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Abstract: Wildland fires are a phenomenon of broad interest due to their relationship with climate
change. The impacts of climate change are related to a greater frequency and intensity of wildland
fires. In this context, megafires have become a phenomenon of particular concern. In this study, we
develop a model of ignition risk. We use factors such as human activity, geographic, topographic,
and land cover variables to develop a bagged decision tree model. The study area corresponds to
the Maule region in Chile, a large zone with a Mediterranean climate. This area was affected by a
megafire in 2017. After generating the model, we compared three interface zones, analyzing the scar
and the occurrences of ignition during and after the megafire. For the construction of georeferenced
data, we used the geographic information system QGIS. The results show a model with high fit
goodness that can be replicated in other areas. Fewer ignitions are observed after the megafire, a high
recovery of urban infrastructure, and a slow recovery of forest plantations. It is feasible to interpret
that the lower number of ignitions observed in the 2019–2020 season is a consequence of the megafire
scar. It is crucial to remember that the risk of ignition will increase as forest crops recover. Wildland
fire management requires integrating this information into decision-making processes if we consider
that the impacts of climate change persist in the area.

Keywords: wildfire; ignition risk; model; megafire; climate change; bagged decision tree; wildland
urban interface

1. Introduction

Wildfires are an extreme phenomenon of great global concern [1]. The frequency and
intensity of these events have progressively increased in different areas of the world [2].
Studying the causes and risks of forest fires has become a field of broad interest. Various
investigations and technical reports on wildfires agree that at least 90% of these have
an anthropogenic origin [3–7]. It is not entirely clear, however, how many of the fires
caused by human actions are due to negligence and how many are intentional. Identifying
and punishing the people responsible for wildfires is a complex problem, given that the
evidence is not recordable or disappears due to the fire [8]. A series of environmental
factors favor the spread of wildfires, such as the combination of temperature, humidity, and
wind [4,9–11]. Added to this are research results on the influence of productive activities
and the characteristics of wildland–urban interface zones [6,12,13]. All the above indicates
the need to deepen the analysis of the interaction between human action and its ecological
environment to investigate the conditions that affect the fire origin and spread. In addition,
there is a need to connect this with the impacts of socio-environmental disasters.

Appl. Sci. 2022, 12, 9353. https://doi.org/10.3390/app12189353 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12189353
https://doi.org/10.3390/app12189353
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8282-1122
https://doi.org/10.3390/app12189353
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12189353?type=check_update&version=2


Appl. Sci. 2022, 12, 9353 2 of 17

Climate change is a highly complex phenomenon that has become the focus of inter-
disciplinary studies on the relationship between society and the environment, particularly
disaster risks. Its link to wildfires exemplifies this evident relationship [14–18]. Due to
climate change, different areas of the world have been affected by the increase in heat
waves, the increase in the magnitude of periods of drought, the decrease and absence
of rainfall, and soil degradation [19–21]. All these phenomena are not direct causes of
wildfires, but are factors that influence their recurrence and magnitude. Heat, drought, lack
of rain, and land degradation affect the availability of fuel material, which favors the spread
of wildland fires [4,22]. These factors also affect the intensity of fires and the damage they
cause [13,23–25]. An interesting example of the interaction between climate change and
wildfires is the increase in ignition points in mountainous areas that are difficult for people
to access [26]. Lightning generated in dry electrical storms (without rain) can cause fires in
native forests in these areas, where difficult access is an obstacle to their control [27–29].

The relationship between climate change and wildland fires increases concern about
its social and environmental impacts. Wildland fires impact people’s health due to burns
or the large amount of CO2 they generate, produce irreparable damage to infrastructure
and homes located in interface areas, and affect productive activities [3,30,31]. On the
other hand, wildland fires destroy flora and fauna, generate desertification, and deteriorate
biodiversity [20,31]. The interaction with climate change increases the damage capacity of
these impacts.

In this scenario, it is necessary to generate tools that allow technical organizations and
communities to have information that enables better wildland fire risk management [20,32].
For this, it is essential to advance the study of the behavior of risk factors in particular
territorial contexts. This will allow the delivery of valuable and valid information to territo-
rial planners, risk managers, and community leaders about the prevention, preparation,
firefighting, and mitigation actions they must promote in their environments. Forest fire
risk analysis is, therefore, contextual, since it depends on the characteristics of the socio-
ecological systems in which it is carried out. We understand socio-ecological systems as
those that emerge from the relationship between biophysical and social factors, sustaining
a set of human needs and environmental conditions in interaction [33–36].

From disaster risk management, the concept of risk integrates the following two main
components: damage and future projection. Risk has been defined as the probability of
occurrence of a future event that can cause possible damage [37,38]. Therefore, the risk
of wildland fires refers to the negative impacts that these can have on communities and
ecological environments [20]. The probability of wildland fire occurrence depends on the
interaction between different geographic, topographic, climatic, land cover, and human
action variables [11,39–41]. The interaction between these factors determines the magnitude
of the projected damages [11,42].

The social theory of risk expands the analysis of this concept and its application
in disaster risk management. This integrates the decision as a relevant component of
the risk. The probability of damage is the consequence of an unwanted decision that
wants to be avoided. For decisions to manage the risk, it is necessary to know what
and how this damage is produced [43]. In the context of wildland fire risk, this means
integrating knowledge about what makes wildland fires so that the decisions adopted for
their management are those that prevent their occurrence or minimize their damage. In
this sense, risk analysis implies anticipating possible negative results of a decision [44,45].

The study of fire risk can be divided between research on propagation and the ignition
of forest fires. This work addresses the risk of wildland fire ignition due to its relevance
in developing prevention and preparedness strategies. A fire occurs when an ignition
source (human or natural) meets the available combustible material [3]. Ignition risk is
the probability that a fire will start at a given point in the territory [46]. Depending on the
conditions and characteristics of the space where the ignition point is located, the flames can
increase in intensity and propagate, developing into a forest fire [5,47]. Ignition depends
on a wide range of variables associated with the point where it occurs. These can be
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classified into (a) natural conditions, such as plant species and plantations height, humidity,
temperature, topography, and local climate, [3,4,11,47,48] and (b) anthropogenic conditions,
such as land use and cover, distance from roads, distance from urban or inhabited areas
and urban infrastructure [6,20,23,26,47,49]. The ignition risk increases when the associated
variables interact at a certain point.

Wildland urban interfaces (WUI) are areas in which these factors interact and are en-
hanced. Research indicates that the risk of wildland fires is greater when human settlements
mix with vegetation [40,50]. This acquires relevance in the context of megafires. The most
significant damage caused by wildland fires is in the ecological environment in which they
occur. The damage on urban surfaces is usually negligible if we compare it with vegetated
or forested surfaces. In megafires, however, the risk of damage in inhabited urban areas
increases [51–53]. Their high intensity characterizes megafires compared to the general
pattern of wildland fires. Other characteristics are their broad ecological and social impact,
the obstacles they impose on their management, and the danger of reactivation [19,54].
All these factors imply that these events tend to cross WUIs, affecting people and urban
infrastructure more significantly than forest fires. Along with this, a megafire can change
the land cover, reducing the ecosystem services that the land provides to the surrounding
populated areas [51,55].

In this study, we analyze the risk of wildland fire ignition by modeling and mapping
these events. Our case study is the Maule region in Chile, which was affected by the
megafire of 2017. Considering the high vulnerability that this area presents to the impacts
of climate change and the uncertainty about its future effects, we developed a model of
ignition risk from historical fire data in the region. First, we identify the variables that
best explain ignition. Based on these variable values, the model assigned a probability of
fire occurrence to points on the map. We then validated the model with data from fires
during the megafire and later years. Finally, we identify four interface areas affected by
the megafire of 2017 and compare the state of the territory before and after this event. This
last exercise aims to analyze the current fire risk conditions in a region that, due to its high
exposure to climate change, may once again be affected by events of significant magnitudes,
such as the 2017 megafire.

2. Case Background

Between January and February 2017, the south-central zone of Chile experienced one
of the largest megafires in history [56]. The amount of heat energy released during the
months that this event occurred exceeded the scales used internationally until then [57].
Official figures indicate that the fire destroyed 529,974 hectares. Although the greatest
damage occurred in forest areas, a set of WUIs was affected, with 3000 homes lost and
11 deceased persons [16,51].

Megafires are usually generated in Mediterranean landscapes, such as the affected area
in Chile. The climatic conditions and homogeneous land cover, given the vast extension of
forest plantations, were favorable conditions for this event [58,59]. These conditions are
characteristic of the Maule region, one of the most affected by the 2017 event. In this region,
the fire destroyed 252,556 hectares, equivalent to a third of the forest area of the region [51].
The mega-drought that has affected this region since 2010 led to the fire spread and a high
level of damage [57,60,61].

Due to this disaster, the resources provided for firefighting were increased in the
country, which positively increased the response capacity of specialized agencies [61].
Little has been addressed, however, in the prevention of wildland fires in science and
public policy. We believe studying the risk of wildland fire ignition will contribute to the
characterization of areas highly exposed to these fires, information that can be used in
prevention policies and actions. On the other hand, the set of conditions that increased
the chance of the development of the megafire in the Maule region has not changed in
recent years, making it necessary to analyze the risk of ignition of wildland fires and the
associated factors.
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2.1. Study Area
Region of Maule

The study area is located in the Maule Region, in central Chile, between 34◦41′ and
36◦33′ south latitude. The surface area is 30,296 km2, equivalent to 10% of the national
territory [62]. Its population is 1,044,950 inhabitants, with a density of 34.5 inhabitants per
square km, with 73% of the population living in urban areas [63]. Its topography integrates
mountains of 4000 m.a.s.l. in the Andes Mountains, an intermediate depression, and the
Coastal Mountains with mountain ranges with moderate to steep slopes. The climate
is a temperate Mediterranean climate, with a dry season of six months in the north and
four months in the south. The primary use of the land is grassland and scrubland (25%),
agricultural land (22%), and forest plantations (20%) [64]. It has an area of native forest
of 581,515 hectares and 634,893 forest hectares [65]. Given the topographical and climatic
characteristics, the forest crops are mainly located in the Cordillera de la Costa [64]. For the
analysis of the changes in the landscape after the 2017 megafire, we selected the following
three communes in the region: Constitución, Empedrado, and Cauquenes (Figure 1). The
selected communes correspond to the populations most affected by the 2017 fires [66].
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It should be noted that in Empedrado, the town of Santa Olga was entirely consumed by
the fire, becoming an emblematic case of megafires’ impact on a population in a WUI [15,67].
The incident negatively impacted the water and electricity supply and generated contamination
of water sources for human and animal consumption. In these communes, the labor sources
associated with agricultural and livestock production and the forestry industry were also
affected [67].

Constitución, located between latitude 35◦19′ south and longitude 72◦24′ west, is a
coastal city with a total area of 1344 km2 [68]. It is located on the south bank of the mouth of
the Maule River in the Pacific Ocean. The maritime influence keeps its daily temperatures
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moderate, with an annual average of around 14 ◦C. It is characterized by hot summers and
mild winters, with an average annual rainfall of 662 mm. Its population is 46,068, of which
19% reside in rural areas [63]. The main economic activity is forestry and agriculture. The
use of the land is native forest (5%), plantations (41%), thickets (34%), crops, and grasslands
(19%) [68].

In the south of the region is the commune of Empedrado, between the coordinates
35◦36′ south latitude and 72◦16′ west. Its surface is 565 km2 and is located in the coastal
mountain range. Its annual temperatures range between 10 ◦C and 33 ◦C [69]. Its total
population is 4142 inhabitants, of which 27% live in rural areas [63]. The main economic
activity is agricultural and forestry production, including agriculture, livestock, dairy
production, wines, and liquors. Land use is divided into the native forest (17%), plantations
(17%), bushes (17%), agricultural (17%), grasslands (17%), meadows (17%), grassland crop
rotation (17%) and others (17%) [69].

Between 35◦58′ south latitude and 72◦18′ west longitude is the commune of Cauquenes,
with an area of 2216 km2 [70]. Its population is 40,441 inhabitants, with a rural population
of 18% [63]. It has a main body of water, the Cauquenes River, whose flow has decreased
due to the drought affecting the region. Its climate is a Mediterranean climate, with average
temperatures of around 25 ◦C in January and 7 ◦C in July. The economy of the commune
is diverse and includes manufacturing activities (20.5%), forestry (17.3%), and electricity
production (13.2%), among others. Land use is divided into the native forest (32%), forest
plantations (32%), and thickets (31%), which together cover 95% of the surface [70].

3. Materials and Methods

We developed a model of the risk of ignition of forest fires in the Maule region through
a machine learning model. For this, we defined the ignition of forest fires as a dependent
variable and selected a set of independent variables as possible predictors of ignition.
The construction of the database was in two stages. First, spatially represented points
of the ignition variable (binary variable) were generated. Then, the values of the set of
independent variables were estimated for each of these points.

The dependent variable was generated from the Corporation Nacional Forestal (CONAF)
data, published as official data on its website (CONAF https://www.conaf.cl/incendios-
forestales/incendios-forestales-en-chile/estadisticas-historicas/ (accessed on 20 May 2022)).
From this, we obtained information on the coordinates, start date, control, cause, and magnitude,
of the fires that occurred in the Maule region between 2013 and 2015. The period defined for
collecting information was due to the need to have a rich source of available data on fire ignition
and independent variables before the megafire of the 2016–2017 season. On the other hand, we
decided to generate the model with data before the megafire to contrast it with what happened
during that event to validate its results. With this, we looked for a model that allowed us to
explain the ex-post distribution of the ignition points of forest fires, while predicting the risk of
ignition in the future.

We assigned the value 1 (one) to the points where a fire occurred in the indicated years
and a value 0 (zero) to the points where there was no ignition. The assigning points that
represented areas with no ignition of wildland fires were carried out randomly. Points
with the value 0 were assigned to located areas more than 500 m from an ignition point.
For the construction of georeferenced data, we used the geographic information system
QGIS (version 3.20.3. for Windows/Copyright © 2000, 2001, 2002, 2007, 2008 Free Software
Foundation, Inc. <http://fsf.org/>).

We obtained 3784 points, of which 1892 indicate the ignition of forest fires between
2013 and 2015 in the Maule region; these correspond to the red points in Figure 2. The 1892
blue points generated by the model represent areas with no ignition in the same period.

The independent variables selected for the construction of the model were based on
the work of Miranda et al. [40]. According to the authors, the scientific evidence indicates
that this set of variables is the one that best represents the territorial characteristics of those
places where wildland fires occur in interface areas. Based on the results of this group

https://www.conaf.cl/incendios-forestales/incendios-forestales-en-chile/estadisticas-historicas/
https://www.conaf.cl/incendios-forestales/incendios-forestales-en-chile/estadisticas-historicas/
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of researchers, we worked with 14 independent variables organized into the following
3 classes: (a) human activity, (b) geography and topography, and (c) land cover (Table 1).
Each variable was spatially represented in a 30-m resolution raster. To assign the values of
the independent variables at each point, we defined a zone of influence of 500 m (centered
at the point of ignition). These buffers were built by taking a circumference of a radius
of 500 m around each point of the raster. Each one was assigned the value (percentages,
averages) of each explanatory variable to avoid bias.
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2013 to 2015.

Each of the 3784 points was assigned values for these 14 variables. Thus, the model
was trained with the values obtained between 2013 and 2015.

We seek to identify the variables that most influenced the fire’s start in the past.
With this, we estimate what factors generate a greater probability of a fire. Based on the
methodology used by Miranda [40], we use the bagged decision tree, BDT model [75]. This
ensemble machine learning method combines different “weak” classification sub-models
to obtain a “strong” one. The processing of the model was carried out using the MATLAB
R2020a (see: https://www.mathworks.com/products/matlab.html?s_tid=hp_products_
matlab (accessed on 10 April 2022)).

Bagging (which is short for bootstrap aggregating) consists of building different
submodels using random samples, with replacement, and then assembling the results.
Various subsets of the training set data are created. The model has that name, since it
trains the submodels using bagging. A model is trained with each subset, and the final

https://www.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
https://www.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
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predictions are averaged, making it more robust. An example of a bagging model is shown
in Figure 3.

Table 1. Independent variables, names, and sources.

Variables
Classes Name Label Source

Human activity

DensPop Population density of the point
(inhabitants/census district)

Instituto Nacional de Estadísticas: https://www.ine.cl/
herramientas/portal-de-mapas/geodatos-abiertos

(accessed on 2 April 2022) [71]DistCit Distance from point to nearest city (m)

DistRoad_buff Average distance from the 500 m radius
buffer to the nearest road (m)

Ministerio de Obras Públicas:
https://ide.mop.gob.cl/geomop/ (accessed on

2 April 2022) [72]

Geography and
topography

Exposition Point exposition (indices)
Earth Resources Observation and Science Center (EROS),

https://www.usgs.gov/centers/eros/data-tools
(accessed on April 2022) [73]

Slope Point slope (grades)
Elev Point elevation (m.a.s.l.)

Land cover

Crop_buff Proportion of crops in a 500 m radius
buffer (proportion)

Zhao Y et al. 2016 [74]

Nat_buff Proportion of native forest in a 500 m
radius buffer (proportion)

ForPlan_buff Proportion of forests plantation in a 500 m
radius buffer (proportion)

Grass_buff Proportion of grassland in a 500 m radius
buffer (proportion)

Scrub_buff Proportion of scrubs in a 500 m radius
buffer (proportion)

Imper_buff Proportion of impermeable land in a
500 m radius buffer (proportion)

BareSoil_buff Proportion of bare soil in a 500 m radius
buffer (proportion)

LC Type of land cover predominant in the
point (categorical)
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For this work, we use the bagged decision tree, where each model is a decision tree.
The training set was built with 80% of the database, and the remaining 20% was used to
test and verify the accuracy of the results. Once the model was trained, it generated the fire
ignition susceptibility classification for each point on the 30 m × 30 m quadrant map.

Finally, a comparative temporal matrix of four WUI was built to analyze changes in the
distribution of wildland fire ignition. The matrix was elaborated through the QGIS software.
The satellite images come from the Sentinel-2 mission. These images present an atmospheric
correction at ground level, providing spectral radiance levels similar to reality. The vector layer
of the fire scar was extracted from the Landscape Fire Scars database for Chile [76]. Previous
layers corresponding to the ignition points of the 2016–2017 and 2019–2020 seasons were used
on the satellite images. It should be noted that the 2020–2021 season was not considered in the
analysis. We decided to exclude this season, since the lower number of wildland fires it registers
is associated with fewer people in transit in the interface areas, due to the confinement measures
adopted in the context of the COVID-19 pandemic.

4. Results
4.1. Model Fit

The performance of the model was estimated through the global adjustment indicator
AUC. This corresponds to the area under the curve ROC (relative operating characteristic),
which represents the ratio between the true positives (TPR, true positive ratio) and the false
positives (FPR, false positive ratio), as the model predicts values (Figure 4). When the AUC
takes a value of 1, the model has perfect prediction. When it takes a value of 0.5, it is a
model without explanatory power that does not discriminate between categories. For the
model, an AUC value of 0.85 is obtained, which means that it has a high level of fit.
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Another measure of the model’s effectiveness is the confusion matrix, which indicates
the level of correct and incorrect classifications. In Figure 5, we can observe that 75.8% of
values 1 (ignition) and 77.9% of values 0 (not ignition) were correctly classified.
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One of the advantages of decision tree models is that their results show the explicative
importance of the variables. This importance represents the prediction model’s error
increase after the variable’s value has been permuted (separated in a branch of the tree).
This is the normalized average of how much this variable changes the final classification
result. In this model, the importance of the variables is as follows, as we can observe in
Table 2.

Table 2. Variables’ importance.

Variable Importance Variable Label Variable Name

18.9599929 Proportion of crops in a 500 m radius
buffer (proportion) Crop_buff

15.2302175 Average distance from the 500 m radius buffer
to the nearest road (m) DistRoad_buff

15.046572 Distance from point to the nearest city (m) DistCit

8.80795483 Proportion of forest plantation in a 500 m
radius buffer (proportion) ForPlan_buff

7.63480897 Proportion of grassland in a 500 m radius
buffer (proportion) Grass_buff

6.82820899 Proportion of scrubs in a 500 m radius
buffer (proportion) Scrub_buff

6.35721698 Point exposition (indices) Exposition

5.09869124 Population density of the point
(inhabitants/census district) DensPop

4.0326676 Point elevation (m.a.s.l.) Elev

4.01163185 Point slope (grades) Slope

2.78965119 Proportion of impermeable land in a 500 m
radius buffer (proportion) Imper_buff

2.31063774 Proportion of native forest in a 500 m radius
buffer (proportion) Nat_buff

1.84278487 Type of land cover predominant in the
point (categorical) LC

1.04896344 Proportion of bare soil in a 500 m radius
buffer (proportion) BareSoil_buff
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In order of importance, the variables that best explain the ignition of wildland fire
in the Maule region are the proportion of crops, the distance to the nearest road, and the
distance to the nearest city. The second group of variables with a medium explanatory
capacity integrates the proportion of forest plantations, the proportion of grassland, the
proportion of scrub, exposure, and population density.

4.2. Ignition Risk Model Map

One of the model results is the assignment of ignition risk levels to the different zones
of the study area map. This is achieved due to the georeferencing of each point. Each pixel
is classified according to its level of susceptibility to the ignition of a forest fire.

In the map of the Maule region, we classify 33,696,273 pixels of a 30 m resolution raster.
Each of these pixels is assigned the values of the independent variables of the trained model.
The result of the classification delivers values between 0 and 1. It is a continuous variable
that represents levels of probability of ignition of forest fires. This graphic representation is
built on the map of the region. Figure 6 shows the result of the classification; the blue zones
have a lower susceptibility to fire ignition, the yellow zones have a medium probability,
and the red zones have a high probability.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18 
 

 
Figure 6. Ignition risk map in the Maule region, Chile. 

4.3. Model Validation 
To verify the explanatory capacity of the model, we superimposed on the map that 

shows the results of the ignition risk model the ignition points recorded in the 2016–2017 
season. These account for the distribution of the ignition points of the megafire in the 
Maule region (red points in Figure 7). In this comparison, it is important to consider that 
the modeling of the ignition risk was carried out based on data from 2013 and 2015. Figure 
7 clearly shows that most of the points where a fire started are in areas the model classified 
as having a high probability of ignition. These results contribute to validating the model 
and provide useful information to risk management in the future. 

Figure 6. Ignition risk map in the Maule region, Chile.

4.3. Model Validation

To verify the explanatory capacity of the model, we superimposed on the map that
shows the results of the ignition risk model the ignition points recorded in the 2016–2017
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season. These account for the distribution of the ignition points of the megafire in the
Maule region (red points in Figure 7). In this comparison, it is important to consider that the
modeling of the ignition risk was carried out based on data from 2013 and 2015. Figure 7
clearly shows that most of the points where a fire started are in areas the model classified
as having a high probability of ignition. These results contribute to validating the model
and provide useful information to risk management in the future.
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Figure 7. Ignition risk map and ignition points during 2016–2017 season.

In addition, we compare the model results with the real ignitions between 2016 and
2020. Table 3 shows that 85% of fires in that period occurred in points classified as medium,
high, and very high risk by the model.

Table 3. Percentage of fire ignition during 2016–2020 according to model probability levels.

Ignition Probability Risk Level Points Frequency Ignitions 2016–2020 (%)

0–20 Very low 113 3.19%

20–40 Low 424 11.99%

40–60 Medium 728 20.58%

60–80 High 941 26.60%

80–100 Very high 1331 37.63%

TOTAL 3537 100.00%
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4.4. Temporal Comparative Matrix of Interface Zones

To deepen the analysis of our model and generate guidance for decision-makers,
professionals in charge of forest fire prevention and preparedness, and communities, we
analyzed three interface zones severely damaged by the 2017 megafire (Figure 8). The
matrix shows the results of the ignition risk modeling (a), the ignition points of the 2016–
2017 season (b), the scar of the 2017 megafire (c), and the ignition points of the 2019–2020
season (d).
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The results show that fire ignition in the two seasons under analysis occurred in
areas the model classifies with a high probability (see columns a, b, and d). In these areas,
crop areas of diverse composition can be observed—especially forestry—near the ignition
points by roads and cities. These characteristics correspond to the variables with the most
significant weight in the probability of ignition of our model.

Comparative analysis of satellite images indicates that the number of ignitions in each
WUI is lower in the 2019–2020 season. Changes in the territory’s characteristics can also be
observed, including a notable decrease in the density of forest crops in each of the analyzed
areas (column d). This change in the territory’s composition can be attributed to the 2017
megafire scar (column c). A large part of the forest plantations, grassland, and scrubs in
these areas was destroyed by the fires of 2016–2017. Our model classifies these variables
with a medium influence on the probability of ignition.

It should be noted that the town of Santa Olga was destroyed by the fires of 2017. As
a reparative measure, it was quickly rebuilt in the following years. The reconstruction of
the town meant an improvement in the conditions and quality of life of its population,
which received better quality housing and urban infrastructure that did not exist before
the megafire [67]. These improvements, however, do not mean a reduction in the ignition
risk in the area adjacent to this town, since it continues to be surrounded by extensive and
dense forest plantations.
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5. Discussion and Conclusions

The ignition risk model generated in this work makes it possible to identify those
sectors of the wildland urban interface zones with a higher probability of forest fire ignition.
In turn, it tells us what characteristics of the study area make it more prone to ignition.
Depending on their predictive capacity, two groups of variables allow us to understand
why ignition is more probable in these sectors. The group of variables with the most
significant predictive capacity includes the crop proportion, the distance to the nearest
road, and the distance to the nearest city. These are variables of anthropogenic origin if we
consider that they are associated with productive activities (crops) and urban characteristics
(roads and cities). The second group of variables has a medium ability to predict ignition.
Among these, we find variables of anthropogenic origin, such as the proportion of forest
plantations and population density, and variables of natural origin, such as grasslands,
scrubs, and exposure.

The results coincide with previous studies that have verified the coincidence between
forest fires’ risk and high proportions of land use destined for crops [26]. In this regard,
particular importance has been assigned to forest crops in the ignition of fires [22]. It
has been shown that the uncontrolled growth of forest species increases the combustible
material and the ignition risk [16,22,77–79]. On the other hand, it has been pointed out
that replacing the native forest with homogeneous pine and eucalyptus plantations in
the central-southern zone of Chile has led to a greater production of large-scale wildland
fires [56]. Our results help confirm the strong influence of human activities on forest fire
ignition [4,10,20,24,40]. As in our work, the proximity of ignition points to roads and
human settlements are factors that previous studies highlight as risk factors [3].

The analysis of the WUI satellite images indicates that the territory’s characteristics
changed due to the scar from the 2017 megafire. The density of forest plantations is the
most evident change. The images show that forest plantations are in the process of recovery.
On the other hand, the urban infrastructure has recovered rapidly. This maintains the
high levels of risk associated with the distance from roads and cities and population
density. In particular, Santa Olga town reconstruction shows that the repair process focuses
on restoring the urban infrastructure and improving the living conditions of the people
affected by the fires. However, integrating the ignition risk prevalent in the Maule region
into decisions is not evident.

It is feasible to interpret that the lower number of ignitions observed in the 2019–2020
season is a consequence of the megafire scar. Variables associated with crops, scrubs, and
grasslands decrease their influence on ignition, given that such combustible materials are
less dense. However, it is crucial to remember that the risk of ignition will grow as forest
crops recover. This information must be incorporated into the decisions adopted for the
prevention and preparation of forest fires. Along with this, the authorities and communities
must integrate into their decisions how climate change contributes to ignition probability.

The decrease in rainfall, soil degradation, and heat waves are impacts of climate change
related to the variables that the ignition risk model classifies with a strong and medium
influence. Previous studies have confirmed that these impacts of climate change affect soil
humidity, creating conditions for high flammability of combustible materials [4,10,11,56].
The exposure of the land to sunlight is another climate change variable that our model
associates with the ignition risk. According to Maniatis (2021), in areas more exposed to
sunlight, the vegetation loses humidity and becomes more flammable. The Maule region
has been highly impacted by climate change. This condition is not expected to vary, at least
in the short and medium term [60,61,80]. For this reason, it is imperative to consider the
variables above in wildland fire risk management, especially given the uncertainty that a
new megafire might occur in the region.

The creation of models that make it possible to understand and make visible the risk
of wildland fire ignition is necessary but not sufficient. If disaster risk is still understood
only as the future projection of damage, these models only serve to identify the risk, not
to manage it. Forest fire management requires integrating risk as a decision. This means
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improving the policies that regulate the density of forest plantations, the maintenance and
expansion of firebreaks in interface zones, land use, and post-fire cleaning of areas where
tree species’ seeds are irregularly disseminated. It also means integrating the ignition risk
into the measures to repair the damage caused by wildfires.

Developing ignition models, such as the one in this work, is undoubtedly necessary to
manage wildland fires. An example is the verification of sectors with a greater probability
of ignition that, according to the model, are strongly associated with the areas where
multiple fires occurred in 2017. This information will allow fire governance actors to
implement better strategies to prevent wildland fire ignition. Nevertheless, we must be
aware that, even so, forest fires will continue to occur. The risk of ignition is higher in
regions such as the study area, where climate change has strongly impacted territory
characteristics and conditions. For this reason, integrating the ignition risk into decisions
also means implementing campaigns and actions to improve the ability to react to this kind
of phenomenon.

It should be noted that the model developed in this work accounts for the particulari-
ties of the study area. The model was trained with historical data from the Maule region
in Chile. Therefore, the results obtained are valid only for the case analyzed. However,
working with the bagged decision tree model has the following significant advantage: it is
possible to replicate it in other areas with different characteristics. It is possible because the
model learns from the data provided to it. In addition, variables such as human activity,
geography, topography, and land cover can be obtained for other areas of interest. The
only limitation is that these layers of information, particularly land cover, are scarce in
many countries.

One of the challenges that arise from this work is to continue deepening the character-
ization of the ignition risk. We believe that obtaining better views of the interface areas and
the factors associated with risk is necessary. This will allow professionals and people to
integrate this information. Visually identifying the components and characteristics of the
territories where the ignition risk is higher can contribute to a better understanding of how
to prevent and prepare for wildland fires.
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