrogen concentration 〈0, 1〉
hydrogen sulfide concentration 〈0, 1〉
methane concentration 〈0, 1〉
indoor temperature 〈34, 42〉
indoor humidity 〈1.3, 8.6〉
noise 〈99, 100〉
voltage 〈220, 240〉
thermal comfort index 〈1, 3〉
visible light 〈2, 4〉




outdoor meteorological indexes outdoor temperature 〈32, 37〉
outdoor humidity 〈7, 50〉
light 〈527, 54169〉
wind 〈0, 32〉


According to the actual situation of the chemical factory studied in this paper, the index

value of the matter element to be evaluated is determined. Taking hydrogen production in
the first workshop as an example, the index value is:

indoor safety and environment indexes hydrogen concentration 〈0.12, 0.18〉
hydrogen sulfide concentration 〈0.18, 0.23〉
methane concentration 〈0.21, 0.28〉
indoor temperature 〈34.96, 35.26〉
indoor humidity 〈8.12, 8.47〉
noise 〈99.10, 99.28〉
voltage 〈223.35, 227.50〉
thermal comfort index 〈1.52, 1.78〉
visible light 〈2.32, 2.62〉




outdoor meteorological indexes outdoor temperature 〈32.58, 33.72〉
outdoor humidity 〈40.28, 45.02〉
light 〈820.32, 12900.85〉
wind 〈27.85, 29.95〉


The second workshop:

indoor safety and environment indexes hydrogen concentration 〈0.32, 0.45〉
hydrogen sulfide concentration 〈0.42, 0.50〉
methane concentration 〈0.20, 0.27〉
indoor temperature 〈36.87, 38.12〉
indoor humidity 〈6.82, 7.46〉
noise 〈99.62, 99.72〉
voltage 〈230.42, 232.62〉
thermal comfort index 〈2.28, 2.46〉
visible light 〈2.89, 2.96〉




outdoor meteorological indexes outdoor temperature 〈34.05, 34.87〉
outdoor humidity 〈32.87, 34.98〉
light 〈15302.85, 23870.98〉
wind 〈18.02, 21.98〉


The third workshop:
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indoor safety and environment indexes hydrogen concentration 〈0.27, 0.38〉
hydrogen sulfide concentration 〈0.41, 0.49〉
methane concentration 〈0.38, 0.50〉
indoor temperature 〈37.28, 37.98〉
indoor humidity 〈6.21, 6.87〉
noise 〈99.36, 99.42〉
voltage 〈229.06, 230.96〉
thermal comfort index 〈2.08, 2.69〉
visible light 〈2.72, 3.02〉




outdoor meteorological indexes outdoor temperature 〈34.46, 34.96〉
outdoor humidity 〈33.59, 38.39〉
light 〈19980.85, 25697.55〉
wind 〈19.05, 22.97〉


The fourth workshop:

indoor safety and environment indexes hydrogen concentration 〈0.16, 0.22〉
hydrogen sulfide concentration 〈0.12, 0.21〉
methane concentration 〈0.18, 0.26〉
indoor temperature 〈35.06, 35.92〉
indoor humidity 〈8.22, 8.53〉
noise 〈99.07, 99.30〉
voltage 〈220.46, 226.90〉
thermal comfort index 〈1.62, 1.80〉
visible light 〈2.18, 2.58〉




outdoor meteorological indexes outdoor temperature 〈32.68, 33.46〉
outdoor humidity 〈42.40, 45.96〉
light 〈960.72, 11590.26〉
wind 〈26.39, 28.96〉


Taking hydrogen concentration in indoor safety and environmental indexes as an

example, the correlation degree is calculated as follows:
Nonrisk:
First, the interval distance values of hydrogen concentration calculated by

Formulas (11) and (12) are:

ρ(X11, Ω1) = −0.04, ρ(X11, Ω2) = −0.12

Second, by using Formula (13), the position value is:

D(X11, Ω1, Ω2) = −0.25

Finally, Formula (14) is used to obtain the correlation degree when there is nonrisk:

K(X11) = 0.16

Similarly, the correlation degree of light risk, medium risk, and heavy risk can be
calculated, and the results are −0.25, −0.52, and −0.68, respectively.

The correlation degree of each second index in indoor safety and environmental and
outdoor meteorological indexes are obtained, as shown in Tables 6 and 7.
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Table 6. Correlation degree of indoor safety and environmental indexes.

Nonrisk U1 Light Risk U2 Medium Risk U3 Heavy Risk U4

hydrogen concentration 0.16 −0.25 −0.52 −0.68
hydrogen sulfide concentration 0.14 −0.19 −0.44 −0.63

methane concentration 0.05 −0.16 −0.44 −0.62
indoor temperature 0.34 −0.32 −0.54 −0.64

indoor humidity 0.14 −0.23 −0.53 −0.64
noise 0.12 −0.37 −0.60 −0.73

voltage 0.13 −0.44 −0.57 −0.65
thermal comfort index 0.44 −0.17 −0.53. −0.60

visible light 0.06 −0.33 −0.51 −0.59

Table 7. Correlation degree of outdoor meteorological indexes.

Nonrisk U1 Light Risk U2 Medium Risk U3 Heavy Risk U4

outdoor temperature 0.07 −0.42 −0.65 −0.68
outdoor humidity 0.05 −0.27 −0.48 −0.63

light 0.02 −0.49 −0.66 −0.75
wind 0.11 −0.42 −0.62 −0.71

Therefore, according to Formula (15), the comprehensive correlation degree between
indoor safety and environmental indexes and outdoor meteorological indexes is calculated
as follows:

K1(X2) = (0.28, 0.26, 0.20, 0.26)


0.07 −0.42 −0.65 −0.68
0.05 −0.27 −0.48 −0.63
0.02 −0.49 −0.66 −0.75
0.11 −0.42 −0.62 −0.71

 = (0.065,−0.395,−0.600,−0.689)

By the above calculation, the weight and correlation degree of the two first-level
indexes can be obtained. Therefore, the comprehensive correlation degree of the first
workshop of safety and environmental data of chemical enterprises can be calculated
according to Formula (15), as shown in the following:

K1(X) = (0.706, 0.294)
(

0.158 −0.265 −0.515 −0.648
0.065 −0.395 −0.600 −0.689

)
= (0.131,−0.303,−0.540,−0.660)

Finally, according to Formula (16), the prerisk level of the first workshop of safety
and environmental data of chemical enterprises is determined to be nonrisk. Similarly, the
comprehensive correlation degree of the second workshop, third workshop, and fourth
workshop can be obtained as follows:

K2(X) = (−0.257, 0.187,−0.182,−0.702)

K3(X) = (−0.409, 0.297,−0.326,−0.289)

K4(X) = (−0.305, 0.238,−0.203,−0.593)

In the end, the prerisk levels of the four workshops are nonrisk, light-risk, light-risk,
and nonrisk.

5. Discussion

Risk analysis of chemical enterprises is an important part of safety production and
safety management of chemical enterprises, which is used to improve the level of safety
management of chemical enterprises. Therefore, the safety analysis method should not
only be scientific, reasonable, and clear but also more objective and truly reflect the safety
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status of chemical enterprises, which is a problem to be solved at present. In this paper, the
safety production factors of chemical enterprises are investigated and analyzed, different
levels of safety indicators are selected as evaluation indicators, and extension engineering
theory is used to establish a risk early warning model for chemical enterprises. The selection
of safety evaluation indexes is the basis for establishing the safety evaluation method of
chemical enterprises. The safety risk analysis of chemical enterprises involves personnel,
equipment, and facilities, the operating environment, safety management, and other aspects
in the production process. Safety workers at home and abroad have made great efforts in this
regard. However, the production of chemical products is a complex system for the production
and management of chemical enterprises, involving strict processing conditions, complete
equipment and facilities, and numerous dangerous and harmful factors. It is difficult for a
single index to fully reflect the actual safety status of the enterprise. It is necessary to select
the best influencing variables that affect the safe production of chemical enterprises from
different levels and play a dominant role in the nature of the variables. Each index should
follow the principles of practicality, representativeness, scientificity, systematicness, and the
combination of being qualitative and quantitative as much as possible.

Once the degree of damage for each trigger has been assessed, this information can be
aggregated into a single risk index, and each estimate can be combined with the correspond-
ing probability of occurrence. We use the safety evaluation model to comprehensively
evaluate the safety status of a typical chemical enterprise in Hebei, China. The chemical pro-
duction process involves a variety of dangerous chemical substances, and the intermediate
and finished products in the production process are usually toxic, flammable, and explosive.
Therefore, the plant area of chemical plants is usually identified as a major source of danger,
and chemical accidents will not only threaten the enterprise itself but also threaten the local
city. According to the risk early warning model proposed in this paper, the prerisk level of
the final safety evaluation result is light-risk. Combined with the actual situation of the
enterprise, this paper puts forward four feasible safety risk management suggestions for
the safety production and risk management of the chemical plant: (1) further strengthen
personnel operation standards; (2) indicators with low scores in the model represent poten-
tial risks. It is suggested that enterprises conduct risk investigations and focus monitoring
to improve the current inappropriate production modes; (3) strengthen gas concentration
monitoring at pipelines; and (4) strengthen the management of electrolytic equipment.
Therefore, a theoretical basis for the safety production analysis of such chemical enterprises
is provided through the risk early warning model of chemical enterprises in this paper.

6. Conclusions

Applying the extension data mining technology to the safety quality evaluation of
chemical enterprises will help to determine the useful information that cannot be obtained
(or not completely obtained) in the safety aspect of chemical enterprises. This paper mainly
aims at data mining, such as safety factors, working conditions, and outdoor meteorological
factors, in the workshop. First, this paper preliminarily preprocesses the common quality
problems of monitoring data in chemical factories and removes the basic data quality
problems in the raw data, such as outlier removal and data alignment. Second, the index
weight is determined by the game theory comprehensive weighting method, and the
correlation degree of safety and environmental data of the four workshops in chemical
enterprises is calculated by the fuzzy analytic hierarchy process (FAHP) and uncertainty
elementary dependent function in two nested regions. Finally, according to the dependent
function evaluation rules, the safety and environmental data of four workshops of chemical
enterprises are comprehensively evaluated. The research in this paper is only a preliminary
exploration of the application of extension data mining in the field of chemical factory safety
security, aiming to provide a starting point for further research. According to the existing
prior knowledge and open data of chemical factories, the early warning evaluation results
and chemical safety opinions of chemical enterprises studied in this paper are the best
and most comprehensive results we have obtained. The method in this paper is based on
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extension theory, which is very suitable for establishing evaluation models and addressing
the impact of uncertain data fluctuations on the reliability of evaluation results. However,
the increase in dimension will increase the time-consuming nature of function calculation
of the model, and the increase in dimension and data volume will lead to lower efficiency of
the model. At the same time, the generalization ability of the model is weak, and it needs to
be modeled separately for different enterprises, workshops, and even some key production
stages. To solve these limitations and make the model more suitable for real working
conditions, we consider adding more complex probabilistic dynamics into the model in
our future work. At the same time, in view of the discrete and uncertain characteristics of
chemical industry data, another direction is to focus on the real distribution of data so that
the data can more realistically reflect the behavior of the production system. This will allow
our model to establish a dynamic model that is more in line with the real scene according
to the real complex working conditions of the production system so as to improve the
limitation of the model in generalization ability.
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