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Abstract: As the technology of the maritime autonomous surface ship (MASS) systems has geared
toward autonomy, the importance of human operations in the shore control center (SCC) has gained in
significance. Accordingly, the effects of the training method, including the traditional and new remote
operator training methods have to be investigated in terms of MASS navigation safety. Therefore,
this study conducted a comparative analysis to prove the effect of onboard training. The findings
include the execution of a simulated navigation experiment, the extraction of rudder steering-related
features, selection of significant features, and comparative analysis with network graph visualization.
The separate results obtained from the “untrained” group and “trained” group were exhibited as
the purpose of research for the effect of onboard training on navigation skills. Then, the authors
interpreted the difference in each group allusively in accordance with features considering actual
navigation and compared groups using descriptive statistics. Consequently, this study emphasized
the importance of proving the effect of training before the new training technologies are used to train
MASS remote operators in the future.

Keywords: maritime autonomous surface ship; remote operator; effect of training; simulated navigation
experiments; comparative analysis

1. Introduction

With the technological development of the maritime autonomous surface ship (MASS)
systems now gearing toward autonomy, it is expected that MASS operations will be
carried out via interaction with the shore control center (SCC) under human operation via
shore remote operators [1–5]. Before the commercialization of MASS, it is necessary to
develop a new training method for remote operation [6–9]. Because human intervention
cannot be entirely removed from the operation of autonomous ships, remote operators
are identified to play a crucial role in the safe operation of MASS (as the autonomous
navigation technology of MASS) [10,11]. As human factors account for the majority of
maritime accidents, operators must be trained properly [12–15].

Navigation skills have been identified as the most important human factor in the
training of traditional navigators [16]. At the moment, the training opportunities given
to navigators are onboard training and SHS simulation training [17,18]. From onboard
training, trainees can gain comprehensive ship operation knowledge and experience as an
officer, such as ship management, cargo handling, risk management, navigation planning
and execution, attitude, and leadership as an officer of the watch, including training for
familiarity with the use of navigation equipment and a sense of life on board [15]. Although
onboard training indeed includes both theoretical and practical ship handling training,
these priceless opportunities are often difficult to provide regularly [19,20]. As a result of
the research on maritime education and training, more simulation methods will be used for
navigation training [21,22]. In future training, simulation training will account for a greater
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proportion of navigator training than it does now, and the training must include navigation
skill enhancement [23,24].

Existing navigation skills will have to be reinterpreted in line with the new education
and training requirements for MASS [25,26]. In a similar manner, other research has
emphasized the need for newly added training, such as the mandatory requirements of
the future version of STCW [17,27]. Despite the growing debate over the new training, the
expected effect of training on navigation skills is yet to be adequately elucidated. Thus,
the verification of enhanced navigation skills ought to be conducted, especially before
the new method of training is applied. As a result, this study conducted a simulation
experiment on two different groups, namely, the “untrained group” and the “trained
group,” of onboard training as preparation for obtaining the newly added type of training.
The proposed methods include related materials from the process of experiment execution
to the interpretation of test results.

As a result, this study primarily aims to investigate the impact of onboard training
on navigation skills improvement through a comparative analysis of various aspects of
navigation evaluation perspectives.

2. Materials and Methods

The proposed methods use the data from the practical experiments. The most effective
features in group separation were then applied to the network graph to determine the
overall difference between the two groups using the navigation features extracted and
selected based on the difference in onboard training. Figure 1 depicts the workflow of our
proposed methods.

Figure 1. Workflow of the proposed methods.

This research conducted the simulation experiment designed and generated under
contemplation. Then, the data collected from the experiment were preprocessed and
analyzed for feature engineering. Afterward, selected features were scrutinized to compare
data from the separated groups upon the onboard experience.

2.1. Design of Simulation Experiment
2.1.1. Participants

This research has recruited the students into two separate groups: “group A” and
“group B”. Group A consisted of students who had never experienced being on board
the ship as cadets. Thus, their knowledge was limited to the theoretical education they
acquired in class. On the contrary, group B consisted of students with onboard experience
as cadets for one year on average. The specific information on participant recruitment is
arranged in Table 1.
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Table 1. Participants’ information.

Characteristics Group A Group B

Number of participants 20 20
Onboard training experience None One year

2.1.2. Protocol

The authors created the basic navigation scenario solely to derive the different results of
navigation skills, specifically the maneuvering skills of the groups, based on the simulation
experiment design. Since groups differ significantly in terms of navigation experience, the
experiment scenario used in this research was composed of only “route leg” and “waypoint”
without territorial components. As a result, the participants’ instructions were as simple as
“navigate the ship on the route”. The only permitted controller was the steering wheel. The
experiment scenario is shown in Figure 2.

Figure 2. Experiment scenario.

The experiment used the full-mission-ship-handling simulator, and the target ship
was the Mokpo National Maritime University training ship. The target ship is 133 m in
length and 19.4 m in width and in 9196 GT; this ship is commonly boarded under the
education curriculum.

2.2. Data Collection and Preprocessing

Data was collected from the simulator. The raw data consisted of 13 elements, as
arranged in Table 2.

The raw data contained a temporal element, “Time” of elapsed time; the spatial ele-
ment of “East” and “North” in the UTM datum; motion elements of “Heaving”, “Yawing”,
“Pitching”, and “Rolling” from 6 degrees of freedom; ship speed with RPM; and rudder
degrees. Each value was represented numerically. Because the raw data was well-organized
numerically, the data preprocessing focused primarily on unit conversion.
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Table 2. Elements of raw data.

Name Sample Unit

Time 4 × 10−1 Second (s)
UTM (East) −6.8094 × 10−4 Meter (m)

UTM (North) 1.1170 × 105 Meter (m)
Heaving 0.5142 × 10−6 Meter (m)
Yawing 2.2744 × 10−4 Degree (◦)
Pitching −1.1577 × 10−7 Degree (◦)
Rolling 4.1719 × 10−4 Degree (◦)
Speed 6.7110 Meter per second (m/s)
Drift −1.0535 × 10−3 Meter per second (m/s)

Rate of turn 2.0434 × 10−3 Degree per second (◦/s)
Propeller (PORT) 1.0287 × 102 RPM
Propeller (STBD) 1.0287 × 102 RPM

Rudder angle −7.2000 Degree (◦)

2.3. Feature Extraction

Steering features were commonly related to maneuvering skills: the use of a rud-
der. The rudder is the primary device that allows the navigator to control the ship di-
rectly [28–30]. Thus, rudder movement-based features that can represent how the partici-
pant steered the ship are meaningful. Table 3 displays the extracted features.

Table 3. List of steering features.

Name Description Unit

Max ROT The maximum value of “rate of turn” Degree per minute (◦/min)

Mean ROT The average value of “rate of turn” Degree per minute (◦/min)

STD ROT Standard deviation value of “rate
of turn” Degree per minute (◦/min)

Mean rudder The average value of rudder angle Degree (◦)

First max rudder Maximum rudder angle used for
first altering Degree (◦)

Midship rudder The temporal ratio of rudder angle
at midship Ratio (%)

Hard rudder The temporal ratio of rudder angle over
30 degrees Ratio (%)

Idle time Idle time to use of rudder Second (s)

First max time Elapsed time to use “first max rudder” Second (s)

Reverse time Elapsed time to end first altering Second (s)

2.4. Feature Selection

Features selection was conducted based on the basic attribute features in the figures.
A significant difference was identified from features in the shape of the box, whisker, and
interquartile ranges based on aggregation and dispersion.

2.5. Comparative Analysis

Based on the findings, the comparative analysis focused on the difference in the
onboard experience. This research used the network graph algorithm and conducted
the interpretation to visualize the difference between the groups and explain the effect
of onboard training on various aspects of navigation performance. The network graph
algorithm is composed of “nodes”, “edges”, and “weight”. When the weight of the edges
is high, the connectivity between the nodes becomes strong. Furthermore, if the nodes are
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strongly connected, the network is visualized as an aggregate shape as shown in Figure 3a,
whereas the nodes are dispersed as a dispersion shape as shown in Figure 3b.

Figure 3. Concept of different shapes of networks: (a) aggregate shape and (b) dispersion shape.

This study defined each participant as a node, feature similarity as an edge, and
absolute difference in feature value as a weight; this is known as connectivity. Then, edges
with weak connections based on the average of weights were excluded from taking the
verification of navigation skills into account.

3. Results

Steering features in Table 3 indicate fundamental skills, including the familiarization
of rudder control. The authors then concentrated on examining the difference between
features because rudder control is the most targeted attribute in the verification of enhanced
navigation skills.

3.1. Result of Feature Extraction

The extracted feature demonstrated a significant difference as proof of onboarding
training. Figure 4 depicts the differences between groups using normalized values of
features, while Figures 5 and 6 depicts the aggregated navigation performance results of
each group, which is useful for comparing the overall trajectories.

Figure 4. Maneuvering features and domains.

As proof of onboard training, the extracted feature was noted to have a remarkable
difference. Figure 4 visualizes the difference of groups in each feature, and Figures 5 and 6
show the accumulated navigation performance results of each group, which is helpful in
comparing overall trajectories.
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Figure 5. Navigation performance result: group A.

Figure 6. Navigation performance result: group B.

3.2. Result of Feature Selection

Figure 4 shows the basic boxplot attributes “box and whisker” and “interquartile range
including skewness and dispersion. “First max rudder”, “First max time”, and “Reverse
time” are the three features that have a non-significant difference in the shape of the box,
whisker, and a form in which the interquartile ranges completely overlap in either direction.
As the conformation displays, no particular discrepancy between the group was found.
Another group of features that partially overlapped in box and whisker range were “Max
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ROT”, “Midship rudder”, and “Idle time”, yet their discrepancy was weak even when their
skewness and dispersion differed. On the contrary, the “Mean ROT”, “STD ROT”, “Mean
rudder”, and “Hard rudder” showed a convincing difference between groups. Boxes were
completely independent, and the interquartile ranges were disparate, with group A having
large dispersion and group B having high skewness. As a result, features of “Mean ROT”,
“STD ROT”, “Mean rudder”, and “Hard rudder” were selected.

From the selected features, the authors found that “Mean ROT” and “STD ROT” are
dependent; thus, the “STD ROT” was additionally excluded as Figure 7 shows final three
selected features in the red frame.

Figure 7. Selected features.

3.3. Comparative Analysis Result

Following the feature selection, this research calculated an absolute difference to
represent the weight of edges. As a result, the closest connection had the lowest value,
which is appropriate for visualization as connectivity. Then the maximum value was
deducted from all values, and the values were transformed into absolute values again to
reverse the meaning of the value, as a larger value indicates a stronger connection. As a
result, in terms of weight, the reversed value came to mean what this research intended:
larger values are stronger in connectivity, and smaller values are weaker. The network
graphs of selected features are shown in Figures 8–10.

Figure 8. Network graph for the feature “Mean ROT”.
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Figure 9. Network graph for the feature “Mean rudder”.

Figure 10. Network graph for the feature “Hard rudder”.

4. Discussion

The authors chose features with notable differences based on the familiarization gained
from onboard training. After some thought, it was discovered that the criteria for examining
the features could vary along the set of factors in scenarios. As a result, when selecting
features, we considered the designated factors of an experiment scenario. The network
graph algorithm was then used in visualization to explain the significant differences. The
obvious differences were thereafter discovered and explained.

4.1. Selected Features

The three preferred features are the most important aspect of rudder use. When the
average rate of turn, also known as “Mean ROT”, becomes excessive, the ship turns quickly,
and maintaining course then becomes difficult. Similarly, the average use of rudder, that
is, “Mean rudder”, meant the participants swiped the rudder widely, reducing the ship’s
inertia of motion. Similarly, exaggerated control for the given scenario is a temporal ratio
of rudder angle greater than 30 degrees. In terms of navigation skills, “Mean ROT” denotes
an understanding of a ship’s movements, “Mean rudder” denotes an understanding of the
interaction between the rudder and the ship’s movement, and “Hard rudder” denotes the
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proclivity of participants in handling the ship. Those navigation skills are the fructification
of the training, that is, the onboard training.

4.2. Comparative Analysis of Groups
4.2.1. Network Graph Interpretation

Although this research did not consider node phases, the examination focused on the
shapes: “aggregation” and “dispersion” in network graph interpretation. The aggregation
in Figure 3a depicts the network’s strong bond. Those strong bonds were found in group B
of Figures 8–10. Group B was described in the circle because its nodes were not precluded
when edges in weak connection were removed. The network graph’s strong connection
indicates that the similarity was high, and the values of selected features were consistent
within a certain range. Similarly, the dispersion shape was discovered in group A. The circle
was crushed and scattered as a result of the preclusion process’s severed edges, weakening
the network’s bond. In other words, there was a little resemblance.

4.2.2. Comparative Analysis

The difference of groups in the perspective of the network graph is well presented in
Figures 8–10 with the interpretation in the previous section. Here, the authors specifically
examined the selected features by using descriptive statistics in Table 4.

Table 4. Descriptive statistics for comparative analysis.

Descriptive Statistics Group A Group B

Mean of “Mean ROT” 29.5155 17.0955
Median of “Mean ROT” 29.1357 16.9824

S.D of “Mean ROT” 5.8821 2.8930

Mean of “Mean rudder” 13.0642 5.7998
Median of “Mean rudder” 12.3258 5.3612

S.D of “Mean rudder” 4.7802 1.4568

Mean of “Hard rudder” 0.1476 0.0143
Median of “Hard rudder” 0.1164 0

S.D of “Hard rudder” 0.1280 0.0252

In Table 4, the mean of “Mean ROT” depicts the entire trend of the specific feature,
so the value shows how different the groups were in the comparison. The mean of group
B was 0.58 times smaller than group A for the “Mean ROT”, indicating that group B had
a better understanding of a ship’s movement. Similarly, knowledge of the interaction
between the rudder and the ship’s motion was far superior to group A, and participants’
proclivity to handle the ship was reduced.

5. Conclusions

This research was motivated by the need to demonstrate the effectiveness of training,
particularly the current training methods. When the era comes for remote operators to be
trained and navigate the actual MASS, the training effect will be important for navigation
safety. The study objectively identified the navigation skills that could be improved through
onboard training in this study. A comparative analysis was conducted to demonstrate
the value of onboard training. The participants in the experiment were divided into two
groups based on whether or not they were trained onboard. The results of the analysis
efficiently explain the difference between the groups in the specific features related to
the use of the rudder. To emphasize the meaning of features in actual navigation, this
study interpreted the difference in terms of the navigation skills. Although this research
used a simple navigation scenario for the experiment and that participant recruitment
was not systemic, the effect of onboard training was appropriately revealed. In the future,
the training simulator designed explicitly for MASS remote control will be developed.



Appl. Sci. 2022, 12, 9300 10 of 11

The authors expect that the remote operator training simulator will have better effects on
improving operator navigation skills. Accordingly, the selected navigation performance
features; “Mean ROT”, “Mean rudder” and “Hard rudder” derived from this research are
expected to be applied for the development of simulation performance-based navigation
proficiency evaluation methods during the SRCO training period.
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